• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Iterative Scheme of Arbitrary Odd Order and Its Basins of Attraction for Nonlinear Systems

    2021-12-15 12:46:40ObadahSaidSolaimanandIshakHashim
    Computers Materials&Continua 2021年2期

    Obadah Said Solaiman and Ishak Hashim

    Department of Mathematical Sciences, Universiti Kebangsaan Malaysia, Bangi Selangor, 43600,Malaysia

    Abstract:In this paper, we propose a fifth-order scheme for solving systems of nonlinear equations.The convergence analysis of the proposed technique is discussed.The proposed method is generalized and extended to be of any odd order of the form 2n-1.The scheme is composed of three steps,of which the first two steps are based on the two-step Homeier’s method with cubic convergence, and the last is a Newton step with an appropriate approximation for the derivative.Every iteration of the presented method requires the evaluation of two functions,two Fréchet derivatives, and three matrix inversions.A comparison between the efficiency index and the computational efficiency index of the presented scheme with existing methods is performed.The basins of attraction of the proposed scheme illustrated and compared to other schemes of the same order.Different test problems including large systems of equations are considered to compare the performance of the proposed method according to other methods of the same order.As an application,we apply the new scheme to some real-life problems,including the mixed Hammerstein integral equation and Burgers’ equation.Comparisons and examples show that the presented method is efficient and comparable to the existing techniques of the same order.

    Keywords:System of nonlinear equations;root finding method;iterative method;order of convergence;Burgers’equation

    1 Introduction

    One popular research area in mathematics is to find the solution α=(α1,α2,...,αn)tof the system of nonlinear equationF X( )=0,whereF X( )=(f1x( ),f2x( ),...,fn x( ))t,andX=(x1,x2,...xn)t∈Rn.This type of problems occurs in many applied sciences like engineering, physics, biology and chemistry.Many researchers developed iterative methods for solving this kind of systems using different techniques.The most popular iterative method for solving system of nonlinear equations is the well-known Newton’s method which has second order of convergence [1].To improve the order of convergence and increase the accuracy of the solution obtained, many researchers tried to improve Newton’s method.Some authors used different forms and modifications based on Adomian decomposition technique for solving systems of nonlinear equations, see for instance [2-6].Another way to improve some schemes for systems of nonlinear equation is by using homotopy analysis method and homotopy perturbation method, see for example [7,8].Grau-Sánchez et al.[9] used the harmonic mean of the derivative to improve an iterative scheme for solving systems of nonlinear equations.By applying some quadrature formulas, some researchers implement their techniques to solve systems of nonlinear equations, for instance [10-12].Also, some derivative-free schemes for systems of nonlinear equations were proposed, see for example[13-15] and the references therein.One of the well-known modifications of Newton method is Jarratt method of order four.Cordero et al.[16] extended Jarratt method to solve systems of nonlinear equations preserving the same order of convergence.Many variants of Jarratt type methods have been developed,see for example [17-19] and the references therein.Many other different orders of convergence schemes for nonlinear modules can be found in the literature, see for example [20,21] and the references therein.

    Some techniques to improve the order of convergence of the iterative schemes for systems of nonlinear equations have been proposed,for instance,see[22,23].In general,obtaining a higher-order iterative method is not the only important thing;as the computational and the time cost are crucial issue also.So,establishing a high order iterative method based on low computational and time cost is very important.

    In this paper,we develop a new multi-step scheme of arbitrary odd order for nonlinear equations.The proposed method can be used in the multidimensional case preserving the same order.The convergence analysis of the new scheme is discussed.Several examples are given to show the efficiency of the generalized method and its comparison with other iterative schemes of the same order.To confirm the applicability of the new technique,we apply the new technique to some real-life problems.

    2 The Proposed Method

    In this section we will derive the proposed technique for nonlinear modules.We begin by writing the functionf(x)as:

    As we wantf(x)=0,and by using midpoint quadrature formula and writing the equation as an iterative scheme,one gets

    Now,to write the iterative scheme(2)in explicit form,replace

    whereis the Newton step.So,scheme(2)becomes:

    The iterative method (3) was proposed by Frontini and Sormani [10].The multidimensional case of scheme(3)was discussed by Homeier [24]and can be written as:

    whereF′(Xn)-1andF′(Yn)-1are the inverse of the first Fréchet derivative ofF(Xn)andF(Yn)respectively.Scheme (4)is of third-order of convergence,and requires at each iteration the evaluation of one function,two Fréchet derivatives and two matrix inversions.In order to increase the convergence order and the computational efficiency of scheme (4) Sharma et al.[20] proposed a new scheme of the ffith-order of convergence by adding one step to scheme(4):

    Per iteration, scheme (5) requires the evaluations of two functions, two Fréchet derivatives and two matrix inversions.

