• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Effective Numerical Method for the Solution of a Stochastic Coronavirus(2019-nCovid) Pandemic Model

    2021-12-15 12:45:40WasfiShatanawiAliRazaMuhammadShoaibArifKamaledinAbodayehMuhammadRafiqandMairajBibi
    Computers Materials&Continua 2021年2期

    Wasfi Shatanawi,Ali Raza,Muhammad Shoaib Arif,Kamaledin Abodayeh,Muhammad Rafiq and Mairaj Bibi

    1Department of Mathematics and General Courses,Prince Sultan University Riyadh, Riyadh,Saudi Arabia

    2Department of Medical Research, China Medical University Hospital, China Medical University, Taichung,40402,Taiwan

    3Department of Mathematics, Hashemite University, Zarqa, Jordan

    4Stochastic Analysis&Optimization Research Group,Department of Mathematics,Air University,PAF Complex E-9,Islamabad,44000,Pakistan

    5Department of Mathematics, National College of Business Administration and Economics, Lahore, Pakistan

    6Faculty of Engineering, University of Central Punjab, Lahore, 54500,Pakistan

    7Department of Mathematics, Comsats University, Islamabad, Pakistan

    Abstract: Nonlinear stochastic modeling plays a significant role in disciplines such as psychology, finance, physical sciences, engineering, econometrics, and biological sciences.Dynamical consistency, positivity, and boundedness are fundamental properties of stochastic modeling.A stochastic coronavirus model is studied with techniques of transition probabilities and parametric perturbation.Well-known explicit methods such as Euler Maruyama,stochastic Euler,and stochastic Runge-Kutta are investigated for the stochastic model.Regrettably, the above essential properties are not restored by existing methods.Hence, there is a need to construct essential properties preserving the computational method.The non-standard approach of finite difference is examined to maintain the above basic features of the stochastic model.The comparison of the results of deterministic and stochastic models is also presented.Our proposed efficient computational method well preserves the essential properties of the model.Comparison and convergence analyses of the method are presented.

    Keywords: Coronavirus pandemic model; stochastic ordinary differential equations;numerical methods;convergence analysis

    1 Introduction

    Chen et al.[1]described the novel COVID-19 as a respiratory disease spread through droplets from the coughs, sneezes, or saliva of an infected person.The symptoms of this disease include fever, fatigue,suffocation, dry cough, and dyspnea.A human-made disease, xenophobia, spreads because of the violation of cohabitation law in Africa and other parts of the world.The concept of nationality has broken the unity of humanity and made people forget that this fractious world is a part of nature.Every mortal person is just a passenger.Lin et al.[2]stated that the concept had created inequalities,and racism had led to the false interaction of human beings,and ultimately the violation of natural law and the spread of fatal,sexually-transmitted diseases.Kucharski et al.[3]proposed that the environment does not grant permission for individuals to perform sexual activity with every person present, and neither does it allow them to eat whatever they want.Nature offers them some fruits, vegetables, and seafood; however, some items exist that are prohibited by nature, and likewise for human interactions with other beings.There are living beings that require no contact with humans.This mode of contact may be lethal and lead to the transmission of diseases like HIV, from chimpanzees to humans.HIV before the 1980s was a disease whose transmission was unknown, and whose symptoms were invisible [4].Ebola is an example of human interaction with a non-human primate, a fruit bat that threatens a signifciant loss of life.Shereen et al.[5] clarified that it is assumed that Lassa fever develops from a rat, another example of false human contact.Humans have developed techniques to eliminate the deleterious effects of false interactions, but also fail.The COVID-19 pandemic is a prominent example of this failure.This virus has taken the lives of many individuals around the world.It is often called Wuhan COVID-19 because it originated in this town, which is the capital of Hubei in China.Zhao et al.[6] said that this virus was first transmitted to humans through a non-human source, and then transmitted quickly between humans, proving deadly.Symptoms of this disease may include a dry cough along with fever, and it may affect the respiratory tract by destroying the lungs.Tahir et al.[7] described this virus as a causative agent of a new disease identified as COVID-19, comprised of pneumonia followed by severe respiratory disorders.Much laboratory research has been conducted in China since December 2019 to sequence this virus.The World Health Organization (WHO) first classified it as SARS-CoV-2, before naming it COVID-19.After February, the epidemic became a pandemic causing numerous deaths in countries such as Italy, France,Germany, the UK, the USA, and Iran, which could not withstand its toxic effects.This raised the question of the containment of this virus by quarantining civilians in their homes.Shim et al.[8]discussed the potential transmission of coronavirus in South Korea.Industrial buildings were shut down,and individuals were placed under forced quarantine.It is now a global emergency, with an urgent requirement for new antiviral remedies and related vaccines, based upon a possible functional model of this virus.We present a mathematical analysis of the spread of this disease and develop some predictions with real-world data.Raza et al.[9] used stochastic modeling to study the dynamics of HIV/AIDS.Abodayeh et al.[10] presented an efficient numerical method to model gonorrhea as impacted by alcohol consumption.Deivalakshmi et al.[11] studied the dynamics of stochastic resonance in a multiwavelet transformation.Wang et al.[12] presented a classical numerical method for value problems.We propose essential features preserving the numerical method, which is a stochastic non-standard fniite difference method (SNSFD) for the coronavirus model.The rest of the paper is organized as follows.We define the deterministic coronavirus pandemic model in Section 2.Section 3 explains the model’s construction and equilibria.Numerical methods and convergence are discussed in Section 4.Our conclusions and suggested future work are given in Section 5.

