• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient Routing Protection Algorithm in Large-Scale Networks

    2021-12-15 12:47:44HaijunGengHanZhangandYangyangZhang
    Computers Materials&Continua 2021年2期

    Haijun Geng,Han Zhang and Yangyang Zhang

    1School of Software Engineering, Shanxi University, Taiyuan,030006,China

    22Institute of Big Data Science and Industry, Shanxi University, Taiyuan, 030006,China

    3School of Cyber Space and Technology, Beihang University, Beijing, 100191,China

    4College of Engineering Northeastern University, Boston,02115, USA

    Abstract: With an increasing urgent demand for fast recovery routing mechanisms in large-scale networks, minimizing network disruption caused by network failure has become critical.However, a large number of relevant studies have shown that network failures occur on the Internet inevitably and frequently.The current routing protocols deployed on the Internet adopt the reconvergence mechanism to cope with network failures.During the reconvergence process,the packets may be lost because of inconsistent routing information, which reduces the network’s availability greatly and affects the Internet service provider’s (ISP’s) service quality and reputation seriously.Therefore, improving network availability has become an urgent problem.As such, the Internet Engineering Task Force suggests the use of downstream path criterion (DC) to address all single-link failure scenarios.However, existing methods for implementing DC schemes are time consuming, require a large amount of router CPU resources,and may deteriorate router capability.Thus,the computation overhead introduced by existing DC schemes is significant, especially in large-scale networks.Therefore,this study proposes an efficient intra-domain routing protection algorithm(ERPA)in large-scale networks.Theoretical analysis indicates that the time complexity of ERPA is less than that of constructing a shortest path tree.Experimental results show that ERPA can reduce the computation overhead significantly compared with the existing algorithms while offering the same network availability as DC.

    Keywords:Large-scale network; shortest path tree; time complexity; network failure;real-time and mission-critical applications

    1 Introduction

    In recent years,the Internet has become a widely used platform for various network applications.With the rapid development of the Internet,several real-time and mission-critical applications,such as VoIP and video and online games, are deployed [1].These applications are susceptible to network delay and interruption, which stress strict requirements on network availability [2].Moreover, even a few seconds of network discontinuity would have an adverse effect on these applications[3].However,network failures are common on the Internet.The IP networks need to reconverge when network failure occurs.The convergence time for the currently deployed intra-domain routing protocol is the order of seconds when network components are invalid.During this period, several packets may be dropped because of the inconsistent routing information [4].The Internet service provider (ISP) has strong motivations to enhance the network survivability when network failures occur [5].Therefore, improving the Internet routing availability has become an urgent problem that needs to be solved.

    To improve the availability of intra-domain routing,the routing protection scheme is usually applied in the academia and industry[6].The routing protection aims to prove fast convergence when network failures have been detected [7].Existing routing protection schemes can be divided into two sub-categories depending on whether or not special cooperation between routers is required for packet forwarding.Cooperation-free schemes compute multiple next-hops for each destination, and each router selects an appropriate next-hop for standard packet forwarding independently, where care must be taken such that the induced forwarding paths are loop-free.The benefit is that they can provide not only redundant backup links but also other features, such as load balancing and high throughput.The other sub-category of schemes computes for a link to protect a multihop repair path that is agreed by all routers on that path.Thus,special cooperation mechanisms have to be used to reroute packets along that path.

    In this work,we focus on the first type of scheme.We also confine our work in link-state routing networks.Most ISPs prefer link-state routing instead of distance-vector routing in their intra-domain system because of its merits, such as fast convergence and good support for metrics.Layer2 networks also incorporate link-state routing into their network architecture, such as the standardized transparent interconnection of lots of links.Furthermore, during topology changes caused by link or node failure, millisecond-level fast convergence,which poses stringent performance requirement to route computation,is preferred.

    Among all of the hop-by-hop routing protection schemes,downstream path criterion(DC)[8]has been favored by the industry because of its simplicity in coping with all the single-link failure scenarios.All of the existing implementation algorithms about DC are time consuming and require a large amount of router CPU resources in large-scale networks.

    However,the deployment of DC in real ISP networks is difficult because of the substantial computational overhead.Therefore, an efficient DC-based algorithm is required to be easily deployed in ISP.Thus, a lightweight IPFRR scheme is desired to provide cost-efficient routing protection effectively.Therefore, this study investigates the application of incremental shortest path first algorithm to reduce the computational overhead of the DC implementation.In particular,our contributions can be summarized as follows:

    ? We propose an efficient intra-domain routing protection algorithm (ERPA)in large-scale networks.

    ? Theoretical analysis indicates that the computation complexity of ERPA is less than that of constructing a shortest path tree (SPT).

    ? Theoretical analysis indicates that ERPA can provide the same network availability as DC.

    ? In terms of computation overhead and network availability,the theoretical analysis and experimental results are consistent.

