• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Unsteady Oscillatory Flow of Generalized Casson Fluid with Heat and Mass Transfer:A Comparative Fractional Model

    2021-12-15 12:46:46AnisurRehmanFarhadAliAaminaAaminaAneesImitazIlyasKhanandKottakkaranSooppyNisar
    Computers Materials&Continua 2021年2期

    Anis ur Rehman, Farhad Ali,Aamina Aamina,Anees Imitaz,Ilyas Khan and Kottakkaran Sooppy Nisar

    1Department of Mathematics, City University of Science and Information Technology, Peshawar, 25000,Pakistan

    2Computational Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam

    3Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

    4Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, 11952,Saudi Arabia

    5Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Al-Dawaser,11991,Al Kharj,Saudi Arabia

    Abstract: It is of high interest to study laminar flow with mass and heat transfer phenomena that occur in a viscoelastic fluid taken over a vertical plate due to its importance in many technological processes and its increased industrial applications.Because of its wide range of applications, this study aims at evaluating the solutions corresponding to Casson fluids’oscillating flow using fractional-derivatives.As it has a combined mass-heat transfer effect,we considered the fluid flow upon an oscillatory infinite vertical-plate.Furthermore, we used two new fractional approaches of fractional derivatives, named AB (Atangana-Baleanu) and CF (Caputo-Fabrizio), on dimensionless governing equations and then we compared their results.The Laplace transformation technique is used to get the most accurate solutions of oscillating motion of any generalized Casson fluid because of the Cosine oscillation passed over the infinite vertical-plate.We obtained and analyzed the distribution of concentration, expressions for the velocity-field and the temperature graphically,using various parameters of interest.We also analyzed the Nusselt number and the skin friction due to their important engineering usage.

    Keywords:AB and CF fractional derivatives;generalized Casson fluid;heat and mass transfer;oscillation

    1 Introduction

    Flows in oscillating bodies play an important role in engineering and the industrial field.It is of high interest to study unsteady flows of fluids, which are incompressible non-Newtonian created by oscillatory flat-plates, because of their applications in the assessment of numerical methods performance while computing transient flows have various industrial applications.These flows have generated theoretical and fundamental interest, in addition to their usability in biological-industrial processes such as fluctuating unsteady boundary layer blood flow(quasi-periodic),cardio-vascular systems and an oscillating body surrounded by acoustic streaming.

    Focusing on the advantages of viscoelastic flows,several studies have been carried out and published.Ross[1] was the first to investigate the history of fractional calculus and studied the pioneers of fractional calculus, because the viscoelastic fluids have an elastic nature, while fractional calculus is more convenient to discuss the memory effect.Choudhury et al.[2] observed the viscoelastic behavior of the fluid with the help of fractional calculus.Zheng et al.[3] used generalized derivatives and studied the slip effects of the viscoelastic fluid.Meral et al.[4] researched the use of a viscoelastic fluid with fractional calculus in the medical field.Cao et al.[5] investigated the fractional Maxwell model for second grade viscoelastic fluid.They discussed the parametric influence of various embedded parameters on the velocity profile of viscoelastic fluid.Sheikh et al.[6] investigated the idea of the CF derivatives of fractional order on MHD flow of second-grade fluid,while radiative heat transfer has been taken into account.

    The exact work becomes rare if one considers the analytical solution of the Casson fluid model through a fractional derivative.When it comes to the comparison between fractional calculus and classical,it has been observed that for several fluids between elastic and viscous materials,the fractional constitutive relationship model is much more important as compared to the customary constitutive relationship model.The fractional derivative has very fruitful result when it comes to describing more complex dynamics.Ali et al.[7]studied the properties of MHD for the blood flow when blood is characterized as an example of Casson fluid,together with magnetic particles in a horizontal cylinder.Vázquez[8]used the time-fractional derivative and obtained a diffusion equation for fractional, which has had very fruitful results in the field of computational fluid dynamics.It has been reported that Vieru et al.[9] conducted very interesting research using the timefractional derivative to study the free convection flow of an incompressible viscous fluid when the fluid is flowing near the vertical plate; moreover, the Newtonian heating and mass diffusion has been taken in the presence of chemical reaction.Sin et al.[10] has studied viscoelastic properties.The constitutive equations have been solved with fractional derivatives, and the exact solutions have been calculated for the generalized Maxwell model.Research has discovered that rest state stability of a target fractional calculus model has been built up, which is a significant finding that invigorates the physical premise of these fractional models [11].Furthermore, the study has found that when fractional derivatives are used for constitutive equations, one can obtain better experimental data.Khan et al.[12] investigated Casson fluid over an oscillating plate with the help of Caputo time-fractional derivative.

