• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approach for Training Quantum Neural Network to Predict Severity of COVID-19 in Patients

    2021-12-15 12:47:46EngyElshafeiyAboulEllaHassanienKaramSallamandAbohany
    Computers Materials&Continua 2021年2期

    Engy El-shafeiy,Aboul Ella Hassanien,Karam M.Sallam and A.A.Abohany

    1Department of Computer Science, Faculty of Computers and Artificial Intelligence, University of Sadat City,Sadat City, 32897,Egypt

    2Faculty of Computers and Artificial Intelligence, Cairo University, 12613,Egypt

    3Faculty of Computers and Information, Zagazig University, 44519, Egypt

    4Faculty of Computers and Information, Kafrelsheikh University, 33516,Egypt

    Abstract: Currently, COVID-19 is spreading all over the world and profoundly impacting people’s lives and economic activities.In this paper, a novel approach called the COVID-19 Quantum Neural Network(CQNN)for predicting the severity of COVID-19 in patients is proposed.It consists of two phases:In the first,the most distinct subset of features in a dataset is identified using a Quick Reduct Feature Selection (QRFS) method to improve its classification performance; and, in the second,machine learning is used to train the quantum neural network to classify the risk.It is found that patients’serial blood counts (their numbers of lymphocytes from days 1 to 15 after admission to hospital)are associated with relapse rates and evaluations of COVID-19 infections.Accordingly,the severity of COVID-19 is classified in two categories, serious and non-serious.The experimental results indicate that the proposed CQNN’s prediction approach outperforms those of other classification algorithms and its high accuracy confirms its effectiveness.

    Keywords: Predict COVID-19; lymphocytic count; quantum neural network;dynamic change

    1 Introduction

    Towards the end of 2019, the latest coronavirus disease (COVID-19) emerged in China and spread quickly across the globe due to advanced means of transport.To date, it has claimed hundreds of thousands of lives in China and globally, and is the most powerful virus humanity has had to face since the so-called Spanish flu in 1919.It is expected that advanced technologies will help to overcome it by detecting it in real time and expediting the discovery of a possible treatment for it using supercomputers and advanced machine-learning algorithms[1].

    Genomic sequencing is the process by which a lab technician analyzes a person’s blood sample and prepares it to sequence a human cell which contains 23 pairs of chromosomes.This structure contains the person’s DNA which is coiled in a form called a double helix that can be unwound into a ladder shape made of 6 billion paired chemical elements called bases.To read these bases,a blood sample is inserted into a sequencing instrument in which a high-frequency sound wave breaks down its DNA,each fragment of which is sequentially copied hundreds of thousands of times, with clusters of identical ones created.Powerful computers combine the individual fragments to reveal the sequence of this DNA and then a medical team can use software to analyze and compare different sequences [2].Using such technology, the DNA of the current coronavirus was discovered very quickly and provided information that could be used to conduct PCR tests.

    Taiwan suffered an outbreak of severe acute respiratory syndrome(SARS)in 2003,recording 346 cases and 37 deaths.Informed by lessons learned,Taiwan has used all its knowledge,specifically in technology,to stop the spread of COVID-19.It has integrated people’s recent histories of travel to China from customer and immigration databases to complement cloud-based health records so that health professionals can be aware of patients’ recent travels, determine whether they entered infected areas and display a warning if they had visited China, in particular Wuhan, in the previous 3 months [3].Huang et al.[4] identified a recent pneumonia cluster in Wuhan, China, caused by COVID-19.They documented the radiological,laboratory, clinical and epidemiological treatments implemented and the characteristics and clinical outcomes of the patients.Lu et al.[5] considered that the genetic architecture of this human coronavirus could cause severe pneumonia and also shed light on its origin and receptor-binding properties.The outbreaks of diseases linked to COVID-19 highlight the secret reservoirs of viruses in wild animals and their capabilities to periodically spread to human populations.

    Zhu [6] reported an unknown cause of pneumonia in a group of patients associated with a wholesale seafood market in Wuhan, China, with a newly discovered betacoronavirus identified by objective sequencing in samples from these patients with pneumonia.Human airway epithelial cells that have been used to extract COVID-19 generate a clade within the sub-genus sarbecovirus which is a member of the orthocoronavirinae sub-family.Although different from both SARS-CoV and MERS-CoV, COVID-19 is the seventh member of the family of coronaviruses to infect humans.Chan et al.[7] identified a family group with pneumonia associated with COVID-19 that indicated person-to-person transmission.They documented their microbiological, radiological, laboratory, clinical and epidemiological findings for 5 patients in this group who had undiagnosed pneumonia after returning to Shenzhen, Guangdong province,China, after visiting Wuhan,and an additional family member who hadn’t traveled to Wuhan.