    2 Deterministic COVID-19 Pandemic Model

    The dynamics of COVID-19 are considered as follows.For any arbitrary time t,we divide the population into five compartments.S( t) denotes healthy people,E(t) comprises healthy people with unverified symptoms),I(t) consists of unhealthy people with verifeid symptoms,Q(t) denotes people in quarantine, andR(t) denotes people who have recovered from the virus.The transmission parameters of the model are as follows.Λ is the rate of new individuals entering the healthy population, μ is the natural death rate, β1is the bilinear incidence rate of the healthy and unhealthy groups of people, β2is the bilinear incidence rate of the healthy and those who are healthy with unverified symptoms,q1is the rate of quarantine of the healthy with unverified symptoms,Kis the rate of recovery of healthy people with unverified symptoms due to natural immunity,α is the death rate of the healthy with unverified symptoms,ris the recovery rate of unhealthy people with verified symptoms,d1is the death rate of unhealthy people due to coronavirus,qis the recovery rate of quarantined people,andd2is the death rate of quarantined people due to COVID-19.The governing equations of the model are as follows:

    2.1 Basic Properties

    The above state variables exhibit the nonnegative solution for t ≥0 with nonnegative initial conditions.

    Lemma 1:For any given nonnegative initial conditions,there exist unique solutionsS,E,I,Q,Rfor all t ≥0.Moreover, it satisfies the following inequality of boundedness:

    Proof:The dynamics of Eqs.(1) to (5) are obtained by adding the five equations, resulting in the following change in the total population:

    Thus solutions exist for given initial conditions that are eventually bounded on every finite time interval.

    Lemma 2:The closed set

    Proof:From Eqs.(6)and(7),it follows that as t →∞,the population is bounded by a positive number,N t( )≤

    Therefore, the set Γ is positive invariant.

    2.2 Steady States of COVID-19 Pandemic Model

    There are three steady states of Eqs.(1)to(5),as follows:Trivial equilibrium(TE)=(0,0,0,0,0), corona-free equilibrium (CFE)=and corona-present equilibrium (CPE)whereS1=

    Note thatROis the COVID-19 reproduction number [14].

    3 Stochastic COVID-19 Pandemic Model

    Let us consider the vector C=[S,E, I, Q, R]T, and the possible changes in the COVID-19 pandemic model,as shown in Tab.1.

    Table 1:Transition probabilities

    The expectation and variance of the stochastic COVID-19 pandemic model are defined as

    The general form of SDEs is

    with initial conditions C(0 )=Co= [0.5,0.2, 0.1,0.1,0.1]T, 0 ≤t ≤T,and Brownian motion W(t).