    Now, to derive the new scheme for solving systems of nonlinear equations, we start by composing scheme(3)to additional Newton step,that is:appro ximation to write the derivativef′(wn) using some already computed functions from the previous

    Now, to reduce number of functional evaluations at each iteration, we will use divided difference steps.To do that, one can write

    in the same manner, we have

    by adding(7)and (8),one easily can conclude that

    Now,if we substitute(9)in(6),then we will have a new scheme for solving nonlinear equations:

    To generalize scheme (10) to the multidimensional case to solve systems of nonlinear modules, the scheme becomes:

    Scheme(11)requires at each iteration the evaluation of two functions,two Fréchet derivatives and three matrix inversions.The proposed scheme is of fifth-order of convergence as we will see in the next section.

    If we repeat using the same idea of the derivation of scheme (11),we can write a general scheme for solving system of nonlinear equations,and this is the main motivation of our work.The general scheme can be written as:

    Per iteration,scheme (12)requires the evaluation ofm-1 functions,two Fréchet derivatives and three matrix inversions.We will prove in the next section that scheme (12) is of order 2m-1 for any integerm≥3.

    3 Order of Convergence

    We will discuss in this section the order of convergence of the proposed schemes(11)and(12).Assume for the next theorems that

    Theorem 1Let α be the solution of the system F (X )=0 where F:D ?Rn→Rnbe a sufficiently differentiable function on a neighborhood D of α.Suppose that F′(X ) is continuous and nonsingular in α.If X0∈D is an initial approximation which is close enough to α, then the sequence {Xn}n≥0obtained by scheme (11) converges to the root α, and the order of convergence equals 5, with asymptotic equation

    Proof.By using the Taylor expansion ofF(Xn) we can writeNow, we use the following Mathematica code to show the convergence order of scheme(11)form=3:the code shows that we haveen+1=which can be written as:

    By this,we show that scheme(11) is at least of fifth-order of convergence.

    Now, we want to discuss the order of convergence of the generalized scheme given by(12).

    Theorem 2Let α be the solution of the system F (X )=0 where F:D ?Rn→Rnbe a sufficiently differentiable function on a neighborhood D of α.Suppose that F′(X ) is continuous and nonsingular in α.If X0∈D is an initial approximation which is close enough to α, then the sequence {Xn}n≥0obtained by scheme (12) converges to the root α, and the order of convergence equals 2m-1, for any integer m ≥3,with asymptotic equation of the form

    Proof.We will use the mathematical induction to prove the convergence order of scheme(12).

    Firstly, we will prove that scheme (12) is convergent form=3, and the convergence order satisfies 2(3 )-1=5.Note that form=3, scheme (12) reduces to scheme (11) which we have been proved that it has the fifth-order of convergence in the previous theorem.Now, to complete the proof using the mathematical induction, suppose that scheme (12) is true and converges for allm≤rfor some positiver>3 and satisfy the given asymptotic equation.We need to show that the scheme converges form=r+1,and satisfy the given asymptotic equation.To do so,consider the following code of Mathematica:

    4 Computational Efficiency

    In this section, we compare the effciiency index of our proposed method with other methods in the literature.Commonly in the literature, the efficiency indexis used, wherepis the order of convergence of the iterative scheme, anddis the number of functions needed to be found per iteration in the iterative scheme.Another common index that can be used in the comparison between iterative scheme is the computational efficiency indexCEI=whereopis the number of operations per iteration in the iterative scheme.The evaluation of any scalar function is considered as an operation.

    To find the number of functions required to be found per iteration in an iterative scheme,the following rules applied:Any computation ofF(X) needsnevaluations of scalar functions.Any computation of the JacobianF′(X) needsn2evaluations of scalar functions.Also, the floating points for obtaining the LU factorization areoperations required to find a matrix-vector multiplication, andn3operations needed to find a matrixand to solve the triangular system we needn2floating points operations.Finally,n2matrix multiplication.

    We compare the efficiency index and the computational efficiency index for the proposed method(PM)(11) to the following iterative schemes:

    ? The third-order Frontini-Sormani method(FS) [10] given by(4).

    ? The fifth order scheme(CHMT) proposed by Cordero et al.[23],given by

    ? The fifth order scheme(MMK) proposed by Waseem et al.[4],which is given by:

    ? The fifth-order iterative scheme(SG)presented by Sharma et al.[20],which is defined by scheme(5).

    A comparison of the number of functional evaluations of the selected iterative schemes is illustrated in Tab.1.Also, the computational efficiency indices of the selected schemes are compared (forn=2,3,4,5,10,20,50), see Fig.1.Note that the proposed scheme does not attain the best efficiency in this comparison, especially for smalln.We will see in the next two sections that this issue does not affect the scheme negatively when applied to some numerical tests.

    Figure 1:Computational efficiency indices for different sizes of system

    Table 1:Comparisons of required functional evaluations per iteration

    Fig.2 illustrates the efficiency indices for the selected methods.Note that CHMT,SG and our proposed method have the same efficiency indices.However,this does not guarantee that they have the same behavior,accuracy and computational time cost.

    Figure 2:Efficiency indices for different values of n

    5 Basins of Attraction

    The concept of basins of attraction is a method to show how different starting points affect the behavior of the function.In this way,we can compare different root-finding schemes depending on the convergence area of the basins of attraction.In this sense, the iterative scheme is better if it has a larger area of convergence.Here, we mean by the area of convergence, the number of convergent points to a root α off(x) in a selected range.