    Like an artificial neural network(ANN),a new,applicable and useful concept introduced recently is the Quantum Neural Network(QNN)[8].It integrates the quantum computational paradigm with the basics of ANN and is superior to the conventional ANN.It is used to handle big data, function approximation,computer games, etc.and its algorithms are applied in approach-automated control systems, associative memory devices, social networks, etc., Beer et al.[9] suggested a complete quantum analog of classical neurons which constructed quantum feedforward NNs capable of universal quantum computing.They defined the effective training of these networks using fidelity as a cost function which provided both classical and efficient quantum implementations.Their method involved rapid optimization with decreased storage requirements as the number of quits needed scales with only the width, thereby enabling deep-network optimization.They benchmarked their proposal for the quantum task of learning and found remarkable generalization behavior and striking robustness to noisy training data.Gao et al.[10] presented a novel method for deep learning to determine a person’s state of health.Firstly, one deeplearning approach, called stacked denoising auto-encoders, found features in the raw data for retaining the original information and then inserted them into a QNN to classify the dataset, with the loss function of the QNN enhancing its classification performance.Experiments conducted on benchmark datasets showed that their proposed method was more robust and effective than traditional ones.Also, they built an integrated modular avionics degradation approach for changing the probability of occurrence of soft faults during the whole life serves.

    This paper presents an approach based on a QNN for predicting the severity of COVID-19 in patients.It uses the serial blood counts performed during their hospitalizations to record their lymphocytic counts from days 1 to 15 which relate to the relapse rate.

    This paper is organized as follows:in Section 2, the clinical characteristics of COVID-19 patients are discussed; in Section 3, training QNNs is described; in Section 4, Quick Reduct Feature Selection(QRFS) is explained; in Section 5, the proposed approach for predicting the severity of COVID-19 based on the QNN is described; in Section 6, the simulation results are presented; and, in Section 7, a conclusion is provided.

    2 Clinical Characteristics of Datasets of COVID-19 Patients Structure

    Zhang et al.[11] obtained the datasets used in this study from the National Health Commission of the People’s Republic of China.They reported that 13 patients with non-serious COVID-19 previously diagnosed on admission to the First Affiliated Hospital of Xi’an Jiaotong University between January 22 and February 2, 2020 [11] were included.Tab.1 describes the main characteristics of these datasets attributes.

    Table 1:Characteristics of datasets

    3 Training Quantum Neural Networks

    A QNN[8,9]is a computational model based on a set of artificial neuronal units,the behaviors of which are roughly comparable to those observed in the axons of neurons in biological brains.Each neuron is connected to many others, which can increase the activation function of its adjacent neurons, and it operates individually using additional functions.There can be a threshold for each connection to an actual neuron; for example, a signal must exceed a limit before it can propagate to another neuron.These systems learn and train themselves rather than being explicitly programmed, and excel in areas where detecting solutions or features are difficult using conventional programming.

    As shown in Fig.1,σ is the non-linear function,hithe value of neuroniin each hidden layer,R(hi) the hidden layer andythe fnial prediction value generated from the hybrid network.

    4 Reducing Set of Attributes

    A simple approach can be used to identify some attribute values that are not necessary for the dataset.Then, reducing the number of them in a set based on the reduced information policy is a separate process known as shorthand, whereby no more attributes can be deleted without losing information in the dataset.As discounts are minimal sub-groups that do not have any irreplaceable features, a reduction should be capable of classifying objects without changing the form of knowledge representation [12,13].Subset A of group D is called an abbreviation if, and only if,it includes the following characteristics:

    The substance is necessary to represent the knowledge or rules and is the main part section of all reductions that is:

    Figure 1:Quantum neural network

    5 Proposed CQNN Approach for Predicting Severity of COVID-19 in Patients

    Since there are no reliable risk-splitting methods for determining patients with serious COVID-19 infections,we aimed to build an effective means of identifying early cases at risk of becoming mild to severe.

    The proposed CQNN approach consists of two stages;in the first,the most distinctive subset of features is selected using the QRFS method to improve its classification performance and, in the second, the QNN predicts the levels of severity of COVID-19 in patients.It does this by learning the classifications of patients with COVID-19, with the training sub-step contributing to the forecasts according to its best feature selection using a test sample.For QRFS, 24 laboratory parameters, that is, WBC, NEUT, LYMPH, NEUT%, LYMPH%, PLT, HGB, RBC, ALT, AST, ALB, TBIL, DBIL, CRP, PCT, IL-6, LYMPH0,LYMPH3, LYMPH5, LYMPH7, LYMPH9, LYMPH11, LYMPH13 and LYMPH15, and 6 clinical ones,that is, oxygen uptake, age, febrile days, temperature before admission, concomitant symptoms and epidemiological history,are recommended.