    In the new world of fractional calculus, different methods are used but the most common fractional calculus to be found are Caputo and Riemann-Liouville fractional calculus operators, while Riemann-Liouville and Caputo operators come up with some deficiencies i.e., in the world of calculus, it is very common that whenever the derivative of a constant is taken, it always gives zero, but in case of Riemann-Liouville fractional derivatives, this property was not satisfied and the derivative was not zero.At the same time, Caputo has investigated a kernel for the fractional derivatives, which is a singular function.In 2015, Michele Caputo and Mauro Fabrizio heightened the need to put an end to this deficiency and introduced another fractional method in which the kernel is in exponential order and this exponential kernel is having no singularities [13].Khan et al.[14] utilized the possibility of the CF fractional calculus to generalize the starting solutions of the flow of second-grade fluid over a vertical plate and acquired the exact answers to the utilization of the Laplace model approach.In other papers,Ali et al.[15] examined the influence of various shapes forMoS2nanoparticles on engine oil taking the study of generalized Brinkman-type fluid model into account with the non-singular kernel.The CF timefractional derivatives are useful in the application of the Laplace transform.Zafar et al.[16] studied incompressible viscous fluid that was flowing on an infinite plate and the non-integer order derivative, in which the kernel was taken non-singular.Atangana et al.[17] together used the idea of the non-local and non-singular kernel of fractional derivatives and solved a model known as the Cattaneo-Hristov model.Alkahtani et al.[18]used CF fractional derivative and studied different wave motions that take place on the surface of low water.Atangana[19]used the interesting properties of Caputo and Fabrizio fractional-order derivative and brought very interesting modifications in Fisher’s reaction for diffusion equation.Atangana et al.[20] applied the Caputo-Fabrizio derivative to investigate the behavior of groundwater flow within the confined aquifer.However, some problems rose when one of the fractional calculus methods, named Caputo-Fabrizio fractional approach, was used because the kernel in the integral for the mentioned approach was non-singular as well as non-local.To overcome the lack of non-locality of the kernel, two mathematicians, Atangana and Baleanu, introduced a very fruitful work in the field of fractional calculus.The new fractional derivative was similar to w the Caputo and Riemann-Liouville fractional model and based on the generalized Mittag-Leffler function.Machado et al.[21] made a very good research on fractional dynamics and used the idea for mathematical physics, which is still the center of interest of many physicists and mathematicians.Saqib et al.[22] studied Caputo-Fabrizio time-fractional derivative and obtained closed-form solutions for Jeffery fluid.Reddy et al.[23] studied Casson ferrofluid over an upper convective surface having a parabolic revolution, in which the fluid is studied in the presence of viscous dissipation and non-linear thermal radiation.Reddy et al.[24] made a research on transitive radiative free convective hydro-magnetic Casson fluid in the presence of entropy heat generation.Ajayi et al.[25] investigated the two dimensional Casson fluid, which is flowing in a horizontal melting surface; moreover, the fluid is taken in a thermally arranged medium.Ali et al.[26] investigated Cattaneo-Christov heat flux model in the presence of a variable source and non-linear radiation effect.Sandeep et al.[27] studied the nature of magneto-hydrodynamic Casson fluid in the presence of heat and mass transfer and came up with some theoretical results about the Brownian moment of the fluid particles.Mehmood et al.[28] investigated Casson fluid and studied a micro-rotation in the presence of mixed convection flow of the fluid.Ali et al.[29] investigated Casson fluid, coupled with the energy equation with the help of the fractional derivative.

    Fractional calculus unlocked new research areas and enabled researchers to study high complex physical phenomena in daily life.Ali et al.[30]researched the effects of magneto-hydrodynamics on the oscillating blood flow in a cylinder.Algahtani[31]carried out a comparison between two different kernels of AB and CF fractional operators to get a solution of the Allen-Cahn model, which is based on Crank-Nicholson scheme.Ullah et al.[32] studied the effect of slip condition on magnetic-hydrodynamics free convective flow in the presence of Newtonian heating.Sheikh et al.[33] studied comparison on a coupled fractional derivatives, which are based on the exponential kernel suggested by Caputo and Fabrizio.Tateishi et al.[34] carried out a detailed study on the behavior of anomalous diffusion with the help of the fractional derivative and ended with a fruitful investigation.A comparative investigation of RL and RC electrical current has been carried out by Abro et al.[35] using Atangana-Baleanu and Caputo-Fabrizio derivative.Sheikh et al.[36] obtained a generalized nanofluid model using the AB and CF fractional approach to enhance the performance of solar collectors.Sheikh et al.[37] carried out a comparison between two different fractional models, namely as AB and CF fractional models, and studied the chemical reaction for the flow of Casson fluid.Abro et al.[38] obtained the same results for the generalized second-grade fluid model along with heat and mass transfer.Jassim et al.[39] investigated the second kind Volterra integrodifferential equation with the help of the local fractional Adomian decomposition method and obtained the analytical solution through fractional approach.