    To check the stability and the area of convergence of our proposed method,we select the casem=3 of scheme (12).We denote the proposed method by PM5.For comparison,we compare PM5with the following schemes of the same order of convergence:The scheme CHMT given by Cordero et al.(13),the scheme SG proposed by Sharma and Gupta(5),and the scheme MMK presented by Waseem et al.(14).We choose three test examples to visualize the basins of attraction.All examples are polynomials with roots of multiplicity one.The test polynomials are

    ?P1(z)=z3-z,with rootsz=0, ±1.

    ?P2(z)=z4-1,with rootsz=±i,±1.

    ?P3(z)=z5+2z-1, with rootsz=-0.945068±0.854518i, 0.486389,0.701874±0.879697i

    A 4×4 region is centered at the origin to cover all the zeros of the selected polynomials.The step size selected is 0.01; thus, 401×401=160801 points in a uniform grid are selected as initial point for the iterative schemes to generate the basins of attraction.The exact roots were assigned as black dots on the graph.If the scheme needs less number of iterations to converge to a specifci root, then the region of that roots appears darker.The convergence criterion selected is a tolerance of 10-3with a maximum of 100 iterations.All calculations have been performed on Intel Xeon CPU-E5-2690 0@2.90 GHz with 32 GB RAM, using Microsoft Windows 10, 64 bit based on X64-based processor.Mathematica 9 has been used to generate all graphs and computations.The dynamics of the four test problems are shown in Figs.3-5 respectively.

    Figure 3:Basins of attraction of P1 ( z)=z3-z.The top row from left to right:CHMT and MMK.The bottom row from left to right:SG and PM5

    Basins of attraction of PM5shows that the proposed method is comparable to other methods of the same order, with an area of convergence which is larger or the same as the areas of convergence of the other methods used in the comparison.

    6 Numerical Tests and Applications

    In this part, we consider some numerical problems to clarify the computational efficiency and convergence behavior of the proposed scheme.All calculations have been performed using 4000 significant digits on Mathematics 9.For comparisons, we find the number of iterationsnneeded to satisfy the stopping criterion ‖Xn-Xn-1‖+‖F(xiàn)(Xn)‖<10-150for each selected method.Also, we use the approximated computational order of convergence for each iterative scheme, which can be found by

    Finally, we compare for the selected schemes the distance between two consecutive iterations‖Xn-Xn-1‖ and the value of ‖F(xiàn)(Xn)‖forn=1,2,3.

    Figure 4:Basins of attraction of P2 ( z)=z4-1.The top row from left to right:CHMT and MMK.The bottom row from left to right:SG and PM5

    To be consistent in the comparison, we compare the proposed scheme PM5defnied by scheme (12)form=3, to the original method which we derived from, that is, FS scheme given by (4).Also, we use the following ffith-order iterative schemes in the comparison:CHMT5method defined by scheme (13),MMK method defined by(14),and SG method defnied by(5).To test the effciiency of the extension of our proposed scheme to higher orders schemes, we compare the proposed scheme PM7of seventh-order given by scheme(12)form=4,to the extension of CHMT5to the seventh-order scheme CHMT7given by:

    Figure 5:Basins of attraction of P3 ( z)=z5+2z-1.The top row from left to right:CHMTand MMK.The bottom row from left to right:SG and PM5

    6.1 Numerical Tests

    To be not selective in our examples,we choose most test problems from the same papers which contain the schemes used in the comparisons, see [4,20,23].Also, we choose two distinct initial guesses for all problems to test the validity and the applicability of iterative schemes.We consider the following test problems and applications:

    Example 1Consider the following system of two nonlinear equations:

    with initial guesses X0={0,0}tand X0={2,2}t.The exact solution of this problem is α={1.3401918575555883401...,0.8502329164169513268...}t.

    Example 2Consider the following system of three nonlinear equations:

    We consider as an initial solution X0={1,1,2}tand X0=1}t.The exact solution of this problem is α={0.90956949452004488381..., 0.66122683227485173542...,1.5758341439069990361...}t.

    Example 3Consider the following system

    For odd n,the exact zeros of F(X)are α=For n=49,we select as an initial guess

    Example 4Consider the nonlinear boundary value problem:

    Assume the following partitioning for the interval [0 ,1]:

    We solve this system for m=10 by selecting X0=as initial guesses.The exact solution for this problem is α={0.680945648372..., 1.359281828740...,2.016862032948..., 2.606640128407..., 3.050046273378..., 3.258957241540..., 3.181812502482...,2.838449171715...,2.306087498753...,1.672371573489...}t.

    Tabs.2-5 show that our proposed methods PM5and PM7are efficient with a good performance and comparable to the other methods of the same order.The proposed methods converge to the desired solution either by less number of iterations based on the convergence criterion (Examples 1 and 2), or by the same number of iterations needed to satisfy the convergence criterion with more accurate answers(Examples 3 and 4).