    2 Related Works

    Nowadays,network failures have become routine events rather than exceptions[9].Many schemes for enhancing robustness against network failures have been proposed.Existing approaches fall in either one of the two categories:reactive and proactive approaches.The former studies the reduction of convergence time of routing protocol after the occurrence of failures, whereas the latter addresses the pre-calculating backup paths before the failures.Reactive approaches are applicable to all kinds of network failure scenarios regardless whether they are single or multiple failures.However,reactive approaches are subject to the risk of routing flap.Therefore, proactive approaches are preferred by the academia and industry.The idea of multitopology configuration method is that each router saves multiple configurations, and each configuration can protect some links to adapt to different link failures.However, the more configurations the router keeps, the more overhead it will introduce.Path splicing [10] is a classical multitopology configuration method that calculates multiple SPTs by adjusting link weights.Each spanning tree corresponds to a routing path, and packets can be forwarded among multiple spanning trees.However, a routing loop may be observed in path splitting, thereby degrading network performance.Dispath [11],which can protect all possible single fault cases in the network, is proposed in the literature.By constructing a directed acyclic graph with three disjoint edges [12], any two links in the network can be protected from failure.This study [13] investigates and proves that single- and double-fault protection algorithms are not restricted by network topology.Among the hop-by-hop proactive schemes, DC has been favored by the industry because of its simplicity in coping with all the single-link failure scenarios.However, all of the existing DC-based implementation algorithms are time consuming and require a large amount of router CPU resources.Authors propose an efficient algorithm called TBFH [14], which provides greater path diversity than ECMP with a very low overhead.In particular, TBFH computes the two best frist hop disjoint paths efficiently.We also propose a SPT-based multipath routing algorithm called DMPA [15].DMPA guarantees the loop-freeness of the induced routing path by maintaining a partial order of the routers underpinning it implicitly.The time complexity of DMPA does not depend on the degree of the calculating router.However, the network availability of TBFH and DMPA is lower than that of the DC.Unlike the aforementioned studies, our main concerns include computational efficiency and network availability, which are critical for the algorithm.Based on the existing work on this research area, we propose an algorithm whose complexity is less than that of constructing a SPT and without degrading the network availability for the first time.

    3 Network Model and Problem Description

    3.1 Network Model

    In this section,we will first show the network model and then describe the key problems that need to be solved in this work.For ease of reading,some of the symbols used in this paper are summarized in Tab.1.A network can be expressed as a undirected graphG=(V,E),whereVandEdenote the set of nodes and the set of edges in the network, respectively.For any nodev∈/V, we useN(v) to denote all the neighbors of nodev;spt(v) represents a SPT rooted atv; andD(v,x) is the descendant of nodevinspt(v).Each link(i,j) in the network has a weightw(i,j) and a failure probabilityr(i,j).For any node pairxandy, we usecost(x,y) to indicate the shortest cost from nodexto nodey;dn(x,y) is the default next-hop from nodexto nodey; andbn(x,y) is the backup next-hop set from nodexto nodey.We will use a simple example to explain the aforementioned concepts.For example, Fig.1 presents a SPT rooted at nodec,N(c)={a,b},D(c,a)={a,h,d,g},D(c,b)={b,e,f},cost(c,d)=7,cost(c,g)=6,dn(c,g)=a,anddn(c,f)=b.

    The currently deployed intra-domain routing protocols(e.g.,OSPF and IS-IS)only employ the shortest paths to forward packets.Thus, they need to reconverge when network component failures occur.The packets may be dropped because of invalid routing information.These protocols never exploit the inherent diversity of Internet topology and cannot handle network failure flexibly.Therefore, DC has been proposed to cope with all the single-link failure scenarios.The DC can be expressed as follows:

    DC:For packets forwarded to a destinationd, nodec(c=d) can forward them to any of its neighboring nodexwhencost(x,d)<cost(c,d), and no forwarding loop will exist in the induced forwarding path.

    Table 1:Symbols

    Figure 1:SPT rooted at node c

    To implement DC rule at nodec,nodecshould obtain the values ofcost(c,d)andcost(x,d).The value ofcost(c,d)can be achieved easily viaspt(c).However,to obtaincost(x,d),nodecneeds to compute a SPT for each of its neighbor.Computational complexity increases with the number of network node degree,which is particularly high when a node has a high degree in large-scale networks.Therefore,implementing the DC rule in real ISP networks is not considered a scalable method.For the actual deployment on the Internet,a DC-based scheme should introduce a small additional burden on the current deployed routing protocol.This paper is dedicated to finding an efficient DC-based scheme that is suitable for an ISP network.In particular,we focus on addressing the following problems:

    Given a computing nodecand its SPTspt(c),we can find an efficient DC-based algorithmic technique in large-scale networks, and the algorithm conforms to the two following conditions:

    1.The time complexity of the algorithm is less than that of constructing a SPT.

    2.It can provide the same network availability with DC.

    4 ERPA and its Performance

    4.1 Algorithm

    ERPA will be discussed in detail to solve the above problem in this section.The problem can be presented to computecost(x,d) in thespt(c).We first provide two theorems before formally describing the details of ERPA.The two following theorems describe how to compute the backup next-hop set that satisfies the DC Rule.Moreover, the computation overhead can be reduced dramatically by lessening the times of the operation.

    Theorem 1:Given a computing nodecandspt(c),for any nodex∈N(c),sptnew(c,x)is the new SPT rooted at nodecwhen the weight of link(c,x) is changed to 0.For any nodev(v/=c,v/=x), ifv∈/D(spt(c),x)and ∈D(sptnew(c),x),then we can obtaincost(x,v)<cost(c,v).