    Motivated by the above literature, this research paper studies the comparative analysis of CF and AB fractional derivatives to the convective heat transfer in Casson fluid.Exact solutions for velocity and temperature are obtained for both cases via the Laplace transformation.Graphs for both cases are formed with the help of Mathcad software, which shows the behavior of Casson fluid.

    2 Mathematical Formulation

    In the current problem,the flow of Casson fluid along with heat as well as mass transfer over an infinite vertical flat plate has been considered.The x-axis is the direction of the fluid’s flow,whiley-axis is considered normal to the plate.At first,the fluid and plate are static having constant physical properties i.e.,temperature and concentrationT1andC1respectively.After some timet=0+,the plate starts the to move in its plane with uniform velocityUas illustrated by Fig.1.The temperature and concentration levels of the plate increased linearly toTwandCwwith timet.

    Figure 1:Geometry of the flow

    Since incompressible Casson fluid is considered[4],for which the rheological equation is as below.

    where μ is the dynamic viscosity π=emnemnandemnis the(m,n)thcomponent of deformation rate.For the non-Newtonian fluid,pxis known as the yield stress, π is known as the product of the component of deformation rate, πcis the critical value considered for this product, which is based on the non-Newtonian model and μγis the symbol for the plastic dynamic viscosity.Since the physical quantities i.e., velocity, temperature and concentration, are functions of (y,t) only, then by the normal Boussinesq estimation, the free convection flow of the Casson fluid together with the heat as well as the mass transfer is governed by the following partial differential equations[20]:

    subjected to the following initial and boundary conditions:

    whereudenotes the fluid velocity in thex-direction,Tis the temperature, ρ is the fluid density, μ is the dynamic viscosity of fluids, β is the material parameter of the Casson fluid, βTis the thermal expansion coefficient,gis the acceleration due to gravity, βcis the coefficient of concentration,cpis the specific heat capacity of fluids,kis the thermal conductivity andDis the thermal diffusivity.

    Using the following dimensionless variables:

    Into Eqs.(2)-(5),we get:

    where

    Gr=represents the thermal Grashof number,mass Grashof number,Prandtl number and Schmidt number, respectively.

    2.1 Solution with Atangana-Baleanu Derivatives

    To develop the AB fractional model for a generalized Casson fluid, we introduce τ:

    whereis known as AB time fractional operator of order β and is defined as [11]:

    whereEβ(-tβ)=is the generalized Mittag-Leffler function.

    Applying the Laplace transformation on Eqs.(11)-(12) and using the corresponding initial conditions from Eq.(9),we get:

    Using the Laplace transform of Eq.(10) and incorporating Eqs.(14)-(15) in it gives the following equation:

    where

    Applying inverse Laplace transform on Eqs.(14)-(16),we get:

    where the formula for special functions are as follows:

    where ? the Wright function and is defined as

    For β=1 the above-obtained solution can be reduced to a classical solution with the help of the following properties:

    2.2 Solution with Caputo-Fabrizio Derivatives

    To develop CF fractional model for generalized Casson fluid,we replace partial derivatives concerning s by CF fractional operator of order a,and Eqs.(6)-(8)becomes as:

    whereCF Dαt(.)stands for the CF time-fractional operator of order α and is defined as [10]:

    Using the Laplace transformation on Eqs.(21)-(22)and using the corresponding initial conditions from Eq.(9),we get:

    Taking the Laplace transform of Eq.(20) and incorporating Eqs.(23)-(24) in it gives the following equation.

    Applying inverse Laplace transform on Eqs.(23)-(25),we get:

    2.3 Nusselt Number

    The expression for the rate of heat transfer is given as:

    The convergence of the fractional model to the classical model is shown in Tab.1.The Nusselt number gradually decreases for a small value of time in AB fractional derivatives,while in CF fractional derivatives it increases.Put another way, for a larger value of time, both fractional models gradually decrease when we converge to the classical model.This is because the Nusselt number is the ratio of convective heat transfer to conductive heat transfer.

    3 Graphical Discussion

    The focus of our study is the achievement of accurate solutions,using Laplace transform technique,free convection flow of Casson fluid(generalized)on a vertical-plate having infinite oscillation.We analyzed the combined effect of mass and heat transfer.To apply the recently introduced fractional calculus definitions,two pairs of mathematicians, Caputo and Fabrizio and Baleanu and Atangana, took Casson fluid’s generalized fraction-model in 2015 and 2016, respectively.Both pairs used graphs and tables to compare the accuracy of solutions in each case.Moreover, various embedded parameters such as thermal Grashof number (Gr), Casson fluid (γ), number of mass Grashof (Gm), Schmidt number (Sc), and Prandtl number(Pr) for the obtained solutions of Casson fluid’s AB fractional-model are represented graphically.Fig.2 shows a fluid motion comparative study between CF and AB.We observed greater velocity for less time(τ = 0.02) using the AB approach than the CF approach, while for the case of greater time (τ = 5), we observed greater velocity using the CF approach than the AB approach.However, we found the two velocities identical via both approaches for unit time (τ =1).

