• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Marker-Based and Marker-Less Motion Capturing Video Data:Person and Activity Identification Comparison Based on Machine Learning Approaches

    2021-12-15 12:46:12SyedaBinishZahraMuhammadAdnanKhanSagheerAbbasKhalidMasoodKhanMohammedAlGhamdiandSultanAlmotiri
    Computers Materials&Continua 2021年2期

    Syeda Binish Zahra,Muhammad Adnan Khan,Sagheer Abbas, Khalid Masood Khan,Mohammed A.Al-Ghamdi and Sultan H.Almotiri

    1School of Computer Science, National College for Business Administration and Economics, Lahore, 54000,Pakistan

    2Department of Computer Science, Lahore Garrison University, Lahore, 54792,Pakistan

    3Computer Science Department, Umm Al-Qura University, Makkah City, Saudi Arabia

    Abstract:Biomechanics is the study of physiological properties of data and the measurement of human behavior.In normal conditions, behavioural properties in stable form are created using various inputs of subconscious/conscious human activities such as speech style,body movements in walking patterns,writing style and voice tunes.One cannot perform any change in these inputs that make results reliable and increase the accuracy.The aim of our study is to perform a comparative analysis between the marker-based motion capturing system (MBMCS) and the marker-less motion capturing system(MLMCS) using the lower body joint angles of human gait patterns.In both the MLMCS and MBMCS,we collected trajectories of all the participants and performed joint angle computation to identify a person and recognize an activity (walk and running).Using five state of the art machine learning algorithms, we obtained 44.6% and 64.3% accuracy in person identification using MBMCS and MLMCS respectively with an ensemble algorithm (two angles as features).In the second set of experiments,we used six machine learning algorithms to obtain 65.9%accuracy with the k-nearest neighbor(KNN)algorithm(two angles as features)and 74.6%accuracy with an ensemble algorithm.Also,by increasing features (6 angles), we obtained higher accuracy of 99.3% in MBMCS for person recognition and 98.1% accuracy in MBMCS for activity recognition using the KNN algorithm.MBMCS is computationally expensive and if we redesign the model of OpenPose with more body joint points and employ more features,MLMCS(low-cost system)can be an effective approach for video data analysis in a person identification and activity recognition process.

    Keywords: Marker-based motion capturing system;marker-less motion capturing system;support vector machine;K-nearest neighbor

    1 Introduction

    Motion capturing system is used for measuring and recording of body posture variation with time.Human motion constructs 3D representation using the subject’s body parameters including subject’s orientation and position.In motion capturing,either we use marker-less or marker-based system.Marker-less system uses computer vision techniques whereas marker-based systems uses sensors or markers (active or passive), attached at a subject’s body [1].We used motion capturing systems to measure and record the human gait (lower body extremity) for analyzing each subject’s movement to recognize him and various activities performed by him.Technically, gait analysis is the study of body movements in the forward direction, when one leg is in the air (swing phase) and the second leg (stance phase) supports the process of movement in a forward or backward manner to support the whole-body weight (the whole body weight is shifted with the action of swing and stance phases).Generally, gait is the cycle of swing and stance phases.Multiple applications are used for person gait analysis including animation industry, sports science,person verification and identification [2-5].

    1.1 Marker-Based Motion Capturing System(MBMCS)

    MBMCS extracts data during sensing and processing stages.In the sensing stage,joint orientation and position’s data is collected using markers that are attached with the subject’s body and high-speed cameras are used for recording the data.In the processing stage,a 3D representation of joint data is extracted using trajectories.Electro-magnetic,electromechanical and optical systems are based on a marker-based approach for motion analysis.In our research, data is captured using the VICON motion capturing system for the marker-based approach.

    1.2 Marker-Less Motion Capturing System(MLMCS)

    MLMCS, based on a series of video cameras (including vision-based software), extracts data of joint trajectories without attaching markers or sensors on the subject’s body (e.g., visual surveillance).MLMCS perform its functionality in three stages.First stage is the subject’s tracking and detection that employs predicted algorithms for tracking and estimating the subject’s moving parameters.For tracking predictive methods, particle filtering, mean shift, condensation algorithm and Kalman filter are used.In the second stage, subject’s feature extraction is performed using the whole body or body parts configuration to estimate a set of feature measurements.Feature estimated values are used in gait recognition (as measurements of joint angles), gesture-driven techniques (hand’s configuration) and silhouette-based feature recognition and detection.The third phase is motion classification using the labeling process.This phase uses a variety of recognition methods for human motion (used in computer vision systems), such as the KNN method, SVM, and neural networks (NN).Gait analysis has become a more extensively used tool in research to access and evaluate human movements and characterizing locomotion disorders.In this research, the Tensorflow tool is used to characterize the human locomotion.Also, to avoid the expensive systems (motion capture system) and eliminate tough laboratory circumstances,data in our research is captured using the OpenPose motion capturing algorithm(MLMCS).