    Proof:Assuming thatdn(c,v)=y,y/=xin thespt(c),we havecost(c,v)=cost(c,y)+cost(y,v).

    Given thatv∈D(sptnew(c),x),we can obtaincostnew(c,v)=cost(c,x)+cost(x,v).,wherecostnew(c,v)is the cost from nodecto nodevin thesptnew(c,x).Becausecost(c,x)=0 in thesptnew(c,x), we can getcostnew(c,v)=cost(x,v) (1).According to thatv∈/D(spt(c),x)andv∈D(sptnew(c),x), we can obtaincostnew(c,v)<cost(c,v)(2).Combining Eqs.(1)and(2),we havecost(x,v)<cost(c,v).

    Theorem 2:Given a computing nodecandspt(c),for any nodex∈N(c),sptnew(c,x)is the new SPT rooted at nodecwhen the weight of link(c,x) is changed to 0.For any nodev(v/=c,v/=x),ifv∈/D(spt(c),x) andv∈D(sptnew(c),x),then we can obtainbn(c,v)=bn(c,v)∪{x}.

    Proof:As seen in Theorem 1 and DC rule,nodexis a viable backup next-hop from nodecto nodev;therefore, we can obtainbn(c,v)=bn(c,v)∪{x}.

    We will use an example to explain Theorems 1 and 2.Fig.1 shows a SPT rooted at nodec,whereas Figs.2 and 3 represent the new SPT when links(c,a) and(c,b) are changed to 0, respectively.Becausee∈/D(spt(c),a),e∈D(sptnew(c),a), nodeacan be a viable backup next-hop fromctoe.Given thatd∈/D(spt(c),b),d∈D(sptnew(c),b), nodebcan be a viable backup next-hop fromctod.Considering thatg∈/D(spt(c),b),g∈D(spt(c),b),nodebcan be a viable backup next-hop fromctog.

    Figure 2:SPT rooted at node c when the weight of link (c ,a) is changed to 0

    Figure 3:SPT rooted at node c when the weight of link (c ,b) is changed to 0

    According to the above discussions,ERPA is proposed to compute the backup next-hop set that satisfies the DC rule.The inputs of ERPA include the network topologyG=(V,E)andspt(c),and the output is the backup next-hop set from nodecto all the other nodes in the network.First, for each neighborxofc, the weight of the link(c,v) is changed into 0 (lines 2-3), and then a new SPT is built by employing i-SPF(line 4).For any nodev(v/=c,v/=x), ifv∈/D(spt(c),x) andv∈D(sptnew(c),x), then the nodexcan be a viable backup next-hop fromctov(lines 5-9).At last, the weight of the link(c,x) is adjusted to its original value(line 10).

    Algorithm ERPA Input:G= (V ,E) and spt (c )Output:v ∈V bn(c ,v)1:For v ∈N (c )do 2: weight ←w(c ,x)3: w(c ,x)←0 4:employ i-SPF to construct sptnew(c )5:For v∈/V do 6: If v ∈D spt (c ),x( )and v ∈D sptnew(c ),x(images/BZ_642_820_2501_879_2527.png)then 7: bn(c ,v)=bn(c ,v)∪ x { }.8: EndIf 9:EndFor 10: w(c ,x)←weight

    4.2 Algorithm Performance and Discussion

    In this section,we will show the performance of the algorithm,including the time complexity and the number of backup next-hop computed by ERPA.Theorem 3 suggests that the computational complexity of ERPA is less than that of constructing a SPT.In Theorem 4,ERPA can compute all the backup next-hop sets that satisfy the DC Rule.We will describe Theorems 3 and 4 in detail and prove their correctness.

    Theorem 3:Computational complexity of ERPA is less thanO(|E|lg|V|).

    Proof:To compute all the backup next-hop set from node c to other nodes in the network.ERPA needs to run the i-SPF algorithm k times,where k is the number of neighbors of node c.LetNiandMiindicate the number of nodes that must adjust their costs or parents and the number of edges attached to these nodes when the weight of link(c,i),i∈N(c) is changed to 0, respectively.Therefore, the computational complexity of ERPA is

    ConsideringNi<|V|,the computational complexity of ERPA is less than that of SPF.

    Theorem 4:ERPA can compute all the backup next-hop set that satisfies the DC Rule.

    Proof:We will prove the theorem by contradiction.Supposing that nodev(v=/c,v=/x),v∈/D(spt(c),x)andcost(x,v)<cost(c,v)x∈/bn(c,d) exist when ERPA is terminated.For any nodex∈N(c),ifcost(x,v)<cost(c,v), thenv∈D(sptnew(c),x).Therefore, according to Theorem 2, we can obtain.Thus,x∈bn(c,v)contradicts the assumptions.