    One of the criteria for diagnosing a COVID-19 infection[14,15]is a normal laboratory parameter such as ‘normal/decreased number of leukocytes’or ‘decreased number of lymphocytes’, as shown in Tab.2.

    Table 2:Normal values for leukocyte count and total WBC count

    The analysis conducted of this dataset suggests that a lower LYMPH number is a potentially more reliable laboratory predictor of a SARS-CoV-2 infection than the recommended ‘lymphocytic counts’ and‘lymphopenia’.As long as the two clinical manifestations of ‘fever and/or respiratory symptoms’ and‘normal or reduced number of white blood cells or reduced number of lymphocytes at the onset of symptoms’ are observed, individuals may be considered suspect cases according to the diagnosis and treatment of pneumonia caused by COVID-19 [16].

    The training rule, which is the major aspect of the CQNN, modifies the weights to eliminate the mean square error (MSE).The general CQNN mathematical equations are as follows based on Tab.3 parameters.

    Table 3:Parameters used in CQNN approach

    The hidden layer in the ANN CQNN uses non-linear activation functions(y(t)).The complete approach presented in the previous section is tested in terms of accuracy based on the dataset given in[11]to classify COVID-19 patients.In the experimental environment,the data are separated into 23%for testing and 77%for training using our NN structures.

    Fig.2 shows the structure of the QNN.It uses 30 neurons as an input sample layer,one for each input feature in the dataset’s vector,10 in the hidden layer and 2 in the output layer,one for each class of COVID-19(serious and non-serious).After partitioning the data into two groups(training and testing),as shown in Fig.2,the approach is built based on the training dataset which contains 13 cases,with 0 and 1 representing non-serious and serious ones,respectively.Fig.3 shows the Flowchart of the proposed approach.

    Figure 2:Details of quantum neural network approach

    6 Results

    In the Covid-19 dataset,of 12 acute non-acute patients,91.7%showed abnormal or low white blood cell(WBC)counts,6 had lymphocytes,2 a decrease in the number of platelets,4 an increase in CRP and 5 an increase in IL-6.13 patients had normal levels of PCT and 3 an increase in ALT and AST upon admission.The data used the effect of several parameters,such as blood culture,blood counts(HGB,WBC and PLT),NEUT%and LYMPH%,with the statistical correlations among them shown in Fig.4.During the first 3 days,the number of COVID-19 lymphocytes did not change significantly but vibrated beneath normal before the disease became severe.

    All patients’ data were recorded within 2 days of the onset of the disease, with their numbers of lymphocytes appearing not to increase 2 weeks later which suggested that they were very likely to be incubating severe COVID-19 because a dynamic change in the number of lymphocytes early can be an important indicator of the development of serious diseases.This easily commensurable parameter can assist clinicians to identify patients at severe risk of COVID-19 very quickly.Lymphocytosis is common in seriously ill patients (with MERS-CoV or SARS-CoV) because the infestation of viral particles destroys lymphocytes.We assume that SARS-CoV affects mainly lymphocytes which can suppress the cellular immune function in the body and cause a cytokine storm which worsens the disease in some patients.Several papers have stated that lymphocytosis may be a determining factor in the severity of COVID-19.We also performed sub-group analyses of the patients with non-serious COVID-19.

    Figure 3:Flowchart of QNN approach

    In the proposed approach,the 2 patients in group one took longer than those in group 1(means of 15 and 5 days, respectively, P = 0.05) to normalize their body temperatures, as shown in Fig.5.These results indicated that patients with fewer than the normal number of lymphocytes in the early stages of the disease should have more severe lung lesions and, therefore, be likely to recover more slowly than those with normal numbers of lymphocytes.

    The results demonstrated that a low lymphocytic level was a strong predictor of the detection of COVID-19.

    Figure 4:Statistical correlations of NEUT and LYMPH values for patients in dataset

    Figure 5:LYMPH%values over 15 days for 13 patients

    A decrease in the lymph index for Covid-19 was observed mainly at n=15.Only a few cases overlapped between the two groups of patients(non-serious and serious),as shown in Figs.6 and 7, respectively.