    Table 2:Comparisons between different methods for Example 1

    Table 3:Comparisons between different methods for Example 2

    Table 4:Comparisons between different methods for Example 3

    Table 5:Comparisons between different methods for Example 4

    6.2 Applications

    To check the applicability of the proposed scheme on real-life problems, we apply it on the mixed Hammerstein integral equation and Burgers’equation.

    Problem 1Consider the mixed Hammerstein integral equation:

    such that x ∈C[0 ,1],and s,t ∈[0 ,1],and the kernel G( s,t)is given by

    The integral equation is transformed into a finite-dimensional problem using the Gauss-Legender quadrature formula given by

    where the abscissastjand the weights ωjare determined forn=8 by the Gauss-Legendre quadrature formula.If we setx(ti)=xi,fori=1,2,...,8,then we obtain the following system of nonlinear equations

    where the abscissastjand the weights ωjare known and presented in Tab.6 form=8.The initial solutions considered areX0={0,0,0,0,0,0,0,0}tandX0={2,2,2,2,2,2,2,2}t.The exact solution of this problem is α={1.002096245031..., 1.009900316187..., 1.019726960993..., 1.026435743030...,1.026435743030...,1.019726960993..., 1.009900316187..., 1.002096245031...}t.

    Comparisons in Tab.7 show that the proposed schemes have a good functioning and comparable to the other iterative methods of the same order.

    Table 6:Abscissas and weights and of Gauss-Legendre quadrature formula for m=8

    Table 7:Comparisons between different methods for Problem 1

    Problem 2Consider the following Burgers’equation selected from [25]:

    We use discretization to solve this problem.Leth=be the spatial and temporal step sizes respectively,whereNandMare numbers of subintervals inxandtdirections respectively.Therefore,for this problem we select pointsfrom a grid of domain [0,1 ]× [0,T], where,xi=0+ih,i=0,1,...,Mandtj=0+jk,j=0,1,...,N.Letwijbe the approximate solution atBy applying the central differences touxanduxx, and the backward difference tout, we get the following nonlinear system:

    For the unknownsz1,z2,...,zM.The last termwi,j-1is known from the previous time step.The first and the last equations in the system can be replaced by using the given boundary conditions.In our problem,the first and the last equations in the system are

    So, we haveMequations withMunknowns.

    We find the approximate solution of the problem using the proposed method PM5atx=0.5 andt=0.2.To check the effect of the temporal step sizes on the solution,we select different values fork,which means a different number of steps to reach the wanted time.Consider for our problem that the diffusion coefficientD=0.05,α=5, and β=4.The exact solution of the given Burgers’ equation is given by:

    The exact solution for this problem isu( 0.5,0.2)=0.2277071734....Based on spatial step size equalswe chooseX0=Tab.8 illustrates the numerical results of this problem.The effect of the selectedkis clear.The results become better whenever we have a smaller temporal step size.Based on that,we will compare our proposed schemes to the other schemes forh=0.1 andk=0.01.We compare the approximate solutions atx=0.5 andt=0.2 forn=3 andn=4,that isX3andX4.Also,we find the norms of the functionsF X3( )andF X3( ).Finally,we find the norm of the difference between the two consecutive iterationsX4-X3for each selected method.Comparisons results are shown in Tab.9.It is clear that the proposed schemes perform in a good way, and in general, give results which are better than the other selected schemes.

    Table 8:Numerical results for Problem 2

    Table 9:Comparisons between different methods for Problem 2

    7 Conclusion

    In this study,we have proposed an iterative scheme for systems of nonlinear equations of fifth-order of convergence.We have improved the proposed scheme to a generalized scheme of arbitrary odd order.The proposed method is based on Frontini-Sormani iterative method and developed using additional step with the usage of first derivative approximation.The software Mathematica has been used to show the order of convergence of the proposed method.Different comparisons were used to compare our proposed scheme to the other schemes of the same order, including the efficiency index, computational efficiency index,basins of attractions and several numerical problems.Comparisons show that the efficiency index and the computational efficiency index need not be proper tools for the efficiency of the iterative scheme.As an application, we test the proposed method on the mixed Hammerstein integral equation and Burgers’equation.Comparisons show that the proposed scheme is of excellent performance and overall, it is comparable to the other iterative techniques used in the comparisons regarding the convergence speed,accuracy and the area of convergence in the basins of attraction.