    5 Performance Evaluations

    In this section,we will evaluate ERPA in terms of computation overhead and network availability.To indicate the performance of ERPA,we compare the results with TBFH,DMPA,and DC.All the algorithms are implemented on a PC (Intel i7, 3.7 GHz CPU, and 8G memory).All of the experimental results correspond to the average values of 15 random experiments.To truly reflect the link failure distribution,the failure probability of links in this paper adopts Weibull distribution

    We conduct the simulations on a wide space of relevant topologies, including real, inferred, and synthetic ones.The real topology includes Abilene, USLD, ITALY, NJLATA, and TORONTO [16], as well as six ISP topologies that are inferred from the measurement results from Rocketfuel [17].The parameters for real and Rocketfuel topology are summarized in Tab.2.We also use BRITE [18] to generate some topologies, the numbers of nodes range from 100 to 1000, and the average node degree ranges from 5 to 40.The detailed parameters for BRITE are shown in Tab.3.

    5.1 Computation Complexity

    Theoretical analysis has indicated that the time complexity of ERPA is less than that of constructing a SPT,which has a great advantage over DC,TBFH,and DMPA.To further verify computational performance,we make simulations on different types of topologies.In this section, we evaluate the computational overhead of different algorithms on three types of topologies to avoid the uncertain impact of factors on the algorithm’s performance.The computational overhead of an algorithm is defined as the ratio of computation time of the algorithm to that of constructing a SPT.

    Fig.4 indicates the computational overhead obtained by different algorithms on real and Rocketfuel topologies.Fig.4 shows that ERPA has the lowest computation overhead among all the algorithms.The computation overhead of ERPA is less than building a SPT, whereas DMPA need to construct a SPT, and TBFH need to compute two SPTs.The computation overhead of DC is proportional to the degree of the network average node degree.

    Table 2:Parameters for Rocketfuel Topology

    Table 3:Parameters for BRITE Topology

    Figure 4:Computational overhead on Real and Rocketfuel topologies

    Fig.5 illustrates the relationship between the computation overhead and topology size on generated topologies when the average node degree is 8.In Fig.5, the computation overhead does not depend on the topology size for all the four simulated algorithms.The computation overhead of ERPA is lowest in the four algorithms among all the topologies.

    Figure 5:Computational overhead on Brite topologies

    Fig.6 shows the relationship between the computation overhead and average node degree on Brite topologies when the topology size is 1000.As the average node degree increases, the computation overhead of DC rises accordingly.Also, ERPA has exhibited the best performance among all of the tested algorithms.Therefore, the above experiment results are consistent with the theoretical analysis on computational complexity.

    Figure 6:Computational overhead on Brite topologies

    5.2 Network Availability

    In this section, we will employ network availability as our main evaluation criterion to assess the reliability of the network.Network availabilityA(G)can be formally defined as:

    whereA(s,d) is the availability of source-destinations-dpairs.We will describe the computation ofA(s,d) in the following.Supposing thatndifferent paths exist fromstod, we usepi(s,d) to denote the i-th path in them.We useAi(s,d)to indicatepi(s,d)works.The probability ofAi(s,d)can be written as:

    According to the inclusion-exclusion principle,A(s,d)be expressed as:

    whereSkis the total sum of the probabilities that a unique set ofkpaths fromstodare working simultaneously and can be expressed as:

    Tab.4 provides the network availability provided by each protection scheme on real and inferred network topologies.The results show that ERPA has a clear advantage over TBFH and DMPA and has the same performance as DC.Therefore, the experimental results of network availability are consistent with those of the theoretical analysis.

    Table 4:Network availability on Abilene and Rocketfuel topologies

    Fig.7 illustrates the relationship between the network availability and the average node degree.The network availability increases with the average node degree.Notably, when the average node degree increases, all schemes provide better network availability results, whereas ERPA and DC are always better than those of DMPA and TBFH.Fig.8 shows the relationship between network availability and topology size on generated topologies when the average node degree is 6.Fig.8 shows that the network availability performance of ERPA and DC is obviously better than the two other algorithms.From the experiment, we can conclude that ERPA not only reduces the complexity of DC implementation greatly but also has the same routing availability as DC.

    Figure 7:Network availability on Brite topologies

    Figure 8:Network availability on Brite topologies

    6 Conclusions

    This study proposed an efficient scheme called ERPA to implement DC-based hop-by-hop routing protection.The computation complexity of ERPA is irrespective of the degree of the calculating router and is less than a full SPT calculation.We simulate ERPA on numerous topologies in comparison with DC,DMPA,and TBFH.The theoretical and experimental results show that ERPA can reduce the computational overhead and can provide the same network availability as DC dramatically.We are convinced that our proposed scheme ERPA takes a big step toward actual deployment.