    3.1 Euler-Murayama Method

    Raza et al.[14]presented this idea,which can be applied to Eq.(8)as follows:

    wherefCn,(t)=are considered in more detail in Section 3.Also,Δt is the time-step size, and ΔWnis normally distributed between stochastic drift and stochastic diffusion,i.e., ΔWn~N(0, 1).

    4 Parametric Perturbation in COVID-19 Pandemic Model

    Allen et al.[15] presented the following technique.We choose parameters from Eqs.(1) to (5) and change them to random parameters with small noise, β1dt=β1dt+σ1dW, β2dt=β2dt+σ2dW.So, the stochastic COVID-19 pandemic model of Eqs.(1)to (5)becomes

    The Brownian motion is denoted by Wkt(), and σ1and σ2are the perturbations of Eqs.(10) to (14),which are non-integrable because of Brownian motion.We will use numerical methods to find their solution.

    4.1 Stochastic Euler Method

    This method can be applied to Eqs.(10)to (14),as follows:

    where the time step is h, and ΔWn?N 0,1( ).s

    4.2 Stochastic Runge-Kutta Method

    This method can be applied to Eqs.(10)to (14),as follows:

    Stage 1:

    Stage 2:

    Stage 3:

    Stage 4:

    Final stage:

    where the time step is h, and ΔWn~N(0,1).

    4.3 Stochastic Non-standard Finite Difference Method

    This method can be applied to Eqs.(10)to (14),as follows:

    where the time step is h, and ΔWn~N(0,1).

    4.4 Convergence Analysis

    For essential properties,we shall satisfy the following theorems for positivity,boundedness,consistency,and stability.

    Theorem 1:For any given initial value(Sn(0), En(0), In(0),Qn(0),Rn(0))∈R5+,Eq.(21)to Eq.(25)have a unique positive solution(Sn, En, In, Qn, Rn)∈;R5+on n ≥0, almost surely.

    Theorem 2:The regionfor all n ≥0, is a positive invariant feasible region for Eq.(21) to Eq.(25).

    Proof:We rewrite Eqs.(21) to (25)as

    Theorem 3:For anyn≥0, the discrete dynamical Eqs.(21) to (25) have the same equilibrium as the continuous dynamical Eqs.(10)to (14).

    Proof:To solve Eqs.(21)to(25)by assuming the perturbation is zero in the discrete model,we obtain the following three states:

    Trivial equilibrium:(T.E)=(Sn,En,In,Qn,Rn)= (0,0,0,0,0)

    Corona-free equilibrium (CFE):

    Corona-present equilibrium (CPE):

    where

    almost surely.

    Theorem 4:For anyn≥0,the proposed numerical method is stable if the eigenvalues of Eqs.(21) to(25) lie in the unit circle [16,17].

    Proof:We consider F,G,H,K,and L from Eqs.(21)to (25),as follows:

    The Jacobian matrix is defined as

    Now, we want to linearize the model about the steady-state of the model for corona-free equilibriumC1=andRo<1.

    The given Jacobian is The eigenvalues of the Jacobian matrix are

    Lemma 3:For the quadratic equation λ2- P1λ + P2= = 0, |λi|<1, i = 1, 2, if and only if the following conditions are satisfied:

    (i).1+P1+P2>0

    (ii).1-P1+P2>0

    (iii).P2<1.

    Proof:

    are always satisfied ifRo<1.

    are always satisfied ifRo<1.

    h>0 is always satisfied.

    This guarantees that all eigenvalues of the Jacobian lie in the unit circle.So,Eqs.(21)to(25)are stable around C1.

    For the present corona equilibrium,we plot the largest eigenvalue by using fitted values of parameters and MATLAB,as presented in Fig.1.

    Figure 1:Spectral radius for corona-present equilibrium

    Hence,the largest eigenvalue for corona-present equilibrium is less than one.The remaining eigenvalues will be less than one.