    Fig.3 shows parameter γ of Casson fluid influencingv(ξ,τ).The velocity shows a direct relation with the values of γ due to the reduction of the thickness of the boundary layer with the reduction in γ values.

    The effect ofGmandGronv(ξ,t)is represented in Figs.4 and 5.An increase inGmandGrincreasesv(ξ,t) due to buoyancy force enhancement, which is caused by concentration gradients and temperature.Physically,GrandGmsignify the relative effect of buoyancy forces concentration and thermal on the viscous hydrodynamic force, respectively.An increase inGrandGmvalues increase concentration gradients and temperature,which signifies buoyancy contribution near the plate, hence, causes a short rise inv(ξ,t)value near the plate.

    Figs.6-7 show Pr that andSchas an inverse relation withv(ξ,t).Increase in values of Pr andScreduces thermal and concentration boundary layer thickness, respectively.The ratio of thermal and momentum diffusivity is signified by the Pr.Thermal boundary layers and Pr controls relative thickening of the momentum in heat transfer problems.Therefore,we can use Pr it to increase the cooling rate.

    Table 1:Comparison of rate of heat transfer for time and fractional parameters

    Figure 2:Comparing the velocities of AB and CF for different τ values

    Figure 3:Profile of velocity for(γ and τ)

    Figure 4:Velocity profile for(Gm and τ)

    Figure 5:Velocity profile for(Gr and τ)

    Figure 6:Temperature profile for different values of Pr and two different times

    4 Conclusion

    Using AB and CF approaches,we carried out a comparative analysis for generalized Casson fluid flow with mass and heat transfer.We summarized that the behavior of fluid velocity is opposite for different τ values using AB and CF approaches where (τ=1) is the point of transition.An increase in the values ofGr,Gm, and γ increases the fluid velocity, while a increases in the values of Pr andScdecreases the fluid velocity.

    An increase in the values of Pr andScdecreases the temperature and the levels of concentration,respectively.