    1.3 Contributions

    A few major contributions in our research are compiled as follows:

    1.We have used a person’s lower joint angles for his identification and activity recognition.To the best of our knowledge,no one has ever used these angular gait parameters for a person’s identification or activity recognition.

    2.Machine learning techniques are separated into unsupervised and supervised learning techniques[6,7].We have used supervised machine learning algorithms such as ensemble, KNN, tree, linear discriminant (LD), logistic regression (LR), SVM and long short-term memory (LSTM) for a person’s identification and activity recognition in a time series data and obtained higher accuracy rates (as mentioned in Tabs.2-7).

    3.In experiments,data gathering and plotting methods show state-of-the-art results using gold standard marker-based and marker-less approaches.

    2 Comparison between Marker-Less and Marker-Based Approaches

    To compare the performance of both systems, marker-less and marker-based approaches, we have computed gait parameters.In the previous research using gait parameters, Eman et al.[8] have presented a method to exact gait parameters using 2D marker-based approach.Using a “Gaussian Mixture Model”from an image, Labbe et al.[9] have computed gait parameter named “knee angle” (joint function) to evaluate the injury of knee.In our marker-based approach, we have used six angles and applied 16 markers at the lower body.For comparison, we have used only two angles (knee angle and hip angle)as in marker-less approach structure model, only 6 virtual markers are available at the lower body so we have computed only two angles using this approach.The beneficial point of a human body joints is that all points are transformed using “Rigid-Body”, and all body joint points are moved using angular displacement[10].

    Joint angles estimation is a crucial aspect using joint embedded frames in the marker-based 3D approach[11], while in the marker-less approach,only technical frames are used.

    The other issue is about the different frame rate in both approaches.In the marker-based approach,we have to perform calibration to get accurate frames whereas in the marker-less approach,no such calibration is required.The marker-based approach is based on the full lab setup with proper connectivity of infrared cameras, high-speed video cameras, the marker-based software and the server that increases the cost of the whole project.Whereas, marker-less approach doesn’t need such an expensive setup and it is a costeffective approach.A static acquisition for tracking the subject is required by both systems.In both approaches, we get the trajectories of each subject.MATLAB is used for gathering the trajectories of marker-based approach and python is used in marker-less approach.

    The surveillance system can provide a more natural and practical way to identify persons in videos.A person’s re-identification cannot be performed using spatiotemporal information as surveillance videos lack algorithms or models which can compute spatiotemporal information [12].For the computation of gait parameters, we have used the gold standard marker-based approach.Using this method, we have obtained all the trajectories at a higher frame rate and used these trajectories [13] for person identification.Wang et.al.[14] and Liu et al.[15], performed person identification using videos but they did not get or learn person features from a video sequence.Another downside of their research is that they have worked at low-level features but in our research,all the features of gait are used.

    3 Methodology

    There are a few loopholes in the gait recognition research using “Motion Capture” data.No research work covers or focuses on the discriminant power of features and previously, only two or three gait parameters are used for the analysis.In the previous research, video data is collected using ordinary cameras and all data was in two-dimensional(2D) format and only images-based analysis was performed.

    In this research,three-dimensional(3D)video data is captured by the latest“Motion Capture System”with the highest frame rate and special cameras(high-speed DV cameras and infrared cameras)are used for data gathering.The main idea is to identify a person using his or her gait.To achieve gait identification,we have extracted parameters from a person’s gait.These parameters are analyzed for an activity recognition and a person’s identification.

    3.1 Data Acquisition

    3.1.1 MBMCS

    In this research,the process of capturing the subject’s movements in 3D is performed using high-speed cameras with the VICON System motion capturing technique.A reflected material is used in passive markers as they reflect infrared waves.During the data acquisition phase, infrared lights are produced by digital cameras(14 in numbers)at a frame rate of 250 frames per second and markers reflect this light.

    3.1.2 Experimental Setup for MBMCS

    All measurements are performed in biomechanics laboratory on a 3M walkway for capturing video frames as we have used 14 infrared cameras at a sampling rate of 250 Hz.Two high-speed video DVD cameras are also used and installed to record the front and right-side movement at 125 f/s.This walking path provides enough space to a subject for movements in a normal and natural way.07 subjects were used in these experiments (all are male, M1 to M5).Fig.1(a) shows the whole VICON motion analysis system.In the pre-processing stage, 16 markers are attached to a subject’s lower body parts at both left and right side (hip, knee, ankle, thigh, tibia, heel and toe).Each marker position is labeled with the proper body part name that distinguishes left and right side of the body as shown in Fig.1(b) and these marker positions have been identified in VICON Nexus.A lower body marker accurate placement protocol was used to enable the identification of lower body parts.The 16 reflective markers were attached at the lower-body using double sided tape.We got “motion trajectories” form a given sequence of video frames and get each position value for each angle in x, y, and z plane as shown in Fig.1(c).The statistical formulation for dynamic analysis and mathematical calculation for angular analysis could be performed using joint point values while the single value is used in each angular joint kinematics that generates a unique pattern of lower limb motion in each “position” over time.Eq.(1) has the formulation for an angle and Eqs.(2) and (3) compute vector (u and v respectively) points for 3D data.We have computed 6 angles of lower extremity and extracted the following parameters.