    Figure 6:LYMPH values over 15 days for 12 patients(non-serious)

    Figure 7:LYMPH values over 15 days for 1 patient (serious)

    The number of lymphocytes in the first diagnosis is very significant, with a gradual decrease in its percentage indicating the severity of the pathological condition.

    Based on Tab.4, the CQNN approach obtained better results for the training dataset than the logistic regression and NN approaches, and ID3.It also achieved an accuracy of 92.33% for the testing dataset,better than those of the other methods.

    Table 4:Comparison of training and testing results obtained from CQNN and other approaches

    As shown in Tab.5, the CQNN approach had (x) input nodes and its input samples could be defined as a vector.

    Table 5:Input sample nodes and accuracy levels of CQNN

    7 Conclusion

    In this paper, the CQNN method for predicting the severity of COVID-19 is presented.It identifies important features, including the serial blood counts performed during patients’ stays in hospital, that is,their numbers of lymphocytes on days 1 to 15 after admission which are correlated with the rate of relapse.This proposed non-linear approach was used to assess the extent of the COVID-19 infection in two groups of patients(serious and non-serious),with the results obtained showing that it achieved 92.33%accuracy at the prediction stage.In future, we intend to investigate using the proposed method on large datasets to test its effectiveness and then automatically upload the results to a cloud-based epidemiological and early-warning monitoring platform which can process them and upload them to cloud platforms for disease surveillance and medical monitoring in institutions at all levels of government.This will provide early warnings, situation analyses and support for decision-making regarding the state of the pandemic.