    Funding Statement:This work is supported by the National Natural Science Foundation of China(No.61702315), the Key R&D program (international science and technology cooperation project) of Shanxi Province China (No.201903D421003), the National Key Research and Development Program of China(No.2018YFB1800401).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    女同久久另类99精品国产91| АⅤ资源中文在线天堂| 午夜福利视频1000在线观看| 伦理电影免费视频| 老熟妇乱子伦视频在线观看| 18禁黄网站禁片免费观看直播| 欧美性猛交黑人性爽| 国产成人影院久久av| 日韩欧美在线二视频| 在线观看舔阴道视频| 身体一侧抽搐| 88av欧美| 麻豆国产av国片精品| 伦理电影免费视频| 国产99白浆流出| 精品国产美女av久久久久小说| 免费大片18禁| 久久久国产成人精品二区| 真人做人爱边吃奶动态| 每晚都被弄得嗷嗷叫到高潮| 日韩三级视频一区二区三区| 欧美日韩福利视频一区二区| 成人精品一区二区免费| 欧美日本亚洲视频在线播放| 一个人免费在线观看电影 | 神马国产精品三级电影在线观看| 丁香欧美五月| 国产三级在线视频| 麻豆国产av国片精品| 又爽又黄无遮挡网站| 在线a可以看的网站| 国产 一区 欧美 日韩| 少妇的丰满在线观看| 国产激情久久老熟女| 欧美乱码精品一区二区三区| 国内精品一区二区在线观看| 亚洲欧美精品综合一区二区三区| 久久久久国产精品人妻aⅴ院| 搡老熟女国产l中国老女人| 搞女人的毛片| 中文字幕高清在线视频| 国产亚洲精品一区二区www| 亚洲av成人一区二区三| www日本在线高清视频| 亚洲av五月六月丁香网| 亚洲专区国产一区二区| 亚洲中文字幕日韩| 人妻夜夜爽99麻豆av| 人人妻人人澡欧美一区二区| 男女做爰动态图高潮gif福利片| 欧美成人性av电影在线观看| 蜜桃久久精品国产亚洲av| 欧美日韩瑟瑟在线播放| 美女大奶头视频| 免费大片18禁| 国产久久久一区二区三区| 激情在线观看视频在线高清| 免费av毛片视频| 欧美xxxx黑人xx丫x性爽| 日韩欧美在线二视频| 一个人看的www免费观看视频| 美女午夜性视频免费| 国产成人精品无人区| 精品午夜福利视频在线观看一区| 久久久久国产精品人妻aⅴ院| 99re在线观看精品视频| 欧美xxxx黑人xx丫x性爽| 国产人伦9x9x在线观看| 麻豆成人av在线观看| 国产又色又爽无遮挡免费看| 床上黄色一级片| 操出白浆在线播放| 波多野结衣巨乳人妻| 日韩免费av在线播放| 亚洲精品国产精品久久久不卡| 99在线视频只有这里精品首页| 精品一区二区三区av网在线观看| 亚洲中文字幕一区二区三区有码在线看 | 久久久国产精品麻豆| 麻豆成人午夜福利视频| 亚洲国产欧美网| 国产精品久久久久久亚洲av鲁大| 国产伦人伦偷精品视频| 亚洲国产精品久久男人天堂| 国产极品精品免费视频能看的| 精品乱码久久久久久99久播| 国产成人aa在线观看| 国产精品野战在线观看| 午夜影院日韩av| 我要搜黄色片| 欧美国产日韩亚洲一区| 99久久久亚洲精品蜜臀av| 19禁男女啪啪无遮挡网站| 女警被强在线播放| 亚洲av片天天在线观看| 亚洲av成人不卡在线观看播放网| а√天堂www在线а√下载| 中出人妻视频一区二区| 欧美激情久久久久久爽电影| 五月玫瑰六月丁香| 精品无人区乱码1区二区| 亚洲av成人一区二区三| 男女下面进入的视频免费午夜| 18美女黄网站色大片免费观看| 黄色丝袜av网址大全| 女同久久另类99精品国产91| 亚洲av成人av| 女警被强在线播放| 又黄又爽又免费观看的视频| 久久精品影院6| 亚洲成人久久爱视频| 久久精品国产综合久久久| av天堂在线播放| 叶爱在线成人免费视频播放| av黄色大香蕉| 黄色 视频免费看| 久久香蕉国产精品| 免费看日本二区| 欧美日韩瑟瑟在线播放| 哪里可以看免费的av片| 女人被狂操c到高潮| 又黄又爽又免费观看的视频| 老汉色av国产亚洲站长工具| 亚洲人与动物交配视频| 成人高潮视频无遮挡免费网站| 日本 av在线| 这个男人来自地球电影免费观看| 99久久精品一区二区三区| 又粗又爽又猛毛片免费看| 舔av片在线| 久久久国产成人精品二区| 曰老女人黄片| 美女高潮喷水抽搐中文字幕| 