    1.hip-to-knee angle(ASI-TIB-KNE)

    2.tibia-to-tight (TIB-KNE-THI)

    3.knee-to ankle(AKN-TIB-KNE)

    4.toe-to-tibia(TOE-ANK-TIB)

    5.heel-to-tibia (HEE-ANK-TIB)

    6.heel-to-toe(HEE-ANK-TOE).

    For comparison with the MLMCS we have also compute two angles,knee angle and hip angle.

    Figure 1:(a)VICON,motion capturing system,(b)16 reflecting marker names with marker positions,(c)Angular kinematics along 6 angles and their positions

    3.1.3 MLMCS

    In this research, we have employed OpenPose for capturing a subject’s movements.OpenPose is the workable application to detect and provide face and body points such as arms, legs, hips, ankle body joint points in 2D [16,17].The drawback of OpenPose is that if it fails to detect the body then no source of recovery exists in the live streaming.The second problem is cost as in real-time approach and for multiple person body point detection, the cost of this application is high.The process of OpenPose starts with the detection algorithm that detects body key-points [18].Then it joins the key-point values and builds a network for each point using interpolation and approximation[17].

    3.1.4 Experimental Setup for MLMCS

    Open pose performs the key-point detection based on state-of-the-art initial body key-point network architecture.In our research, we have used the part affinity field (PAF) network architecture.The PAF part to part federation is performed iteratively using confidence map detection.Vectors are defined in PAF as 2D orientation and this vector point is obtained from one body key-point to another key-point as mentioned in Fig.2.Convolutional networkNanalyzes the initial image represented asIand generates a feature set FS (in our case angles).In the next step,FSis used as input to the network stage I, which performs the prediction (containing some values) on each set of PAFs (known as Level ValueLV).At each level of PAF, previous level valueLVi-1is concatenated toFSand the current levelLVIis refined.These values (Eqs.(4)-(6)) are sent into network N, which performs predictionPVEq.(7) (predicted key-point value) on key-point values.Finally, full-body detection of points for each subject is performed using the “Bipartite Graph Matching” [19].

    Figure 2:Part affinity field network architecture in OpenPose

    Different libraries like Alpha-Pose[20]and Mask R-CNN are available for“Pose Estimation”in 2D.By implementing these libraries, it works in their own “Frame Reader” (video streaming or images) and generates direct results in visual forms and key-point values in 2D that results in the output file (in our case it generates .csv files).OpenPose libraries can run on different platforms (embedded systems, MAC,Windows and Ubuntu) whereas in our experiments, we have used Windows and the python platform.Selected video data is served as an input and the output video labeled with body key-points is obtained that contains a.csv file with x and y coordinate values of each frame.

    3.2 Participants

    To capture gait data,07 healthy participants(all men,aged 21-26 years,height 5 to 6 feet)were used in our experiments.The summary of participants is shown in Tab.1.The experiments were performed in closed and control conditions at the biomechanical laboratory in LUMS.Height and body mass were properly measured using a stadiometer and weight scale respectively.Functional assessments are performed using biomechanical gait analysis, (static, clockwise and anticlockwise walking and running) with 14-cameras based VICON systems.

    3.3 Tools Used

    ? VICON?motion capturing system is used for data gathering with the marker-based scheme.

    ? OpenPose(with TensorFlow) is used for data gathering with the marker-less scheme.

    ? MATLAB will be used to simulate this work.

    Table 1:Participant summary

    4 Experimental Results

    We have used two motion capturing systems, one is marker-based and other is marker-less.For MBMCS, we have used the VICON system and gathered all the lower body movement data.For MLMCS, we have used video data of the subject’s movements.Each subject performs two activities (1)walk and (2) running.For MBMCS, we used MATLAB to get all the movement trajectories in 3D and for MLMCS, we used python to get all the movement trajectories in 2D.We computed two angles (1)knee angle and (2) hip angle and used these angle calculations in-person identification and activity recognition.For person identification, we used five machine learning algorithms named ensemble algorithm, KNN, Decision tree, SVM, and LD analysis.For activity recognition, we have employed six machine learning algorithms named ensembles, KNN, Decision tree, SVM, LD analysis and LR.For person identification, we have achieved 44.6% accuracy in MBMCS with ensemble algorithm as mentioned in Fig.6 and Tab.5.For person identification, we have achieved 64.3% accuracy in MLMCS with an ensemble algorithm as mentioned in Fig.7 and Tab.6.For activity recognition, 65.9% accuracy level is achieved in MBMCS with the KNN algorithm as mentioned in Fig.3 and Tab.2.For activity recognition, 74.6% accuracy level is achieved in MLMCS with an ensemble algorithm as mentioned in Fig.4 and Tab.3.Our main result finding shows that MBMCS is costly (as we have mentioned earlier that it needs a lab setup and costly equipment) and performance in terms of accuracy is low.The MLMCS approach generates high accuracy when we compare it with MBMCS, and if we improve the model of OpenPose using more body joint points (by adding more body joint points we can actually increase features) then we can achieve more accuracy using MLMCS which endorses that it is an effective approach in terms of cost and even no lab setup is required.