    Funding Statement:We are grateful for the financial support from UKM’s research Grant GUP-2019-033.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    免费在线观看完整版高清| 亚洲专区中文字幕在线| 亚洲精品av麻豆狂野| 18禁黄网站禁片午夜丰满| 高清毛片免费观看视频网站 | 交换朋友夫妻互换小说| 久久中文看片网| 亚洲专区中文字幕在线| 热re99久久精品国产66热6| 香蕉久久夜色| 交换朋友夫妻互换小说| 88av欧美| 亚洲精品久久成人aⅴ小说| 亚洲美女黄片视频| www.自偷自拍.com| 一边摸一边做爽爽视频免费| 中文字幕精品免费在线观看视频| 一级毛片女人18水好多| √禁漫天堂资源中文www| 国产亚洲欧美98| 成年人黄色毛片网站| 久久人妻福利社区极品人妻图片| 19禁男女啪啪无遮挡网站| 两个人免费观看高清视频| 国产又爽黄色视频| 欧美在线黄色| 日韩成人在线观看一区二区三区| 午夜视频精品福利| 亚洲精品成人av观看孕妇| 亚洲专区字幕在线| 亚洲av片天天在线观看| 日韩大尺度精品在线看网址 | 99热国产这里只有精品6| 视频在线观看一区二区三区| 日本a在线网址| 俄罗斯特黄特色一大片| 琪琪午夜伦伦电影理论片6080| 国产精品九九99| 欧美黑人欧美精品刺激| 人人妻人人爽人人添夜夜欢视频| 80岁老熟妇乱子伦牲交| avwww免费| 国产又爽黄色视频| 一级a爱片免费观看的视频| 搡老岳熟女国产| 美女午夜性视频免费| 国产精品香港三级国产av潘金莲| 欧美在线黄色| 亚洲,欧美精品.| 久久精品国产清高在天天线| 黄片小视频在线播放| 在线永久观看黄色视频| 男女下面进入的视频免费午夜 | 久久久水蜜桃国产精品网| 亚洲视频免费观看视频| 久热这里只有精品99| 美女午夜性视频免费| 国产真人三级小视频在线观看| av中文乱码字幕在线| 国产精品影院久久| 精品久久久久久,| 国产激情欧美一区二区| 久久草成人影院| 女人精品久久久久毛片| 久久久国产成人精品二区 | 久久婷婷成人综合色麻豆| 黄色 视频免费看| 每晚都被弄得嗷嗷叫到高潮| 在线观看66精品国产| 久久精品亚洲熟妇少妇任你| 国产精品乱码一区二三区的特点 | 人妻丰满熟妇av一区二区三区| 黄片播放在线免费| 欧美大码av| 欧美久久黑人一区二区| 精品一区二区三区av网在线观看| 啦啦啦在线免费观看视频4| 丁香六月欧美| 黄色毛片三级朝国网站| 亚洲专区字幕在线| 久久国产精品影院| 精品国产超薄肉色丝袜足j| 丰满饥渴人妻一区二区三| 亚洲精品在线观看二区| 国产亚洲精品第一综合不卡| 日韩 欧美 亚洲 中文字幕| 亚洲激情在线av| 男女床上黄色一级片免费看| 久久久国产精品麻豆| 淫秽高清视频在线观看| 51午夜福利影视在线观看| 久久中文字幕人妻熟女| 最近最新中文字幕大全免费视频| 狠狠狠狠99中文字幕| 亚洲黑人精品在线| 亚洲国产精品一区二区三区在线| 中国美女看黄片| 一区在线观看完整版| av福利片在线| 很黄的视频免费| 中出人妻视频一区二区| 在线av久久热| av福利片在线| 这个男人来自地球电影免费观看| 又黄又爽又免费观看的视频| 欧美日韩av久久| 欧美精品亚洲一区二区| 侵犯人妻中文字幕一二三四区| 老司机深夜福利视频在线观看| 99久久99久久久精品蜜桃| 国产精品野战在线观看 | 亚洲第一青青草原| 一二三四社区在线视频社区8| 国产一区二区在线av高清观看| 国产黄a三级三级三级人| 午夜福利免费观看在线| 国内毛片毛片毛片毛片毛片| 国产伦人伦偷精品视频| 香蕉丝袜av| a在线观看视频网站| 中文字幕人妻熟女乱码| 久久久国产成人精品二区 | 91字幕亚洲| 91成人精品电影| 一进一出好大好爽视频| 他把我摸到了高潮在线观看| 日韩欧美一区二区三区在线观看| 天堂动漫精品| 日韩视频一区二区在线观看| 亚洲七黄色美女视频| 麻豆av在线久日| 亚洲色图 男人天堂 中文字幕| 热99re8久久精品国产| 老司机午夜福利在线观看视频| 亚洲精品国产一区二区精华液| 中出人妻视频一区二区| 国产av一区在线观看免费| 怎么达到女性高潮| 好看av亚洲va欧美ⅴa在| 国产精品国产高清国产av| 超碰97精品在线观看| 亚洲成人精品中文字幕电影 | 美女高潮到喷水免费观看| 国产免费现黄频在线看| 久久99一区二区三区| 大香蕉久久成人网| 国产麻豆69| 欧美成人免费av一区二区三区| 搡老乐熟女国产| 