    Funding Statement:The author(s) received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产成人精品在线电影| 色综合站精品国产| 色综合婷婷激情| 99在线视频只有这里精品首页| 亚洲久久久国产精品| 动漫黄色视频在线观看| av天堂久久9| 99热国产这里只有精品6| 女性生殖器流出的白浆| 亚洲国产精品999在线| 亚洲 欧美 日韩 在线 免费| 精品一区二区三区av网在线观看| 国产国语露脸激情在线看| 亚洲精品一区av在线观看| 国产亚洲精品综合一区在线观看 | 在线天堂中文资源库| 97碰自拍视频| 欧美日韩黄片免| 国产高清国产精品国产三级| 国产精品久久视频播放| 91精品三级在线观看| 久久精品aⅴ一区二区三区四区| 变态另类成人亚洲欧美熟女 | 亚洲五月婷婷丁香| 欧美激情极品国产一区二区三区| 精品人妻1区二区| 水蜜桃什么品种好| 久久影院123| av福利片在线| 亚洲性夜色夜夜综合| av在线播放免费不卡| 中文亚洲av片在线观看爽| 麻豆一二三区av精品| 桃色一区二区三区在线观看| cao死你这个sao货| 在线永久观看黄色视频| 国产成人欧美| 99久久99久久久精品蜜桃| 97超级碰碰碰精品色视频在线观看| 亚洲五月婷婷丁香| 啦啦啦 在线观看视频| 日韩 欧美 亚洲 中文字幕| 国产精品亚洲一级av第二区| 国产精品免费视频内射| 中文字幕av电影在线播放| 欧美丝袜亚洲另类 | 中文字幕精品免费在线观看视频| 欧美一级毛片孕妇| 人人妻人人澡人人看| 99riav亚洲国产免费| 黄频高清免费视频| 国产一区二区在线av高清观看| 黄色女人牲交| 亚洲国产精品999在线| 身体一侧抽搐| 欧美激情久久久久久爽电影 | 久久久国产成人免费| 夜夜爽天天搞| 色综合站精品国产| 丁香欧美五月| 9热在线视频观看99| 男男h啪啪无遮挡| 国产精品偷伦视频观看了| 午夜福利免费观看在线| 国产亚洲欧美在线一区二区| 国产精品一区二区三区四区久久 | 他把我摸到了高潮在线观看| 久久天堂一区二区三区四区| 啦啦啦 在线观看视频| 国产精品二区激情视频| 亚洲av日韩精品久久久久久密| 女性生殖器流出的白浆| 亚洲一区二区三区欧美精品| 天天添夜夜摸| 亚洲五月婷婷丁香| 免费在线观看完整版高清| 国产野战对白在线观看| 国产成人欧美| 激情视频va一区二区三区| 97人妻天天添夜夜摸| 人妻久久中文字幕网| 黄色视频,在线免费观看| 国产99白浆流出| 色尼玛亚洲综合影院| 亚洲中文av在线| 9191精品国产免费久久| 亚洲成a人片在线一区二区| 亚洲七黄色美女视频| av欧美777| 97碰自拍视频| 成人影院久久| 天堂中文最新版在线下载| 亚洲中文av在线| 亚洲精品美女久久久久99蜜臀| 国产不卡一卡二| 国产真人三级小视频在线观看| 国产精品自产拍在线观看55亚洲| 午夜福利在线观看吧| 最新在线观看一区二区三区| 精品第一国产精品| 亚洲专区字幕在线| 日本黄色视频三级网站网址| 亚洲国产毛片av蜜桃av| 午夜福利,免费看| 老鸭窝网址在线观看| 性欧美人与动物交配| 国产99久久九九免费精品| 国产精品一区二区精品视频观看| 波多野结衣av一区二区av| 天堂动漫精品| 久久精品国产亚洲av高清一级| 日本一区二区免费在线视频| 免费观看精品视频网站| 成人特级黄色片久久久久久久| 国产一区在线观看成人免费| 国产精品爽爽va在线观看网站 | 午夜成年电影在线免费观看| 亚洲午夜理论影院| 久久精品91蜜桃| 亚洲精品在线观看二区| 99精品欧美一区二区三区四区| 交换朋友夫妻互换小说| 欧美成人免费av一区二区三区| 国产成+人综合+亚洲专区| 日韩欧美国产一区二区入口| av有码第一页| 一级片免费观看大全| 国产成人欧美在线观看| 一区二区三区国产精品乱码| 精品久久久精品久久久| 亚洲全国av大片| 免费高清视频大片| 久久天躁狠狠躁夜夜2o2o| 欧美黄色淫秽网站| 国产99久久九九免费精品| 午夜激情av网站| 国产在线观看jvid| 国产野战对白在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲男人天堂网一区| 亚洲欧美一区二区三区黑人| 三级毛片av免费| 久久久久久久久免费视频了| 欧美不卡视频在线免费观看 | 国产欧美日韩一区二区精品| 国产精品九九99| 国产精品综合久久久久久久免费 | 久久久久九九精品影院| 久久久久久大精品| 