    We have computed six angles to increase the accuracy of our system.It is evident that after increasing the features (6 angles instead of 2 angles) we get higher accuracy 99.3% with KNN algorithm for person identification as shown in Fig.8 and Tab.7.The confusion matrix is presented in Fig.9 and 98.1%accuracy with the KNN algorithm for activity recognition as shown in Fig.5 and Tab.4 whereas their confusion matrix is shown in Fig.10.We got these 6 angles in MBMCS as we increase the massive markers on the human body,and this cannot be performed in MLMCS.

    Table 2:Marker based 2 angle:Activity

    Figure 3:Marker based 2 angle:Activity

    Table 3:Marker less 2 angle:Activity

    Figure 4:Marker less 2 angle:Activity

    Table 4:Marker based 6 angle:Activity

    Figure 5:Marker based 6 angle:Activity

    Figure 6:Marker based 2 angle:Person

    Table 5:Marker based 2 angle:Person

    Table 6:Marker less 2 angle:Person

    Figure 7:Marker less 2 angle:Person

    Table 7:Marker based 6 angle:Person

    Figure 8:Marker based 6 angle:Person

    Figure 9:Confusion matrix marker based 6 angle person

    Figure 10:Confusion matrix marker based 6 angle activity

    5 Conclusions

    Our research has presented a comparison between MLMCS and MBMCS to identify gait patterns.We have computed trajectories for all participants and performed angle computation to identify a person and recognize the activity (walk and running).For person identification, we have employed five algorithms while for activity recognition, we have used six machine learning algorithms.For person identification,we have achieved 44.6% accuracy in MBMCS and 64.3% accuracy in MLMCS with an ensemble algorithm.For activity recognition, we 65.9% accuracy level is achieved in MBMCS using the KNN algorithm and 74.6% accuracy in MLMCS using the ensemble algorithm.We have also computed six angles to increase the accuracy of our system.It is evident that increasing the number of features(6 angles instead of 2 angles), we can achieve higher accuracy 99.3% for person identification and 98.1% for activity recognition using only the KNN algorithm in both approaches.MBMCS is computationally expensive and employs costly lab setup.If we re-design the OpenPose model with more detailed body joint points, thus capturing t more features, then this low-cost system will be an effective approach for analyzing video data in a person’s identification and activity recognition problem.