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    色网站视频免费| 免费高清在线观看视频在线观看| 久久久欧美国产精品| 丝袜喷水一区| 免费看av在线观看网站| 啦啦啦在线观看免费高清www| 久久精品国产亚洲av高清一级| 亚洲第一av免费看| 亚洲精品国产av蜜桃| www日本在线高清视频| av国产精品久久久久影院| 男女高潮啪啪啪动态图| 亚洲熟女精品中文字幕| 制服丝袜香蕉在线| 大香蕉久久网| kizo精华| 久久久欧美国产精品| 久久精品熟女亚洲av麻豆精品| 久久久国产欧美日韩av| 纯流量卡能插随身wifi吗| 秋霞在线观看毛片| 日本av手机在线免费观看| 亚洲精品国产av蜜桃| 国产成人午夜福利电影在线观看| 黄网站色视频无遮挡免费观看| 亚洲欧美成人精品一区二区| 国产免费一区二区三区四区乱码| 国产日韩一区二区三区精品不卡| 又粗又硬又长又爽又黄的视频| 女人精品久久久久毛片| 少妇人妻 视频| 91国产中文字幕| 伊人亚洲综合成人网| av.在线天堂| 成人免费观看视频高清| av视频免费观看在线观看| 国产xxxxx性猛交| 男女午夜视频在线观看| www.自偷自拍.com| 免费黄网站久久成人精品| 精品国产超薄肉色丝袜足j| 嫩草影院入口| 亚洲情色 制服丝袜| 欧美国产精品一级二级三级| 色综合欧美亚洲国产小说| 日韩大片免费观看网站| 别揉我奶头~嗯~啊~动态视频 | 在线观看免费日韩欧美大片| 交换朋友夫妻互换小说| 成年美女黄网站色视频大全免费| 51午夜福利影视在线观看| 在线天堂最新版资源| 母亲3免费完整高清在线观看| 视频在线观看一区二区三区| 久久久久久久久久久久大奶| 国产成人精品无人区| 亚洲激情五月婷婷啪啪| 久久久亚洲精品成人影院| 亚洲一码二码三码区别大吗| 亚洲av日韩在线播放| 制服丝袜香蕉在线| 人人妻人人澡人人爽人人夜夜| 性高湖久久久久久久久免费观看| 十八禁网站网址无遮挡| 国产精品二区激情视频| 日韩电影二区| 在线观看人妻少妇| 十八禁高潮呻吟视频| 国产一级毛片在线| 妹子高潮喷水视频| 日韩中文字幕欧美一区二区 | 最近中文字幕高清免费大全6| 久久久久人妻精品一区果冻| 国产人伦9x9x在线观看| 综合色丁香网| 久久国产亚洲av麻豆专区| 91精品国产国语对白视频| 美女福利国产在线| 一级毛片我不卡| 国产精品久久久久成人av| 99久久99久久久精品蜜桃| 热re99久久国产66热| 国产在视频线精品| av不卡在线播放| av国产久精品久网站免费入址| 午夜91福利影院| 欧美国产精品va在线观看不卡| a级毛片黄视频| 亚洲精品在线美女| 三上悠亚av全集在线观看| 国产深夜福利视频在线观看| 国产乱人偷精品视频| 精品亚洲成a人片在线观看| 日日啪夜夜爽| 美女中出高潮动态图| 国产免费又黄又爽又色| 国产男人的电影天堂91| 69精品国产乱码久久久| 一区二区三区精品91| 日本av免费视频播放| 久久精品亚洲av国产电影网| 两性夫妻黄色片| 日韩一卡2卡3卡4卡2021年| 桃花免费在线播放| 亚洲综合色网址| 亚洲精品国产一区二区精华液| 欧美中文综合在线视频| 大码成人一级视频| 自拍欧美九色日韩亚洲蝌蚪91| 中文精品一卡2卡3卡4更新| 性少妇av在线| bbb黄色大片| 99久久精品国产亚洲精品| 国产一区亚洲一区在线观看| 亚洲一级一片aⅴ在线观看| 亚洲国产av影院在线观看| 亚洲一级一片aⅴ在线观看| 最近最新中文字幕免费大全7| 最新在线观看一区二区三区 | 五月开心婷婷网| 伦理电影大哥的女人| 九草在线视频观看| 国产精品一区二区在线观看99| 美女脱内裤让男人舔精品视频| 欧美精品人与动牲交sv欧美| 这个男人来自地球电影免费观看 | 国语对白做爰xxxⅹ性视频网站| 超碰成人久久| 亚洲欧美清纯卡通| 亚洲精品日本国产第一区| a级毛片黄视频| 啦啦啦啦在线视频资源| 亚洲精品国产区一区二| 老司机靠b影院| 国产免费又黄又爽又色| 久久久欧美国产精品| 亚洲成人国产一区在线观看 | a级片在线免费高清观看视频| 国产欧美亚洲国产| 90打野战视频偷拍视频| 精品国产乱码久久久久久男人| 久久精品国产亚洲av高清一级| 满18在线观看网站| 国产精品 国内视频| 伊人亚洲综合成人网| 91国产中文字幕| 看非洲黑人一级黄片| 国产麻豆69| 色吧在线观看| 2018国产大陆天天弄谢| 天堂8中文在线网| 日韩免费高清中文字幕av| 亚洲国产精品成人久久小说| 麻豆精品久久久久久蜜桃| 18禁观看日本| 精品一区二区三卡| 久久毛片免费看一区二区三区| 