黄色视频不卡| 日本 av在线| 麻豆久久精品国产亚洲av | 18禁观看日本| 99久久99久久久精品蜜桃| 性少妇av在线| 日本a在线网址| 亚洲专区中文字幕在线| 9191精品国产免费久久| 色播在线永久视频| 久久天躁狠狠躁夜夜2o2o| 久久99一区二区三区| 99香蕉大伊视频| 多毛熟女@视频| 亚洲欧美一区二区三区久久| 一级a爱视频在线免费观看| 亚洲第一av免费看| 看片在线看免费视频| 欧美国产精品va在线观看不卡| 国产成人欧美| 欧美午夜高清在线| 一个人观看的视频www高清免费观看 | 日本三级黄在线观看| 高潮久久久久久久久久久不卡| 午夜福利影视在线免费观看| 欧美+亚洲+日韩+国产| 国产一区二区三区综合在线观看| 亚洲黑人精品在线| 亚洲第一欧美日韩一区二区三区| 亚洲精品av麻豆狂野| 老司机在亚洲福利影院| 日本五十路高清| 99在线人妻在线中文字幕| 亚洲国产欧美一区二区综合| 成年人黄色毛片网站| 亚洲男人的天堂狠狠| 超碰成人久久| 波多野结衣高清无吗| 欧美午夜高清在线| 久久香蕉国产精品| 亚洲黑人精品在线| 中出人妻视频一区二区| 色播在线永久视频| 国产高清视频在线播放一区| 美女大奶头视频| 亚洲成人国产一区在线观看| 中文字幕另类日韩欧美亚洲嫩草| 两性夫妻黄色片| 自拍欧美九色日韩亚洲蝌蚪91| av天堂久久9| 久久久久久久久中文| 欧美国产精品va在线观看不卡| 波多野结衣高清无吗| 天堂动漫精品| 琪琪午夜伦伦电影理论片6080| 电影成人av| 国产成人av教育| 婷婷六月久久综合丁香| 国产不卡一卡二| 亚洲精品美女久久av网站| 黄频高清免费视频| 亚洲色图 男人天堂 中文字幕| 无人区码免费观看不卡| 法律面前人人平等表现在哪些方面| 可以在线观看毛片的网站| 好看av亚洲va欧美ⅴa在| 亚洲精品国产区一区二| 身体一侧抽搐| 亚洲精品在线观看二区| 18禁国产床啪视频网站| 成年人免费黄色播放视频| 在线天堂中文资源库| av有码第一页| 午夜福利免费观看在线| 高清黄色对白视频在线免费看| 欧美日韩一级在线毛片| av片东京热男人的天堂| 色综合欧美亚洲国产小说| 欧美成狂野欧美在线观看| 叶爱在线成人免费视频播放| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产亚洲在线| 伦理电影免费视频| 日日摸夜夜添夜夜添小说| 亚洲欧美日韩另类电影网站| 午夜a级毛片| av有码第一页| 桃红色精品国产亚洲av| svipshipincom国产片| 一二三四在线观看免费中文在| 啦啦啦免费观看视频1| 日韩三级视频一区二区三区| 黄片大片在线免费观看| 欧美另类亚洲清纯唯美| 香蕉久久夜色| 嫩草影视91久久| 久久精品人人爽人人爽视色| 日韩有码中文字幕| 国产精品野战在线观看 | 18禁观看日本| 久久久久久大精品| 精品无人区乱码1区二区| 99精品在免费线老司机午夜| 精品一区二区三区视频在线观看免费 | 亚洲欧美一区二区三区黑人| 国产三级黄色录像| 99精国产麻豆久久婷婷| av网站免费在线观看视频| 久久草成人影院| 一级毛片高清免费大全| 久久婷婷成人综合色麻豆| 亚洲av电影在线进入| 久久久久国内视频| 多毛熟女@视频| 香蕉久久夜色| 12—13女人毛片做爰片一| 国产又色又爽无遮挡免费看| 99精国产麻豆久久婷婷| 国产精品亚洲av一区麻豆| 好看av亚洲va欧美ⅴa在| 欧美日韩福利视频一区二区| 色综合站精品国产| 久久九九热精品免费| 国产精品永久免费网站| 欧美 亚洲 国产 日韩一| 午夜免费成人在线视频| 99在线人妻在线中文字幕| 18美女黄网站色大片免费观看| 国产亚洲欧美98| 亚洲情色 制服丝袜| 久久人人爽av亚洲精品天堂| 黑人欧美特级aaaaaa片| 丰满人妻熟妇乱又伦精品不卡| 精品日产1卡2卡| 国产单亲对白刺激| 久久这里只有精品19| 视频区图区小说| 国产av又大| 在线观看免费日韩欧美大片| 电影成人av| 电影成人av| 69av精品久久久久久| 亚洲aⅴ乱码一区二区在线播放 | 多毛熟女@视频| 9色porny在线观看| 国产精品永久免费网站| 国产成人啪精品午夜网站| 亚洲色图综合在线观看| 国产精品一区二区精品视频观看| 国产亚洲精品第一综合不卡| 色综合站精品国产| 久9热在线精品视频| 欧美大码av| 欧美日韩精品网址| 亚洲国产精品sss在线观看 | 午夜免费激情av| 久久久国产成人精品二区 | 一区福利在线观看| 淫秽高清视频在线观看| 欧美人与性动交α欧美精品济南到| 