午夜精品久久久久久毛片777| 亚洲av片天天在线观看| 日韩欧美一区二区三区在线观看| 三级毛片av免费| 欧美日韩国产亚洲二区| 欧美午夜高清在线| 亚洲色图 男人天堂 中文字幕| 免费在线观看成人毛片| 日本一本二区三区精品| 日本熟妇午夜| 婷婷精品国产亚洲av在线| 亚洲精品色激情综合| 国产精华一区二区三区| 久久久久久久久中文| 精品久久久久久,| 久久天躁狠狠躁夜夜2o2o| 九色国产91popny在线| 老熟妇仑乱视频hdxx| 舔av片在线| 欧美极品一区二区三区四区| 亚洲电影在线观看av| 欧美日韩中文字幕国产精品一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 日韩中文字幕欧美一区二区| 哪里可以看免费的av片| 国产精品久久电影中文字幕| 国产精品综合久久久久久久免费| 国产高清有码在线观看视频| 午夜成年电影在线免费观看| 久久久水蜜桃国产精品网| 久久久久性生活片| 日本成人三级电影网站| 叶爱在线成人免费视频播放| 亚洲欧美日韩高清在线视频| 日韩 欧美 亚洲 中文字幕| 男插女下体视频免费在线播放| 国产成人av激情在线播放| 久久精品91蜜桃| 国产高清激情床上av| 国产一区二区在线观看日韩 | 色综合亚洲欧美另类图片| 18禁裸乳无遮挡免费网站照片| 成人一区二区视频在线观看| 美女午夜性视频免费| 男人的好看免费观看在线视频| 小蜜桃在线观看免费完整版高清| 久久婷婷人人爽人人干人人爱| 亚洲国产色片| 黄色成人免费大全| 九色成人免费人妻av| 亚洲第一欧美日韩一区二区三区| 一区二区三区激情视频| 亚洲av日韩精品久久久久久密| 国产亚洲欧美98| 黑人巨大精品欧美一区二区mp4| 99在线人妻在线中文字幕| 国产成人欧美在线观看| 欧美三级亚洲精品| 国产精品精品国产色婷婷| 国内久久婷婷六月综合欲色啪| 老汉色∧v一级毛片| 免费看美女性在线毛片视频| 免费观看精品视频网站| 一区福利在线观看| 18禁黄网站禁片午夜丰满| 757午夜福利合集在线观看| 日本精品一区二区三区蜜桃| 国产成人欧美在线观看| 悠悠久久av| 观看美女的网站| 精品久久久久久久久久免费视频| 五月伊人婷婷丁香| 一本一本综合久久| 手机成人av网站| 亚洲国产欧洲综合997久久,| 欧美国产日韩亚洲一区| 日韩成人在线观看一区二区三区| 久久性视频一级片| 色老头精品视频在线观看| 变态另类丝袜制服| 午夜久久久久精精品| 两个人的视频大全免费| 日本 欧美在线| 成人欧美大片| 他把我摸到了高潮在线观看| 又爽又黄无遮挡网站| 成年女人看的毛片在线观看| 搡老妇女老女人老熟妇| 欧美最黄视频在线播放免费| 午夜福利欧美成人| 两人在一起打扑克的视频| 在线观看66精品国产| 精品久久久久久久毛片微露脸| 精品久久久久久久久久久久久| 日韩欧美 国产精品| а√天堂www在线а√下载| 日韩大尺度精品在线看网址| 少妇丰满av| bbb黄色大片| 免费av不卡在线播放| 噜噜噜噜噜久久久久久91| www.精华液| 又粗又爽又猛毛片免费看| 精品久久久久久久末码| netflix在线观看网站| 久久中文看片网| 久久精品国产99精品国产亚洲性色| 小说图片视频综合网站| 亚洲欧美日韩卡通动漫| 小蜜桃在线观看免费完整版高清| 日本精品一区二区三区蜜桃| 色尼玛亚洲综合影院| 久久精品人妻少妇| www.www免费av| 无限看片的www在线观看| 十八禁网站免费在线| 美女扒开内裤让男人捅视频| 久久国产乱子伦精品免费另类| 禁无遮挡网站| 小说图片视频综合网站| 免费搜索国产男女视频| 搞女人的毛片| 淫秽高清视频在线观看| 99精品在免费线老司机午夜| 免费av毛片视频| 国产精品亚洲av一区麻豆| 亚洲中文字幕一区二区三区有码在线看 | 两个人看的免费小视频| 国产精品香港三级国产av潘金莲| 国产日本99.免费观看| 国产一级毛片七仙女欲春2| а√天堂www在线а√下载| 免费一级毛片在线播放高清视频| 88av欧美| 国产 一区 欧美 日韩| 国产真人三级小视频在线观看| 欧美日韩福利视频一区二区| 黑人巨大精品欧美一区二区mp4| 欧美日韩乱码在线| 人人妻人人看人人澡| 亚洲精品色激情综合| 欧美极品一区二区三区四区| 人人妻,人人澡人人爽秒播| 高清毛片免费观看视频网站| 国产精品乱码一区二三区的特点| 日韩欧美免费精品| 黑人操中国人逼视频| 日韩欧美三级三区| 国产综合懂色| 他把我摸到了高潮在线观看| 午夜福利成人在线免费观看| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 国产99白浆流出| 日本 欧美在线| 一个人看视频在线观看www免费 | 国产成人一区二区三区免费视频网站| 亚洲成人久久性| 欧美xxxx黑人xx丫x性爽| 99国产精品一区二区三区| 亚洲精品粉嫩美女一区| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 精品久久久久久成人av| 欧美日本亚洲视频在线播放| 国产日本99.