一本一本久久a久久精品综合妖精| 黄色一级大片看看| 精品免费久久久久久久清纯 | 中文字幕亚洲精品专区| av线在线观看网站| 久久狼人影院| 日韩精品免费视频一区二区三区| 高清视频免费观看一区二区| 国产毛片在线视频| 精品人妻熟女毛片av久久网站| 19禁男女啪啪无遮挡网站| 亚洲av电影在线进入| 中文天堂在线官网| 国产熟女午夜一区二区三区| 在线观看三级黄色| 欧美国产精品一级二级三级| 制服人妻中文乱码| 啦啦啦在线免费观看视频4| 天天躁日日躁夜夜躁夜夜| av女优亚洲男人天堂| 天堂俺去俺来也www色官网| 乱人伦中国视频| 日韩精品免费视频一区二区三区| 宅男免费午夜| 久久精品人人爽人人爽视色| 欧美xxⅹ黑人| 男人操女人黄网站| 中文字幕人妻熟女乱码| 亚洲欧洲国产日韩| 亚洲精品国产一区二区精华液| 天美传媒精品一区二区| 最近手机中文字幕大全| 日韩免费高清中文字幕av| 在线 av 中文字幕| 国产精品久久久久久精品电影小说| 一区二区三区激情视频| 婷婷成人精品国产| 国产又爽黄色视频| 亚洲自偷自拍图片 自拍| 卡戴珊不雅视频在线播放| 王馨瑶露胸无遮挡在线观看| 国产黄色视频一区二区在线观看| 在线观看www视频免费| 韩国精品一区二区三区| 精品人妻在线不人妻| 女性生殖器流出的白浆| 色精品久久人妻99蜜桃| 最新在线观看一区二区三区 | 久久人妻熟女aⅴ| 亚洲人成电影观看| 亚洲成国产人片在线观看| 人人妻人人添人人爽欧美一区卜| 咕卡用的链子| 999精品在线视频| 午夜影院在线不卡| 亚洲欧美成人精品一区二区| 欧美日韩亚洲综合一区二区三区_| 日韩人妻精品一区2区三区| 美女主播在线视频| 狂野欧美激情性xxxx| 午夜免费鲁丝| 曰老女人黄片| 亚洲国产精品国产精品| 欧美黄色片欧美黄色片| 中文字幕另类日韩欧美亚洲嫩草| 免费高清在线观看视频在线观看| 精品一区二区三区四区五区乱码 | 久久婷婷青草| 国产av精品麻豆| 成人黄色视频免费在线看| 日本猛色少妇xxxxx猛交久久| 欧美日韩国产mv在线观看视频| 亚洲精品在线美女| 久久精品aⅴ一区二区三区四区| 国产高清不卡午夜福利| 免费在线观看黄色视频的| 久久ye,这里只有精品| av电影中文网址| 女的被弄到高潮叫床怎么办| 免费在线观看完整版高清| 欧美精品人与动牲交sv欧美| 大片电影免费在线观看免费| 丰满少妇做爰视频| 日韩一区二区三区影片| 国产精品香港三级国产av潘金莲 | 性高湖久久久久久久久免费观看| 如日韩欧美国产精品一区二区三区| 亚洲欧洲日产国产| 一区二区三区乱码不卡18| 国产爽快片一区二区三区| 一区福利在线观看| 肉色欧美久久久久久久蜜桃| 亚洲欧美成人综合另类久久久| 久久ye,这里只有精品| 在现免费观看毛片| 久久久久久久大尺度免费视频| 日韩一区二区视频免费看| 国产熟女欧美一区二区| 亚洲精品日韩在线中文字幕| 日韩大片免费观看网站| 亚洲,一卡二卡三卡| 国产精品99久久99久久久不卡 | 精品国产乱码久久久久久小说| 日本av手机在线免费观看| 一二三四在线观看免费中文在| 日本91视频免费播放| 九草在线视频观看| 电影成人av| 精品久久蜜臀av无| netflix在线观看网站| 自线自在国产av| 成年人免费黄色播放视频| 丝袜人妻中文字幕| 国产精品一区二区在线不卡| 午夜激情av网站| 欧美av亚洲av综合av国产av | 大片电影免费在线观看免费| 毛片一级片免费看久久久久| 999久久久国产精品视频| 欧美黄色片欧美黄色片| 亚洲av中文av极速乱| av网站在线播放免费| 久久精品国产综合久久久| 自线自在国产av| 国产成人一区二区在线| 亚洲一区二区三区欧美精品| 爱豆传媒免费全集在线观看| 精品卡一卡二卡四卡免费| 国产无遮挡羞羞视频在线观看| 成人午夜精彩视频在线观看| 成年美女黄网站色视频大全免费| 少妇人妻久久综合中文| 久久国产亚洲av麻豆专区| 国产一级毛片在线| 久久亚洲国产成人精品v| 这个男人来自地球电影免费观看 | 国产深夜福利视频在线观看| 欧美黑人欧美精品刺激| 老鸭窝网址在线观看| e午夜精品久久久久久久| 最近中文字幕高清免费大全6| 国产黄色视频一区二区在线观看| 丁香六月天网| 日韩熟女老妇一区二区性免费视频| 男人操女人黄网站| 成人影院久久| 下体分泌物呈黄色| 久久国产精品男人的天堂亚洲| 女性生殖器流出的白浆| 哪个播放器可以免费观看大片| 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 一区二区三区四区激情视频| 国语对白做爰xxxⅹ性视频网站| 男人舔女人的私密视频| 国产在线视频一区二区| 久久99精品国语久久久| www.