国产1区2区3区精品| 久久精品亚洲熟妇少妇任你| 水蜜桃什么品种好| 久久人人97超碰香蕉20202| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷六月久久综合丁香| 男女床上黄色一级片免费看| 亚洲狠狠婷婷综合久久图片| 啪啪无遮挡十八禁网站| 别揉我奶头~嗯~啊~动态视频| 成人三级做爰电影| 久久 成人 亚洲| 无限看片的www在线观看| 精品久久久精品久久久| 女性被躁到高潮视频| 12—13女人毛片做爰片一| 神马国产精品三级电影在线观看 | 少妇粗大呻吟视频| 亚洲成人精品中文字幕电影 | 91av网站免费观看| 一级片免费观看大全| 国产精品美女特级片免费视频播放器 | 成人手机av| 欧美黄色淫秽网站| 国产成人欧美在线观看| 亚洲精品粉嫩美女一区| 国产成人精品久久二区二区免费| 乱人伦中国视频| 精品人妻在线不人妻| 欧美乱色亚洲激情| 不卡av一区二区三区| 亚洲精品国产区一区二| 午夜影院日韩av| 午夜福利一区二区在线看| 99国产精品免费福利视频| 亚洲七黄色美女视频| 制服诱惑二区| 亚洲第一欧美日韩一区二区三区| 久久人人爽av亚洲精品天堂| 久久国产亚洲av麻豆专区| 成年版毛片免费区| 妹子高潮喷水视频| 成人三级黄色视频| 欧美日本中文国产一区发布| 免费女性裸体啪啪无遮挡网站| 久久久久国内视频| 18禁黄网站禁片午夜丰满| 亚洲国产中文字幕在线视频| 国产99久久九九免费精品| 最近最新中文字幕大全电影3 | 午夜免费观看网址| 天堂动漫精品| 亚洲精品中文字幕一二三四区| 国产精品偷伦视频观看了| 女警被强在线播放| 欧美另类亚洲清纯唯美| 中文字幕av电影在线播放| 999精品在线视频| 宅男免费午夜| 露出奶头的视频| 悠悠久久av| 亚洲第一青青草原| 欧美成狂野欧美在线观看| 91老司机精品| 三上悠亚av全集在线观看| 亚洲激情在线av| 午夜精品久久久久久毛片777| 9191精品国产免费久久| 亚洲国产毛片av蜜桃av| av网站免费在线观看视频| 亚洲第一欧美日韩一区二区三区| 级片在线观看| 在线国产一区二区在线| 曰老女人黄片| 热re99久久精品国产66热6| 精品一区二区三卡| 国产亚洲欧美在线一区二区| 久久久精品欧美日韩精品| 青草久久国产| 日本撒尿小便嘘嘘汇集6| 国产成人免费无遮挡视频| 91成人精品电影| 满18在线观看网站| 亚洲国产中文字幕在线视频| 国产精品亚洲一级av第二区| www.999成人在线观看| 女警被强在线播放| 一本综合久久免费| 天天影视国产精品| 国产精品久久久久久人妻精品电影| 在线播放国产精品三级| 妹子高潮喷水视频| 成人免费观看视频高清| 欧美中文日本在线观看视频| 老司机在亚洲福利影院| 在线免费观看的www视频| 久久性视频一级片| 9色porny在线观看| 亚洲自偷自拍图片 自拍| 女警被强在线播放| 最近最新中文字幕大全电影3 | 日韩国内少妇激情av| 国产高清视频在线播放一区| 国产91精品成人一区二区三区| 精品国产乱码久久久久久男人| 十八禁人妻一区二区| 日韩欧美在线二视频| 久久精品亚洲熟妇少妇任你| 人人妻,人人澡人人爽秒播| 欧美日韩中文字幕国产精品一区二区三区 | 日日爽夜夜爽网站| 午夜视频精品福利| 国产成人精品在线电影| 99香蕉大伊视频| 日韩欧美在线二视频| 老司机深夜福利视频在线观看| 国产亚洲精品第一综合不卡| 日韩视频一区二区在线观看| 国产熟女午夜一区二区三区| 久久影院123| 激情在线观看视频在线高清| 日韩精品青青久久久久久| 老汉色av国产亚洲站长工具| 在线观看免费日韩欧美大片| 日本三级黄在线观看| 欧美激情久久久久久爽电影 | 日韩精品青青久久久久久| 日韩欧美三级三区| 一边摸一边抽搐一进一小说| 黑人猛操日本美女一级片| 日韩免费高清中文字幕av| 天天躁狠狠躁夜夜躁狠狠躁| 香蕉丝袜av| 免费在线观看黄色视频的| 日日爽夜夜爽网站| 99久久久亚洲精品蜜臀av| 精品一区二区三卡| 最近最新中文字幕大全免费视频| 午夜老司机福利片| 国产精品电影一区二区三区| 热re99久久精品国产66热6| 国产成年人精品一区二区 | 97人妻天天添夜夜摸| av欧美777| 色精品久久人妻99蜜桃| 久久久国产一区二区| 欧美不卡视频在线免费观看 | 亚洲av美国av| 一级,二级,三级黄色视频| 高清在线国产一区| 9热在线视频观看99| 日韩欧美一区二区三区在线观看| 精品福利永久在线观看| 午夜久久久在线观看| 亚洲午夜精品一区,二区,三区| 搡老岳熟女国产| 午夜福利在线观看吧| 色综合欧美亚洲国产小说| 