免费观看| 身体一侧抽搐| 一本一本综合久久| 国产午夜福利久久久久久| 精品久久久久久久末码| 国产精品98久久久久久宅男小说| 色播亚洲综合网| 又黄又粗又硬又大视频| 露出奶头的视频| 夜夜躁狠狠躁天天躁| 丰满的人妻完整版| 日韩欧美在线二视频| 亚洲成人中文字幕在线播放| 老司机午夜福利在线观看视频| 99国产极品粉嫩在线观看| 亚洲国产色片| 午夜视频精品福利| 1024手机看黄色片| 韩国av一区二区三区四区| av中文乱码字幕在线| 免费无遮挡裸体视频| 精品人妻1区二区| 亚洲性夜色夜夜综合| 精品久久久久久成人av| 黑人欧美特级aaaaaa片| 老熟妇仑乱视频hdxx| 黄色视频,在线免费观看| 久久伊人香网站| 大型黄色视频在线免费观看| 亚洲av熟女| 亚洲 欧美一区二区三区| 91av网一区二区| 午夜精品在线福利| 国产免费男女视频| 精品乱码久久久久久99久播| 国产日本99.免费观看| 国产精品一区二区精品视频观看| 女生性感内裤真人,穿戴方法视频| 热99re8久久精品国产| 不卡av一区二区三区| 亚洲欧美日韩无卡精品| 亚洲国产精品成人综合色| www.熟女人妻精品国产| 老汉色∧v一级毛片| 亚洲精品粉嫩美女一区| 热99re8久久精品国产| 成人永久免费在线观看视频| 人人妻人人澡欧美一区二区| 91久久精品国产一区二区成人 | 在线观看午夜福利视频| 亚洲 欧美一区二区三区| 午夜福利18| 男女视频在线观看网站免费| 国产激情久久老熟女| 日本黄大片高清| 嫩草影院精品99| 欧美另类亚洲清纯唯美| 国产极品精品免费视频能看的| 欧美黑人巨大hd| 白带黄色成豆腐渣| 久久天躁狠狠躁夜夜2o2o| 网址你懂的国产日韩在线| 日韩av在线大香蕉| 亚洲欧美精品综合一区二区三区| 夜夜爽天天搞| 在线观看免费视频日本深夜| www.www免费av| 国产精品亚洲一级av第二区| 成人无遮挡网站| 婷婷精品国产亚洲av| 男女视频在线观看网站免费| 国产精品98久久久久久宅男小说| 又大又爽又粗| 999久久久精品免费观看国产| 欧美乱妇无乱码| 午夜福利在线观看免费完整高清在 | 两个人的视频大全免费| 在线观看免费午夜福利视频| 日韩欧美国产一区二区入口| 亚洲欧美激情综合另类| 欧美av亚洲av综合av国产av| 91麻豆av在线| 一级a爱片免费观看的视频| 久久久久国产一级毛片高清牌| 亚洲成人中文字幕在线播放| 精品午夜福利视频在线观看一区| 精华霜和精华液先用哪个| 桃色一区二区三区在线观看| 久久久国产欧美日韩av| 亚洲精品456在线播放app | xxx96com| 久久久水蜜桃国产精品网| 国产精品野战在线观看| 中文字幕熟女人妻在线| 国产午夜精品论理片| 少妇裸体淫交视频免费看高清| 国产精品99久久久久久久久| 亚洲黑人精品在线| 激情在线观看视频在线高清| 日韩高清综合在线| 1000部很黄的大片| 免费在线观看成人毛片| 国产精品久久久av美女十八| 成人亚洲精品av一区二区| 国产主播在线观看一区二区| 最新美女视频免费是黄的| 国产成年人精品一区二区| 中文字幕久久专区| 久久久精品欧美日韩精品| 欧美乱码精品一区二区三区| 狠狠狠狠99中文字幕| 欧美日韩精品网址| 美女cb高潮喷水在线观看 | 97超级碰碰碰精品色视频在线观看| 男女午夜视频在线观看| 狂野欧美激情性xxxx| 亚洲国产看品久久| 制服人妻中文乱码| 九色成人免费人妻av| 人人妻人人看人人澡| 99国产综合亚洲精品| 亚洲专区字幕在线| 亚洲aⅴ乱码一区二区在线播放| 国产精品99久久99久久久不卡| 丝袜人妻中文字幕| 国内精品美女久久久久久| 久久久色成人| 午夜福利在线在线| 老司机午夜福利在线观看视频| 精品国产三级普通话版| 亚洲人成网站高清观看| 19禁男女啪啪无遮挡网站| 午夜日韩欧美国产| 我要搜黄色片| 三级男女做爰猛烈吃奶摸视频| 97超视频在线观看视频| 一本精品99久久精品77| 床上黄色一级片| 天堂av国产一区二区熟女人妻| 国产精品自产拍在线观看55亚洲| 757午夜福利合集在线观看| 天天躁日日操中文字幕| 国产精品久久久久久久电影 | 国产激情欧美一区二区| 久久中文字幕一级| 亚洲专区国产一区二区| 久久久国产成人免费| 国产精品影院久久| 成人亚洲精品av一区二区| 99久久精品热视频| 日日夜夜操网爽| 舔av片在线| 