精华液| 国产老妇伦熟女老妇高清| 国产xxxxx性猛交| 久久人妻熟女aⅴ| 日本猛色少妇xxxxx猛交久久| 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av | av天堂久久9| 狂野欧美激情性bbbbbb| 一区二区日韩欧美中文字幕| 国产女主播在线喷水免费视频网站| 国产男女内射视频| 老司机亚洲免费影院| 精品亚洲成a人片在线观看| 香蕉丝袜av| 久久久国产一区二区| 美女国产高潮福利片在线看| 久热这里只有精品99| 国产精品 国内视频| 黑人猛操日本美女一级片| 777久久人妻少妇嫩草av网站| 国产午夜精品一二区理论片| 这个男人来自地球电影免费观看 | 精品亚洲成国产av| 精品免费久久久久久久清纯 | 在线观看人妻少妇| 免费高清在线观看日韩| 99久久精品国产亚洲精品| 中文字幕av电影在线播放| 国产精品久久久久久精品古装| 久久精品国产亚洲av涩爱| 看非洲黑人一级黄片| 大片免费播放器 马上看| 丝瓜视频免费看黄片| 国产熟女欧美一区二区| 午夜激情久久久久久久| 成年人午夜在线观看视频| 欧美黑人精品巨大| 国产黄频视频在线观看| 精品少妇久久久久久888优播| 黄色 视频免费看| 国产精品一区二区在线观看99| 精品午夜福利在线看| 亚洲三区欧美一区| 赤兔流量卡办理| 亚洲av国产av综合av卡| 国产亚洲午夜精品一区二区久久| 丝袜脚勾引网站| a级片在线免费高清观看视频| 男的添女的下面高潮视频| 又大又黄又爽视频免费| 日本wwww免费看| 青草久久国产| 99精国产麻豆久久婷婷| 精品一区二区三卡| 久久国产亚洲av麻豆专区| 91国产中文字幕| 国产亚洲最大av| 国产精品久久久久久久久免| 免费女性裸体啪啪无遮挡网站| 丰满乱子伦码专区| 女人被躁到高潮嗷嗷叫费观| 亚洲人成77777在线视频| 18禁裸乳无遮挡动漫免费视频| 最近手机中文字幕大全| 国产日韩欧美在线精品| 国产成人精品久久二区二区91 | 一区二区三区乱码不卡18| 一个人免费看片子| av网站免费在线观看视频| 国产高清国产精品国产三级| 老汉色∧v一级毛片| 99国产精品免费福利视频| 日韩精品有码人妻一区| 欧美 亚洲 国产 日韩一| 美女中出高潮动态图| 色精品久久人妻99蜜桃| 人人澡人人妻人| 三上悠亚av全集在线观看| 天天添夜夜摸| av网站在线播放免费| 在线观看www视频免费| 人人妻人人澡人人爽人人夜夜| 各种免费的搞黄视频| 一级a爱视频在线免费观看| 日本黄色日本黄色录像| 亚洲免费av在线视频| 欧美日韩精品网址| 人人妻人人爽人人添夜夜欢视频| 少妇人妻 视频| 成年人午夜在线观看视频| 一本一本久久a久久精品综合妖精| 少妇人妻 视频| 欧美日韩精品网址| 啦啦啦 在线观看视频| 少妇的丰满在线观看| 亚洲五月色婷婷综合| 亚洲中文av在线| 欧美中文综合在线视频| 亚洲精品国产区一区二| 国产精品.久久久| 国产精品人妻久久久影院| 麻豆乱淫一区二区| 国产欧美亚洲国产| 精品久久久久久电影网| 黄色视频在线播放观看不卡| 国产精品.久久久| 国产男人的电影天堂91| 一区二区三区激情视频| 国产熟女欧美一区二区| 亚洲国产精品一区三区| 一个人免费看片子| 国产精品久久久久久人妻精品电影 | 波多野结衣av一区二区av| a级毛片在线看网站| av在线播放精品| 国产日韩欧美在线精品| 日韩一本色道免费dvd| av卡一久久| 欧美变态另类bdsm刘玥| 中文字幕人妻熟女乱码| 五月天丁香电影| 国产有黄有色有爽视频| 免费不卡黄色视频| 午夜激情av网站| 日本黄色日本黄色录像| 啦啦啦在线观看免费高清www| 免费看av在线观看网站| 精品卡一卡二卡四卡免费| 老司机深夜福利视频在线观看 | 成人漫画全彩无遮挡| 在线观看人妻少妇| 日本av免费视频播放| 亚洲国产精品成人久久小说| 美女高潮到喷水免费观看| 久久久国产一区二区| 中文字幕亚洲精品专区| 久久免费观看电影| 午夜日韩欧美国产| 赤兔流量卡办理| 亚洲av成人精品一二三区| 亚洲欧美精品综合一区二区三区| 国产成人精品福利久久| 又粗又硬又长又爽又黄的视频| 晚上一个人看的免费电影| 午夜福利网站1000一区二区三区| 