    Funding Statement:This work is supported by Data and Artificial Intelligence Scientific Chair at Umm Al-Qura University.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲男人天堂网一区| 精品国内亚洲2022精品成人 | 激情视频va一区二区三区| 午夜福利视频在线观看免费| 黄色视频,在线免费观看| 成年人黄色毛片网站| 黑人猛操日本美女一级片| 夜夜骑夜夜射夜夜干| 亚洲专区中文字幕在线| 国产欧美亚洲国产| av福利片在线| 丝袜美足系列| 男女午夜视频在线观看| 久久人妻福利社区极品人妻图片| 国产97色在线日韩免费| 欧美 亚洲 国产 日韩一| 极品少妇高潮喷水抽搐| 久久人妻熟女aⅴ| 精品久久久久久电影网| av电影中文网址| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩中文字幕国产精品一区二区三区 | www.精华液| 亚洲专区字幕在线| 一个人免费看片子| 满18在线观看网站| 夫妻午夜视频| 国产精品久久久久久精品电影小说| 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频| 国产男女内射视频| 亚洲欧美日韩另类电影网站| 欧美黑人欧美精品刺激| 在线观看免费午夜福利视频| 日本av手机在线免费观看| 亚洲三区欧美一区| 精品人妻熟女毛片av久久网站| 欧美亚洲 丝袜 人妻 在线| 夫妻午夜视频| 精品国产超薄肉色丝袜足j| 另类亚洲欧美激情| 亚洲av国产av综合av卡| 黄色怎么调成土黄色| 久久久久久免费高清国产稀缺| 国产xxxxx性猛交| 91av网站免费观看| 成人三级做爰电影| 国产亚洲av高清不卡| 考比视频在线观看| 久久九九热精品免费| 久久热在线av| 久久久久久久大尺度免费视频| 99re6热这里在线精品视频| 91国产中文字幕| 精品第一国产精品| 午夜视频精品福利| 叶爱在线成人免费视频播放| 亚洲avbb在线观看| 一区二区三区激情视频| 国产三级黄色录像| 最新在线观看一区二区三区| 99九九在线精品视频| 日韩欧美国产一区二区入口| 黄色视频,在线免费观看| 两人在一起打扑克的视频| 久久精品国产综合久久久| 亚洲精品久久午夜乱码| 韩国精品一区二区三区| 91av网站免费观看| 伦理电影免费视频| 黄色成人免费大全| 亚洲久久久国产精品| 制服诱惑二区| 在线观看舔阴道视频| 91成人精品电影| 少妇裸体淫交视频免费看高清 | 国产欧美亚洲国产| 黄色片一级片一级黄色片| 99国产精品99久久久久| 欧美精品高潮呻吟av久久| 免费观看av网站的网址| 欧美国产精品一级二级三级| 女人被躁到高潮嗷嗷叫费观| 国产av精品麻豆| 桃花免费在线播放| 下体分泌物呈黄色| 一二三四社区在线视频社区8| 成年人黄色毛片网站| 精品国内亚洲2022精品成人 | av欧美777| 亚洲精华国产精华精| 国产高清videossex| 亚洲精品成人av观看孕妇| 一进一出好大好爽视频| 午夜精品久久久久久毛片777| 在线观看免费高清a一片| 伊人久久大香线蕉亚洲五| 91成年电影在线观看| 国产97色在线日韩免费| 欧美精品亚洲一区二区| 国产一卡二卡三卡精品| 人人妻人人澡人人看| 99九九在线精品视频| 国产成人系列免费观看| av超薄肉色丝袜交足视频| 伦理电影免费视频| 欧美+亚洲+日韩+国产| 99精国产麻豆久久婷婷| 婷婷丁香在线五月| 在线观看www视频免费| 久久久久精品人妻al黑| 国产精品亚洲av一区麻豆| 老司机亚洲免费影院| 精品视频人人做人人爽| 99riav亚洲国产免费| 色视频在线一区二区三区| 欧美日韩亚洲高清精品| 男女免费视频国产| 黄色怎么调成土黄色| 自线自在国产av| 99国产综合亚洲精品| 91麻豆av在线| 超碰97精品在线观看| 国产精品.久久久| 一本色道久久久久久精品综合| a级毛片黄视频| 久久天堂一区二区三区四区| 国产国语露脸激情在线看| 香蕉久久夜色| 久久久欧美国产精品| 桃红色精品国产亚洲av| 91九色精品人成在线观看| 国产又爽黄色视频| 国产熟女午夜一区二区三区| 久久精品亚洲熟妇少妇任你| 亚洲男人天堂网一区| 99久久国产精品久久久| 下体分泌物呈黄色| 国产精品.