亚洲国产中文字幕在线视频| 热re99久久国产66热| 日本黄色视频三级网站网址| 日韩欧美一区视频在线观看| 少妇裸体淫交视频免费看高清 | 欧美老熟妇乱子伦牲交| 精品国产乱码久久久久久男人| 在线观看免费午夜福利视频| 国产精品一区二区免费欧美| 一级a爱视频在线免费观看| 国产xxxxx性猛交| 国内毛片毛片毛片毛片毛片| 久久香蕉激情| 国产高清国产精品国产三级| www日本在线高清视频| 涩涩av久久男人的天堂| 19禁男女啪啪无遮挡网站| 国产黄色免费在线视频| 可以免费在线观看a视频的电影网站| 99精品在免费线老司机午夜| 老司机靠b影院| 午夜福利,免费看| 麻豆av在线久日| 熟女少妇亚洲综合色aaa.| 欧美激情久久久久久爽电影 | 一边摸一边做爽爽视频免费| 国产精品二区激情视频| 亚洲人成电影免费在线| 精品国产国语对白av| 国产亚洲av高清不卡| 好男人电影高清在线观看| 国产成人欧美| 纯流量卡能插随身wifi吗| 国产成人欧美| 999精品在线视频| 一级a爱视频在线免费观看| 免费看十八禁软件| 久久精品91无色码中文字幕| 久久天躁狠狠躁夜夜2o2o| 又大又爽又粗| 母亲3免费完整高清在线观看| 亚洲九九香蕉| 91av网站免费观看| 18禁美女被吸乳视频| 69av精品久久久久久| 久久久久久久久久久久大奶| 成人三级做爰电影| 欧美乱码精品一区二区三区| 久久久久亚洲av毛片大全| 亚洲精品国产精品久久久不卡| 可以免费在线观看a视频的电影网站| 国产亚洲av高清不卡| 国产亚洲欧美在线一区二区| 成人手机av| 国产精品一区二区免费欧美| 老汉色∧v一级毛片| 老汉色av国产亚洲站长工具| 香蕉丝袜av| 国产极品粉嫩免费观看在线| 日韩大尺度精品在线看网址 | 50天的宝宝边吃奶边哭怎么回事| 欧美精品啪啪一区二区三区| 日韩成人在线观看一区二区三区| 黄色视频,在线免费观看| 女警被强在线播放| 免费观看精品视频网站| 亚洲五月色婷婷综合| 国产不卡一卡二| 最近最新中文字幕大全免费视频| 国产区一区二久久| 9191精品国产免费久久| 黑人巨大精品欧美一区二区蜜桃| 国产精品九九99| 成人黄色视频免费在线看| 天堂影院成人在线观看| 在线观看66精品国产| av视频免费观看在线观看| 母亲3免费完整高清在线观看| 校园春色视频在线观看| a级毛片黄视频| 久久亚洲精品不卡| 日韩人妻精品一区2区三区| 国产精品 欧美亚洲| 免费看a级黄色片| 亚洲色图 男人天堂 中文字幕| 亚洲一区中文字幕在线| 久久久水蜜桃国产精品网| 久久久久国产一级毛片高清牌| 999精品在线视频| 欧美成人性av电影在线观看| 久久国产精品人妻蜜桃| 人人妻,人人澡人人爽秒播| 夜夜爽天天搞| 午夜免费鲁丝| 美女午夜性视频免费| 中文字幕另类日韩欧美亚洲嫩草| 高清av免费在线| 妹子高潮喷水视频| 亚洲狠狠婷婷综合久久图片| 欧美中文综合在线视频| 纯流量卡能插随身wifi吗| 99国产精品一区二区蜜桃av| 正在播放国产对白刺激| 亚洲中文字幕日韩| 亚洲av美国av| 久久久国产成人免费| 搡老熟女国产l中国老女人| 久久久国产欧美日韩av| 久久久久国内视频| 国产激情欧美一区二区| 亚洲国产精品999在线| av超薄肉色丝袜交足视频| 久久影院123| 亚洲中文字幕日韩| 欧美日韩中文字幕国产精品一区二区三区 | 老司机福利观看| 超碰97精品在线观看| 欧美日韩亚洲综合一区二区三区_| 国产成人啪精品午夜网站| 欧美一区二区精品小视频在线| 日韩av在线大香蕉| 一区二区三区精品91| 国产97色在线日韩免费| 国产激情欧美一区二区| 亚洲欧美日韩另类电影网站| 国产成人系列免费观看| 精品人妻在线不人妻| 成人亚洲精品一区在线观看| 国产极品粉嫩免费观看在线| 国产熟女xx| 久久人人精品亚洲av| 亚洲一码二码三码区别大吗| 国内久久婷婷六月综合欲色啪| 国产视频一区二区在线看| 美女大奶头视频| 久久久精品欧美日韩精品| 久久久久九九精品影院| av天堂久久9| 国产99白浆流出| 久热这里只有精品99| 午夜亚洲福利在线播放| 欧美中文综合在线视频| 老汉色∧v一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 成人18禁高潮啪啪吃奶动态图| 亚洲一区二区三区欧美精品| 亚洲七黄色美女视频| 亚洲五月婷婷丁香| netflix在线观看网站| 亚洲,欧美精品.| 成人国语在线视频| 国产亚洲精品久久久久久毛片| 亚洲男人天堂网一区| 成人国语在线视频| 国产精品亚洲一级av第二区| av有码第一页| 午夜成年电影在线免费观看| www.