精品一区二区三区av网在线观看 | 亚洲欧美日韩另类电影网站| 亚洲av电影在线进入| 久久久久人妻精品一区果冻| 亚洲国产精品国产精品| 亚洲精品,欧美精品| 老司机深夜福利视频在线观看 | 中文字幕最新亚洲高清| av在线老鸭窝| 99香蕉大伊视频| 国产黄色视频一区二区在线观看| 亚洲av日韩精品久久久久久密 | 亚洲精品视频女| 五月天丁香电影| 五月开心婷婷网| 视频区图区小说| 水蜜桃什么品种好| 黄色一级大片看看| 成人18禁高潮啪啪吃奶动态图| 日韩视频在线欧美| 一区二区三区精品91| 日本欧美国产在线视频| 五月开心婷婷网| 国产视频首页在线观看| 国产亚洲av片在线观看秒播厂| 亚洲精品,欧美精品| 亚洲国产精品成人久久小说| 国产有黄有色有爽视频| 卡戴珊不雅视频在线播放| 国产成人一区二区在线| 国产男人的电影天堂91| 亚洲图色成人| 欧美精品一区二区免费开放| 国产精品99久久99久久久不卡 | 丁香六月欧美| 亚洲精华国产精华液的使用体验| 啦啦啦在线观看免费高清www| 自线自在国产av| 在线观看免费日韩欧美大片| 国产老妇伦熟女老妇高清| 国产高清不卡午夜福利| 国产av国产精品国产| 免费在线观看完整版高清| 欧美另类一区| 在线观看一区二区三区激情| 亚洲伊人久久精品综合| 天天躁夜夜躁狠狠躁躁| 中文欧美无线码| 九色亚洲精品在线播放| 国产熟女欧美一区二区| 久久韩国三级中文字幕| 老汉色av国产亚洲站长工具| 国产精品一区二区在线不卡| h视频一区二区三区| 一级毛片 在线播放| 午夜精品国产一区二区电影| 只有这里有精品99| 狂野欧美激情性bbbbbb| 男女免费视频国产| 婷婷色综合www| 亚洲av电影在线进入| 国产99久久九九免费精品| 久久av网站| 男女高潮啪啪啪动态图| 青春草视频在线免费观看| 七月丁香在线播放| 自线自在国产av| 在线观看免费午夜福利视频| 日韩中文字幕欧美一区二区 | 久久精品国产亚洲av高清一级| 精品卡一卡二卡四卡免费| 日韩,欧美,国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| h视频一区二区三区| 爱豆传媒免费全集在线观看| 99久久人妻综合| 操出白浆在线播放| 丝袜在线中文字幕| 超色免费av| 少妇人妻精品综合一区二区| 成年美女黄网站色视频大全免费| 亚洲欧美一区二区三区久久| 一区福利在线观看| 少妇的丰满在线观看| 久久久国产欧美日韩av| 一级毛片 在线播放| 亚洲av成人不卡在线观看播放网 | 久久久久久久国产电影| av免费观看日本| 亚洲av综合色区一区| 色精品久久人妻99蜜桃| 丝袜脚勾引网站| 天天操日日干夜夜撸| 亚洲国产精品成人久久小说| 亚洲av日韩在线播放| 在线 av 中文字幕| 午夜福利网站1000一区二区三区| 咕卡用的链子| 九草在线视频观看| 黄色毛片三级朝国网站| 亚洲精品美女久久av网站| 综合色丁香网| 久久久久精品人妻al黑| 日本爱情动作片www.在线观看| 99re6热这里在线精品视频| 久久久久久久精品精品| 久久鲁丝午夜福利片| 校园人妻丝袜中文字幕| 亚洲精品美女久久av网站| 一区二区三区四区激情视频| 欧美日本中文国产一区发布| 啦啦啦中文免费视频观看日本| 在线精品无人区一区二区三| 国产一区二区 视频在线| 1024香蕉在线观看| 国产极品粉嫩免费观看在线| 亚洲专区中文字幕在线 | 亚洲精品日本国产第一区| 中文字幕人妻丝袜制服| 欧美人与性动交α欧美软件| 香蕉丝袜av| 最近手机中文字幕大全| 国产熟女欧美一区二区| av电影中文网址| 精品国产乱码久久久久久男人| 99久久综合免费| 90打野战视频偷拍视频| 男男h啪啪无遮挡| 欧美日韩亚洲综合一区二区三区_| 咕卡用的链子| 精品国产乱码久久久久久男人| 一区二区三区乱码不卡18| 免费观看人在逋| 免费日韩欧美在线观看| 国产女主播在线喷水免费视频网站| 国产片特级美女逼逼视频| 色精品久久人妻99蜜桃| 日韩中文字幕欧美一区二区 | 伊人亚洲综合成人网| 一级a爱视频在线免费观看| 只有这里有精品99| 亚洲欧美激情在线| 亚洲美女黄色视频免费看| 中文字幕制服av| 精品一区二区免费观看| 丝袜喷水一区| 亚洲综合色网址| 秋霞伦理黄片| av又黄又爽大尺度在线免费看| 久久狼人影院| 黑人猛操日本美女一级片| 国产又色又爽无遮挡免| 搡老乐熟女国产| 国产精品二区激情视频| 啦啦啦中文免费视频观看日本|