久久久| 国产成人欧美在线观看 | 日韩欧美一区二区三区在线观看 | av片东京热男人的天堂| 久久国产精品影院| 亚洲人成77777在线视频| 精品欧美一区二区三区在线| 妹子高潮喷水视频| 久久人妻熟女aⅴ| 久久久精品94久久精品| 亚洲av成人不卡在线观看播放网| 国产精品 国内视频| 天堂8中文在线网| 成人国产一区最新在线观看| 国产精品久久久久久人妻精品电影 | 国产野战对白在线观看| 国产精品成人在线| 久久精品亚洲熟妇少妇任你| 国产在线视频一区二区| 精品午夜福利视频在线观看一区 | 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区 视频在线| 伊人久久大香线蕉亚洲五| 久久精品国产亚洲av高清一级| 在线播放国产精品三级| 十八禁高潮呻吟视频| 亚洲av欧美aⅴ国产| 午夜免费鲁丝| 啦啦啦免费观看视频1| 桃红色精品国产亚洲av| 欧美国产精品va在线观看不卡| 国产精品国产av在线观看| 99香蕉大伊视频| 女人爽到高潮嗷嗷叫在线视频| 久久精品aⅴ一区二区三区四区| 如日韩欧美国产精品一区二区三区| 欧美日韩国产mv在线观看视频| av欧美777| 美女主播在线视频| 久热爱精品视频在线9| 高清视频免费观看一区二区| 亚洲国产欧美在线一区| 国产欧美日韩一区二区三区在线| 久久久久久久久久久久大奶| 一区二区三区国产精品乱码| 一进一出好大好爽视频| 可以免费在线观看a视频的电影网站| 亚洲精品成人av观看孕妇| 女性生殖器流出的白浆| av天堂久久9| av线在线观看网站| 男女边摸边吃奶| 国产1区2区3区精品| 欧美在线黄色| 18禁黄网站禁片午夜丰满| 激情在线观看视频在线高清 | 别揉我奶头~嗯~啊~动态视频| 超碰成人久久| 久久久国产精品麻豆| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕精品免费在线观看视频| 亚洲精品粉嫩美女一区| 欧美大码av| 99国产极品粉嫩在线观看| 亚洲精品自拍成人| 久久精品亚洲精品国产色婷小说| 99精品欧美一区二区三区四区| 免费不卡黄色视频| 国产高清视频在线播放一区| 午夜福利在线观看吧| 一区二区三区国产精品乱码| 亚洲av美国av| 高清av免费在线| 中文字幕制服av| 久久99一区二区三区| 精品少妇久久久久久888优播| 亚洲欧美色中文字幕在线| 两性夫妻黄色片| 亚洲va日本ⅴa欧美va伊人久久| 国产不卡av网站在线观看| 精品久久久久久电影网| 悠悠久久av| 男女下面插进去视频免费观看| 免费在线观看日本一区| 久久久欧美国产精品| 免费不卡黄色视频| 亚洲精品在线美女| 一级片免费观看大全| 在线观看免费高清a一片| 80岁老熟妇乱子伦牲交| 欧美黄色淫秽网站| 久久久久久久大尺度免费视频| 亚洲黑人精品在线| 高清欧美精品videossex| 亚洲久久久国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 欧美亚洲日本最大视频资源| 亚洲一码二码三码区别大吗| 91九色精品人成在线观看| 人妻一区二区av| 亚洲成国产人片在线观看| 另类精品久久| 亚洲精品自拍成人| 成年人午夜在线观看视频| 美女高潮到喷水免费观看| 法律面前人人平等表现在哪些方面| 亚洲av成人不卡在线观看播放网| 久9热在线精品视频| 成年人午夜在线观看视频| 性高湖久久久久久久久免费观看| 淫妇啪啪啪对白视频| 国产又色又爽无遮挡免费看| 久久久久久亚洲精品国产蜜桃av| 丝瓜视频免费看黄片| 亚洲人成电影观看| 国产精品1区2区在线观看. | 一区二区三区精品91| 高清欧美精品videossex| 亚洲熟妇熟女久久| 淫妇啪啪啪对白视频| av在线播放免费不卡| 三级毛片av免费| 国产日韩欧美视频二区| 老鸭窝网址在线观看| 精品久久久精品久久久| 日韩熟女老妇一区二区性免费视频| 亚洲精品国产色婷婷电影| 涩涩av久久男人的天堂| 视频区图区小说| 黄网站色视频无遮挡免费观看| 国产伦人伦偷精品视频| 色播在线永久视频| 亚洲成人国产一区在线观看| 国产成人啪精品午夜网站| 极品少妇高潮喷水抽搐| 日本wwww免费看| 丰满饥渴人妻一区二区三| 满18在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文av在线| 久久ye,这里只有精品| 巨乳人妻的诱惑在线观看| 女警被强在线播放| 蜜桃国产av成人99| 超色免费av| 女性被躁到高潮视频| 老司机影院毛片| 亚洲精品久久午夜乱码| 国产精品免费一区二区三区在线 | 午夜免费鲁丝| 美女高潮喷水抽搐中文字幕| 亚洲精品国产色婷婷电影| 搡老岳熟女国产| 久久久精品国产亚洲av高清涩受| 国产高清视频在线播放一区| 久久久国产成人免费| 在线观看66精品国产| 