日韩精品中文字幕看吧| 亚洲五月婷婷丁香| 久久欧美精品欧美久久欧美| 性欧美人与动物交配| 精品国产三级普通话版| 人妻丰满熟妇av一区二区三区| 视频区欧美日本亚洲| 国产免费男女视频| 十八禁人妻一区二区| 午夜视频精品福利| 国产97色在线日韩免费| 99久久精品热视频| 99久久精品一区二区三区| 国内毛片毛片毛片毛片毛片| 少妇熟女aⅴ在线视频| 嫩草影院入口| 国产99白浆流出| 国产成人一区二区三区免费视频网站| 18禁黄网站禁片免费观看直播| 黄色丝袜av网址大全| 亚洲熟妇熟女久久| 欧美乱色亚洲激情| 日韩高清综合在线| 此物有八面人人有两片| 亚洲欧美精品综合久久99| 宅男免费午夜| 国产成人精品久久二区二区免费| 免费人成视频x8x8入口观看| 精品不卡国产一区二区三区| 国产成人aa在线观看| 一级a爱片免费观看的视频| 伦理电影免费视频| 欧美性猛交黑人性爽| 成人高潮视频无遮挡免费网站| 免费看十八禁软件| 日韩精品青青久久久久久| 特大巨黑吊av在线直播| 日韩欧美三级三区| 欧美日本视频| 日本 欧美在线| 99久久久亚洲精品蜜臀av| 夜夜夜夜夜久久久久| 国产蜜桃级精品一区二区三区| 免费观看精品视频网站| 我要搜黄色片| 亚洲成人免费电影在线观看| 午夜激情欧美在线| 国产主播在线观看一区二区| 午夜精品一区二区三区免费看| 99国产综合亚洲精品| 国产精品一区二区精品视频观看| av女优亚洲男人天堂 | 免费高清视频大片| 好看av亚洲va欧美ⅴa在| 91久久精品国产一区二区成人 | 欧美+亚洲+日韩+国产| 精品久久蜜臀av无| 欧美黑人欧美精品刺激| 欧美乱色亚洲激情| 禁无遮挡网站| 久久国产乱子伦精品免费另类| 伦理电影免费视频| 日韩欧美三级三区| 亚洲无线观看免费| 久久久久九九精品影院| 人人妻,人人澡人人爽秒播| 国产成人啪精品午夜网站| 国产黄a三级三级三级人| 一本综合久久免费| 午夜免费激情av| 免费看a级黄色片| 在线播放国产精品三级| 欧美日韩中文字幕国产精品一区二区三区| 国产精品国产高清国产av| 亚洲色图 男人天堂 中文字幕| 久久久国产欧美日韩av| 欧美另类亚洲清纯唯美| 国产精品九九99| 曰老女人黄片| 久99久视频精品免费| 97人妻精品一区二区三区麻豆| 国产在线精品亚洲第一网站| 国产精品女同一区二区软件 | 午夜精品久久久久久毛片777| 91av网一区二区| 国产成人av激情在线播放| 欧美日韩乱码在线| 欧美日韩黄片免| 亚洲第一欧美日韩一区二区三区| 五月玫瑰六月丁香| 超碰成人久久| 国产淫片久久久久久久久 | 国产1区2区3区精品| 狠狠狠狠99中文字幕| 久久精品91蜜桃| 成人鲁丝片一二三区免费| 国产精品一及| 亚洲av片天天在线观看| 欧美xxxx黑人xx丫x性爽| 我的老师免费观看完整版| 成人鲁丝片一二三区免费| 一进一出好大好爽视频| 91九色精品人成在线观看| 欧美xxxx黑人xx丫x性爽| www.自偷自拍.com| 国产高清videossex| 黄色视频,在线免费观看| 亚洲成人免费电影在线观看| 免费在线观看成人毛片| 午夜免费观看网址| netflix在线观看网站| 在线观看午夜福利视频| 国产av在哪里看| 久久午夜综合久久蜜桃| 极品教师在线免费播放| 成年女人看的毛片在线观看| 婷婷丁香在线五月| 长腿黑丝高跟| 网址你懂的国产日韩在线| 国产真实乱freesex| 一a级毛片在线观看| 99精品在免费线老司机午夜| 搡老妇女老女人老熟妇| 亚洲一区二区三区色噜噜| 国产精品亚洲av一区麻豆| 丰满人妻一区二区三区视频av | 中文字幕av在线有码专区| 69av精品久久久久久| 精品电影一区二区在线| 午夜成年电影在线免费观看| 久久久精品欧美日韩精品| 精品不卡国产一区二区三区| 国产日本99.免费观看| 亚洲,欧美精品.| 一个人看视频在线观看www免费 | av黄色大香蕉| 俄罗斯特黄特色一大片| 亚洲 欧美 日韩 在线 免费| www国产在线视频色| 亚洲熟妇中文字幕五十中出| 成人高潮视频无遮挡免费网站| 麻豆成人午夜福利视频| 少妇丰满av| 一级毛片高清免费大全| 91久久精品国产一区二区成人 | 伊人久久大香线蕉亚洲五| 成人18禁在线播放| 国产精品精品国产色婷婷| 夜夜看夜夜爽夜夜摸| 中出人妻视频一区二区| 国产黄a三级三级三级人| 白带黄色成豆腐渣| 中文字幕精品亚洲无线码一区| 国产精品免费一区二区三区在线| 国产精品99久久久久久久久| 真人一进一出gif抽搐免费| 少妇丰满av| 午夜日韩欧美国产| a在线观看视频网站| 97人妻精品一区二区三区麻豆| 国产激情偷乱视频一区二区| 成人无遮挡网站| 美女免费视频网站| 丁香六月欧美| 一本久久中文字幕|