自偷自拍.com| 欧美在线一区亚洲| 国产在线精品亚洲第一网站| 伊人久久大香线蕉亚洲五| 中亚洲国语对白在线视频| 高潮久久久久久久久久久不卡| 伊人久久大香线蕉亚洲五| 亚洲精品中文字幕一二三四区| 国产成人av激情在线播放| 亚洲第一av免费看| 99香蕉大伊视频| 亚洲一区中文字幕在线| 在线天堂中文资源库| 国产精品久久电影中文字幕| 别揉我奶头~嗯~啊~动态视频| 国产成人免费无遮挡视频| 午夜a级毛片| 国产精品美女特级片免费视频播放器 | 黄色成人免费大全| 黄色视频,在线免费观看| 久久久久久久久免费视频了| 美女午夜性视频免费| 午夜精品久久久久久毛片777| 激情在线观看视频在线高清| 丝袜美腿诱惑在线| 日韩大尺度精品在线看网址 | 天天躁狠狠躁夜夜躁狠狠躁| 精品福利永久在线观看| 日日摸夜夜添夜夜添小说| 一区二区日韩欧美中文字幕| 亚洲人成电影免费在线| 欧美性长视频在线观看| av在线天堂中文字幕 | 久热爱精品视频在线9| 日韩视频一区二区在线观看| 欧美大码av| 精品久久久久久,| 国产av又大| 一边摸一边抽搐一进一出视频| 国产亚洲欧美在线一区二区| √禁漫天堂资源中文www| 自线自在国产av| 国产精品 国内视频| 99久久99久久久精品蜜桃| 国产午夜精品久久久久久| 十分钟在线观看高清视频www| 丰满饥渴人妻一区二区三| 五月开心婷婷网| 欧美久久黑人一区二区| 久久精品aⅴ一区二区三区四区| 精品一区二区三区四区五区乱码| 国产精品1区2区在线观看.| www.999成人在线观看| 欧洲精品卡2卡3卡4卡5卡区| av中文乱码字幕在线| 成人黄色视频免费在线看| a级毛片黄视频| 亚洲性夜色夜夜综合| 国产精品电影一区二区三区| 亚洲视频免费观看视频| 狂野欧美激情性xxxx| 久久人人97超碰香蕉20202| 国产精品成人在线| 国产精品99久久99久久久不卡| 精品久久久久久久毛片微露脸| 精品第一国产精品| 精品国产一区二区三区四区第35| 男人操女人黄网站| 亚洲欧美日韩另类电影网站| 日韩av在线大香蕉| 美国免费a级毛片| 女性生殖器流出的白浆| svipshipincom国产片| 男女午夜视频在线观看| 欧美色视频一区免费| 水蜜桃什么品种好| 高清黄色对白视频在线免费看| 女人爽到高潮嗷嗷叫在线视频| 国产午夜精品久久久久久| 欧美大码av| 两个人免费观看高清视频| 成人国语在线视频| 国产男靠女视频免费网站| 美女 人体艺术 gogo| 三上悠亚av全集在线观看| 国产av又大| 精品国产亚洲在线| 亚洲一卡2卡3卡4卡5卡精品中文| 老汉色∧v一级毛片| 国产精华一区二区三区| 女同久久另类99精品国产91| 老鸭窝网址在线观看| 又黄又爽又免费观看的视频| 91av网站免费观看| 国产成+人综合+亚洲专区| av在线天堂中文字幕 | 欧美不卡视频在线免费观看 | 欧美日韩乱码在线| 热99国产精品久久久久久7| 久久中文字幕人妻熟女| 757午夜福利合集在线观看| 日本a在线网址| 欧美不卡视频在线免费观看 | av片东京热男人的天堂| 新久久久久国产一级毛片| 精品久久蜜臀av无| 一级a爱片免费观看的视频| 国产成人啪精品午夜网站| 国产精品香港三级国产av潘金莲| 欧美另类亚洲清纯唯美| 久久亚洲精品不卡| 亚洲欧洲精品一区二区精品久久久| 国产高清激情床上av| 亚洲免费av在线视频| 亚洲成人久久性| 久9热在线精品视频| 日韩免费av在线播放| 精品无人区乱码1区二区| 国产亚洲精品第一综合不卡| 91麻豆av在线| 国产欧美日韩一区二区三| 一级毛片精品| 天堂中文最新版在线下载| 午夜两性在线视频| 国产精品美女特级片免费视频播放器 | av片东京热男人的天堂| 在线观看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人国产一区在线观看| av国产精品久久久久影院| 久久精品国产清高在天天线| 亚洲精品久久午夜乱码| 国产精品av久久久久免费| 一本大道久久a久久精品| 亚洲黑人精品在线| 精品国产亚洲在线| 免费在线观看亚洲国产| 久久久久亚洲av毛片大全| 精品久久久久久电影网| 国产男靠女视频免费网站| 性少妇av在线| 亚洲欧美日韩无卡精品| 老司机午夜福利在线观看视频| 波多野结衣av一区二区av| 久久草成人影院| 日韩精品免费视频一区二区三区| 色综合欧美亚洲国产小说| 日韩精品免费视频一区二区三区| 久久久国产一区二区|