一夜夜www| 亚洲午夜理论影院| 精品久久久久久久毛片微露脸| 黄色怎么调成土黄色| 热99久久久久精品小说推荐| 在线播放国产精品三级| 少妇被粗大的猛进出69影院| 国产成人啪精品午夜网站| 日韩成人在线观看一区二区三区| aaaaa片日本免费| 悠悠久久av| 嫁个100分男人电影在线观看| 激情在线观看视频在线高清 | 亚洲国产欧美在线一区| 国产日韩欧美在线精品| 久久久久国产一级毛片高清牌| 日韩欧美国产一区二区入口| 精品国产一区二区久久| 伊人久久大香线蕉亚洲五| 欧美日韩视频精品一区| 激情视频va一区二区三区| 一级,二级,三级黄色视频| 女性被躁到高潮视频| 香蕉丝袜av| 成人精品一区二区免费| 视频区欧美日本亚洲| 国产成人av激情在线播放| 久久天堂一区二区三区四区| 多毛熟女@视频| 精品国产一区二区三区四区第35| 欧美一级毛片孕妇| 丁香欧美五月| 一级片'在线观看视频| 国产亚洲精品第一综合不卡| 成人手机av| 不卡av一区二区三区| 免费在线观看完整版高清| 免费人妻精品一区二区三区视频| 97在线人人人人妻| 桃红色精品国产亚洲av| 成人影院久久| 婷婷成人精品国产| av有码第一页| 国产精品一区二区在线不卡| 丝瓜视频免费看黄片| 久久亚洲真实| 国精品久久久久久国模美| 国产高清激情床上av| 桃花免费在线播放| 日韩中文字幕欧美一区二区| 亚洲黑人精品在线| 夜夜骑夜夜射夜夜干| 国产午夜精品久久久久久| 亚洲国产欧美在线一区| 亚洲专区中文字幕在线| 交换朋友夫妻互换小说| 亚洲中文日韩欧美视频| 1024香蕉在线观看| 国产97色在线日韩免费| 欧美亚洲日本最大视频资源| 久久精品国产亚洲av高清一级| 99国产精品99久久久久| 一区福利在线观看| 国产一区二区在线观看av| 亚洲专区国产一区二区| 啦啦啦 在线观看视频| 久久久精品国产亚洲av高清涩受| 日韩免费高清中文字幕av| 久久狼人影院| 男人操女人黄网站| 一本综合久久免费| 久久精品熟女亚洲av麻豆精品| 欧美日韩视频精品一区| 香蕉久久夜色| 蜜桃在线观看..| 精品熟女少妇八av免费久了| 又大又爽又粗| 亚洲午夜理论影院| 久久久欧美国产精品| 一进一出抽搐动态| 我要看黄色一级片免费的| a级片在线免费高清观看视频| aaaaa片日本免费| 激情视频va一区二区三区| 欧美精品一区二区大全| 国产亚洲av高清不卡| 高清毛片免费观看视频网站 | 99久久国产精品久久久| 精品亚洲成a人片在线观看| 最新在线观看一区二区三区| 欧美在线黄色| 国产高清videossex| 1024香蕉在线观看| 精品国产乱子伦一区二区三区| 日本黄色日本黄色录像| 午夜日韩欧美国产| 国产精品av久久久久免费| 又黄又粗又硬又大视频| 久久亚洲真实| 久久久精品区二区三区| 99热国产这里只有精品6| 三上悠亚av全集在线观看| 99久久国产精品久久久| 波多野结衣av一区二区av| 亚洲精品乱久久久久久| 国产高清激情床上av| 久久久精品94久久精品| 男女床上黄色一级片免费看| 一区二区三区国产精品乱码| 男女之事视频高清在线观看| 黄色成人免费大全| 欧美成狂野欧美在线观看| 亚洲精品中文字幕在线视频| 久久这里只有精品19| 国产男靠女视频免费网站| 久久久久视频综合| 午夜福利一区二区在线看| 成人18禁高潮啪啪吃奶动态图| 人人妻人人爽人人添夜夜欢视频| 国产成人免费无遮挡视频| 色94色欧美一区二区| netflix在线观看网站| 肉色欧美久久久久久久蜜桃| 欧美日韩精品网址| 香蕉国产在线看| 999久久久国产精品视频| 日本wwww免费看| 丝袜喷水一区| 男女高潮啪啪啪动态图| www.999成人在线观看| 91精品国产国语对白视频| 极品教师在线免费播放| 激情在线观看视频在线高清 | 9色porny在线观看| 大香蕉久久网| 国产精品久久久久成人av| 啪啪无遮挡十八禁网站| 超碰97精品在线观看| 欧美日韩福利视频一区二区| 免费黄频网站在线观看国产| 丰满人妻熟妇乱又伦精品不卡| 一本一本久久a久久精品综合妖精| 国产av国产精品国产| 黑丝袜美女国产一区| 欧美人与性动交α欧美软件| 亚洲一区二区三区欧美精品| 久久久久久久大尺度免费视频| aaaaa片日本免费| 国产真人三级小视频在线观看| 伦理电影免费视频| 亚洲精品国产精品久久久不卡| 99九九在线精品视频| 高清黄色对白视频在线免费看| 麻豆成人av在线观看| 久久九九热精品免费| 伊人久久大香线蕉亚洲五| 亚洲精品乱久久久久久| 国产欧美日韩一区二区三| 91老司机精品| 欧美日韩中文字幕国产精品一区二区三区 | 精品人妻1区二区| 