色婷婷久久久亚洲欧美| 久久狼人影院| 久久久久久久久久久久大奶| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品亚洲熟妇少妇任你| 亚洲自拍偷在线| 男女下面插进去视频免费观看| 亚洲av美国av| 在线看a的网站| 成熟少妇高潮喷水视频| 欧美精品啪啪一区二区三区| 两个人免费观看高清视频| 国产精品 国内视频| 一级片'在线观看视频| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久av美女十八| 极品教师在线免费播放| 久久草成人影院| 两性午夜刺激爽爽歪歪视频在线观看 | 久久天躁狠狠躁夜夜2o2o| 老司机午夜福利在线观看视频| 亚洲自偷自拍图片 自拍| 美女午夜性视频免费| 久久99一区二区三区| 久久草成人影院| 老司机在亚洲福利影院| 久久精品国产清高在天天线| 国产成人影院久久av| 最新美女视频免费是黄的| 国产无遮挡羞羞视频在线观看| 亚洲中文av在线| 久久久久久亚洲精品国产蜜桃av| 不卡av一区二区三区| 国产av在哪里看| 欧美激情高清一区二区三区| 欧美另类亚洲清纯唯美| 777久久人妻少妇嫩草av网站| 久久亚洲精品不卡| 亚洲五月天丁香| 高清在线国产一区| 亚洲 欧美 日韩 在线 免费| 天堂动漫精品| 无人区码免费观看不卡| 久久精品亚洲熟妇少妇任你| 久久精品aⅴ一区二区三区四区| 18美女黄网站色大片免费观看| 精品第一国产精品| 热re99久久精品国产66热6| 亚洲熟妇熟女久久| 操美女的视频在线观看| 一本综合久久免费| 久久天堂一区二区三区四区| 久久午夜亚洲精品久久| 久久 成人 亚洲| 午夜影院日韩av| 亚洲av熟女| 亚洲欧洲精品一区二区精品久久久| 中文亚洲av片在线观看爽| 久久久水蜜桃国产精品网| 一级作爱视频免费观看| 成人永久免费在线观看视频| 日韩欧美一区二区三区在线观看| av福利片在线| 好看av亚洲va欧美ⅴa在| 一区二区日韩欧美中文字幕| 视频在线观看一区二区三区| 亚洲色图综合在线观看| 99国产极品粉嫩在线观看| 性色av乱码一区二区三区2| 最新美女视频免费是黄的| 欧美+亚洲+日韩+国产| 满18在线观看网站| 精品第一国产精品| www.自偷自拍.com| 国内毛片毛片毛片毛片毛片| svipshipincom国产片| 中文亚洲av片在线观看爽| 久久香蕉国产精品| 很黄的视频免费| 在线观看66精品国产| 嫩草影院精品99| 久久人妻av系列| 人人妻,人人澡人人爽秒播| 久久亚洲真实| 成人18禁高潮啪啪吃奶动态图| 好男人电影高清在线观看| 满18在线观看网站| 91大片在线观看| 成人国产一区最新在线观看| 18禁美女被吸乳视频| 成人影院久久| 纯流量卡能插随身wifi吗| 国产亚洲精品久久久久5区| 国产片内射在线| 欧美日韩亚洲高清精品| 日本免费a在线| 我的亚洲天堂| 美女大奶头视频| 日韩人妻精品一区2区三区| 99精品在免费线老司机午夜| 99re在线观看精品视频| 久久午夜亚洲精品久久| 日韩免费高清中文字幕av| 国产精品国产av在线观看| 国产欧美日韩综合在线一区二区| 韩国av一区二区三区四区| 久热这里只有精品99| 午夜精品久久久久久毛片777| 757午夜福利合集在线观看| 欧美老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 777久久人妻少妇嫩草av网站| 天堂√8在线中文| 欧美成人免费av一区二区三区| 超碰97精品在线观看| 性色av乱码一区二区三区2| 50天的宝宝边吃奶边哭怎么回事| 久久国产乱子伦精品免费另类| 又大又爽又粗| 久久精品国产综合久久久| 另类亚洲欧美激情| 性少妇av在线| 一级黄色大片毛片| 久久久久久大精品| 91大片在线观看| 天天影视国产精品| 国产极品粉嫩免费观看在线| 欧美激情久久久久久爽电影 | 国产精品久久久人人做人人爽| 国产区一区二久久| 少妇 在线观看| 黄色视频,在线免费观看| 久久午夜综合久久蜜桃| 女人高潮潮喷娇喘18禁视频| 亚洲人成电影观看| 午夜福利影视在线免费观看| 欧美黑人欧美精品刺激| 18禁美女被吸乳视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成国产人片在线观看| 12—13女人毛片做爰片一| 狠狠狠狠99中文字幕| 欧美最黄视频在线播放免费 | 欧美在线一区亚洲| 91精品国产国语对白视频| 国产91精品成人一区二区三区| 久久久国产成人精品二区 | 午夜免费激情av| 欧美日韩瑟瑟在线播放| 99在线人妻在线中文字幕| 一级片'在线观看视频| 久久欧美精品欧美久久欧美| 国产精品成人在线| 欧美 亚洲 国产 日韩一| 欧美日本中文国产一区发布| 国产精品 欧美亚洲| 国产三级在线视频| 欧美精品一区二区免费开放| 亚洲自偷自拍图片 自拍| www.999成人在线观看| 正在播放国产对白刺激| 天天影视国产精品| 欧美色视频一区免费| 亚洲av五月六月丁香网| 国产成人精品在线电影| 国产精品久久电影中文字幕| 久久人人精品亚洲av| 操出白浆在线播放| 亚洲三区欧美一区| 久久99一区二区三区| 好看av亚洲va欧美ⅴa在| 欧美日本中文国产一区发布| 亚洲国产中文字幕在线视频| 精品电影一区二区在线| 视频在线观看一区二区三区| 国产成+人综合+亚洲专区| 亚洲熟妇熟女久久| 伦理电影免费视频| 国产真人三级小视频在线观看| 日本vs欧美在线观看视频| 不卡一级毛片| a级毛片在线看网站| 好看av亚洲va欧美ⅴa在| 国产黄a三级三级三级人| 免费av中文字幕在线| 午夜影院日韩av| 精品熟女少妇八av免费久了| 久久香蕉精品热| 大陆偷拍与自拍| 男男h啪啪无遮挡| a级片在线免费高清观看视频| 成年女人毛片免费观看观看9| www.自偷自拍.com| 欧美色视频一区免费| 变态另类成人亚洲欧美熟女 | 长腿黑丝高跟| 国产高清videossex| 婷婷六月久久综合丁香| 首页视频小说图片口味搜索| 亚洲精品在线美女| 久久精品91无色码中文字幕| 日韩国内少妇激情av| 久久人妻福利社区极品人妻图片| 在线国产一区二区在线| 亚洲精品国产精品久久久不卡| 亚洲精品国产色婷婷电影| 在线视频色国产色| 久久这里只有精品19| 999久久久国产精品视频| 国产精品偷伦视频观看了| 久热爱精品视频在线9| 亚洲av第一区精品v没综合| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文av在线| 国产激情欧美一区二区| 99精品欧美一区二区三区四区| 国产成人啪精品午夜网站| 国产又爽黄色视频| 亚洲成国产人片在线观看| 久久久国产欧美日韩av| 日韩一卡2卡3卡4卡2021年| 亚洲精品在线观看二区| av福利片在线| 国产伦一二天堂av在线观看| 视频区欧美日本亚洲| 免费在线观看日本一区| 男女床上黄色一级片免费看| 国产精品永久免费网站| 男女下面进入的视频免费午夜 | 91精品国产国语对白视频| 亚洲国产精品sss在线观看 | svipshipincom国产片| 午夜精品国产一区二区电影| 最近最新中文字幕大全免费视频| 国产成+人综合+亚洲专区| 国内毛片毛片毛片毛片毛片| 国产熟女xx| 久久中文字幕一级| av电影中文网址| 大陆偷拍与自拍| 韩国av一区二区三区四区| av在线天堂中文字幕 | 女人高潮潮喷娇喘18禁视频| 精品无人区乱码1区二区| 男人舔女人的私密视频| 18禁黄网站禁片午夜丰满| 久久婷婷成人综合色麻豆| 久9热在线精品视频| 妹子高潮喷水视频| 久久久久九九精品影院| 在线观看免费视频日本深夜| 十八禁人妻一区二区| 国产乱人伦免费视频| 中国美女看黄片| 一二三四在线观看免费中文在| 亚洲五月天丁香| 97人妻天天添夜夜摸| 国产精品久久久久久人妻精品电影| 97人妻天天添夜夜摸| 男女下面插进去视频免费观看| 成年版毛片免费区| 久久亚洲真实| 国产亚洲av高清不卡| 国产成人影院久久av| 国产99白浆流出| 日韩高清综合在线| 国产无遮挡羞羞视频在线观看| 麻豆国产av国片精品| 国产精品一区二区精品视频观看| 最近最新免费中文字幕在线| av免费在线观看网站| 午夜免费激情av| 中文亚洲av片在线观看爽| 一区二区三区精品91| 少妇粗大呻吟视频| 18禁黄网站禁片午夜丰满| 三上悠亚av全集在线观看| 午夜老司机福利片| 波多野结衣高清无吗| 免费在线观看亚洲国产| 亚洲成人精品中文字幕电影 | 看片在线看免费视频| 久久久国产精品麻豆| 久久久久久久久中文| 国产有黄有色有爽视频| 亚洲专区字幕在线| 亚洲精品中文字幕一二三四区| 欧美日韩瑟瑟在线播放| 一级片免费观看大全| 亚洲欧美激情在线| 国产熟女午夜一区二区三区| 久久香蕉精品热| av福利片在线| 日韩欧美国产一区二区入口| 日本撒尿小便嘘嘘汇集6| 国产精品久久久av美女十八| 久久久国产一区二区| 91麻豆精品激情在线观看国产 | 久久精品国产清高在天天线| 免费av中文字幕在线| 88av欧美| 精品高清国产在线一区| 国产精品久久久人人做人人爽| 高清在线国产一区| 日韩三级视频一区二区三区| 午夜日韩欧美国产| 亚洲九九香蕉| 久久精品亚洲熟妇少妇任你|