午夜激情久久久久久久| 久久av网站| 真人做人爱边吃奶动态| 亚洲国产精品一区二区三区在线| 亚洲成人免费电影在线观看| 久久久精品国产亚洲av高清涩受| 亚洲国产看品久久| av线在线观看网站| 成年女人毛片免费观看观看9 | videosex国产| 国产精品熟女久久久久浪| 色精品久久人妻99蜜桃| 欧美日韩亚洲高清精品| 成年女人毛片免费观看观看9 | 黑丝袜美女国产一区| 美女国产高潮福利片在线看| 亚洲五月婷婷丁香| av线在线观看网站| 亚洲欧洲日产国产| 成年人免费黄色播放视频| 成人永久免费在线观看视频 | 自线自在国产av| av又黄又爽大尺度在线免费看| 另类亚洲欧美激情| 真人做人爱边吃奶动态| cao死你这个sao货| 亚洲精品中文字幕在线视频| 成人国语在线视频| 91麻豆精品激情在线观看国产 | 黄片播放在线免费| 精品国产一区二区三区久久久樱花| 欧美日韩av久久| 亚洲色图 男人天堂 中文字幕| 99国产极品粉嫩在线观看| 国产激情久久老熟女| 精品少妇黑人巨大在线播放| 午夜福利影视在线免费观看| 高清毛片免费观看视频网站 | 久久精品亚洲精品国产色婷小说| 国产黄色免费在线视频| 好男人电影高清在线观看| 色综合欧美亚洲国产小说| 亚洲av美国av| 无限看片的www在线观看| 十八禁人妻一区二区| 国产深夜福利视频在线观看| 精品午夜福利视频在线观看一区 | 国产男女内射视频| 在线天堂中文资源库| 夜夜骑夜夜射夜夜干| 欧美精品人与动牲交sv欧美| 国产欧美日韩一区二区三区在线| 日韩中文字幕视频在线看片| 男女床上黄色一级片免费看| 又黄又粗又硬又大视频| 成人手机av| 丁香六月天网| 久久人妻av系列| 黑丝袜美女国产一区| 在线观看66精品国产| 三级毛片av免费| 久久亚洲精品不卡| 日日爽夜夜爽网站| 亚洲欧美一区二区三区黑人| 婷婷成人精品国产| 欧美成人免费av一区二区三区 | 成人亚洲精品一区在线观看| 五月天丁香电影| 麻豆av在线久日| 欧美 日韩 精品 国产| 亚洲国产欧美在线一区| 日本黄色日本黄色录像| 亚洲va日本ⅴa欧美va伊人久久| 欧美乱妇无乱码| 国产精品麻豆人妻色哟哟久久| 人人澡人人妻人| 丝袜美腿诱惑在线| 在线观看免费视频日本深夜| 18禁黄网站禁片午夜丰满| 韩国精品一区二区三区| 性少妇av在线| 色在线成人网| 一级片'在线观看视频| 在线永久观看黄色视频| 伦理电影免费视频| 亚洲熟妇熟女久久| 精品久久久精品久久久| 亚洲一码二码三码区别大吗| 日韩一区二区三区影片| 久久九九热精品免费| 中文字幕制服av| 午夜老司机福利片| 久久精品国产a三级三级三级| 久久香蕉激情| 天天躁夜夜躁狠狠躁躁| 人人妻人人澡人人看| 女人高潮潮喷娇喘18禁视频| 成年女人毛片免费观看观看9 | 丰满少妇做爰视频| 少妇裸体淫交视频免费看高清 | 免费在线观看黄色视频的| 国产深夜福利视频在线观看| 国产成人免费观看mmmm| 少妇被粗大的猛进出69影院| 在线观看舔阴道视频| 久久精品亚洲av国产电影网| 搡老岳熟女国产| 国产精品电影一区二区三区 | 色综合欧美亚洲国产小说| 国产欧美亚洲国产| 国产精品98久久久久久宅男小说| 老司机午夜十八禁免费视频| 国产精品免费一区二区三区在线 | 一区二区三区激情视频| 中文字幕色久视频| 亚洲精品美女久久久久99蜜臀| 亚洲va日本ⅴa欧美va伊人久久| 99精品久久久久人妻精品| avwww免费| 精品卡一卡二卡四卡免费| 视频在线观看一区二区三区| 97在线人人人人妻| 国产日韩一区二区三区精品不卡| 国产精品.久久久| 91九色精品人成在线观看| 欧美精品人与动牲交sv欧美| 无人区码免费观看不卡 | 丁香欧美五月| 人人澡人人妻人| 女人久久www免费人成看片| 咕卡用的链子| 亚洲黑人精品在线| 久久久精品区二区三区| 免费不卡黄色视频| 日韩 欧美 亚洲 中文字幕| 国产精品一区二区在线不卡| 高清视频免费观看一区二区| 成人精品一区二区免费| 一夜夜www| 18禁观看日本| 自拍欧美九色日韩亚洲蝌蚪91| 国产不卡av网站在线观看| 黄色毛片三级朝国网站| 亚洲精品中文字幕一二三四区 | 欧美日韩视频精品一区| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品94久久精品| 欧美日韩中文字幕国产精品一区二区三区 | tocl精华| 男人舔女人的私密视频| 在线播放国产精品三级| 精品免费久久久久久久清纯 | 巨乳人妻的诱惑在线观看| 高清av免费在线| 1024香蕉在线观看| 午夜福利视频精品| 午夜福利免费观看在线| 久久精品亚洲熟妇少妇任你| tocl精华|