    4.5 Numerical Results

    The numerical solution is in good agreement with the dynamical behavior of the model using different values of the parameters.Khan et al.[18]assumed the following parameter values:

    Λ=0.5, β1=1.05, β2=0.05, α=0.0854302,r=0.09871,q=0.1243,K=0.00398, μ=0.5,q1=0.001,d1=0.0047876,d2=0.000001231, σ1=0.001, σ2=0.2, forRo<1.ForRo>1, Λ=0.5,β1=1.05, β2=0.05, α=0.0854302,r=0.09871,q=0.1243,K=0.00398, μ=0.5,q1=0.001,d1=0.0047876,d2=0.000001231, σ1=0.001, σ2=0.2, using different nonnegative initial conditions,S0( )=0.5,E0( )=0.2,I0( )=0.1,Q0( )=0.1,R0( )=0.1.We plot each compartment of the model for corona-free equilibrium in Fig.2.

    We plot each compartment of the model for corona-present equilibrium in Fig.3.

    5 Results and Discussion

    We plot the solution of Eq.(7)for specific time step sizes in Figs.2a and 2b.We observe in Fig.2a that the Euler-Maruyama method converges to corona-free equilibrium.However,in Fig.2b,the method fails to converge to the true equilibrium of the model.This can be observed in Fig.3a and Fig.3b for corona-present equilibrium.The proposed method still converges to the true equilibrium of the model.We plot the solution of Eqs.(13)to(17)for specific time-step sizes in Figs.2c and 2d.We observe in Fig.2c that the stochastic Euler method converges to corona-free equilibrium.But in Fig.2d,the method fails to converge to the true equilibrium of the model.This can be observed in Figs.3c and 3d for corona-present equilibrium.We plot the solution of Eq.(18)for specific time-step sizes in Figs.2e and 2f.We observe that in Fig.2e,the stochastic Runge-Kutta method converges to corona-free equilibrium.But in Fig.2f, the stochastic Runge-Kutta method fails to converge to the true equilibrium of the model.This can be observed in Figs.3e and 3f for corona-present equilibrium.So, current numerical methods are time-dependent and violate the essential properties of the model.Thus the proposed method is reliable for finding the solution of epidemiological models,and it always preserves the essential properties of the model.

    Figure 2:Time plots for different parameters as Λ=0.5, β1 =1.05, β2 =0.05,α=0.0854302,r=0.09871,q=0.1243, K =0.00398, μ=0.5, q1 =0.001, d1 =0.0047876,d2 =0.000001231,σ1 =0.001,σ2 =0.2,using initial conditions and R0 =0.1702 <1

    Figure 3:Time plots for different parameters as Λ=0.5, β1 =1.05, β2 =1.05,α=0.0854302,r=0.09871,q=0.1243, K =0.00398, μ=0.5, q1 =0.001, d1 =0.0047876,d2 =0.000001231,σ1 =0.001,σ2 =0.2,using the initial conditions and R0 =1.0222 >1

    6 Conclusion and Future Directions

    In comparison to the model’s,we have to say stochastic analysis of the most practical and actual model.The explicit numerical methods are conditionally convergent and depend on the time-step size.The stochastic NSFD method is independent of the time-step size.This method is unconditionally convergent as compared to other explicit numerical methods.This method preserves all essential properties of stochastic models, such as consistency, stability, positivity, and boundedness [19].We will extend our research in all fields of stochastic calculus in the future, and we will extend this concept to stochastic spatiotemporal and stochastic artificial intelligence models[20].

    Acknowledgement:We always warmly, thanks to anonymous referees.We are also grateful to Vice-Chancellor, Air University, Islamabad, for providing an excellent research environment and facilities.The first and fourth author also thanks Prince Sultan University for funding this work through the COVID-19 Emergency Research Program.

    Funding Statement:This research project is funded by the Research and initiative center COVID-19-DES-2020-65,Prince Sultan University.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    中文字幕最新亚洲高清| 精品久久久精品久久久| 国产99白浆流出| 久久久精品免费免费高清| 欧美激情高清一区二区三区| 久久久久久亚洲精品国产蜜桃av| 精品国产国语对白av| 美女视频免费永久观看网站| 国产不卡一卡二| 国产一区二区三区在线臀色熟女 | 夫妻午夜视频| 变态另类成人亚洲欧美熟女 | 一进一出抽搐gif免费好疼 | 国产国语露脸激情在线看| 淫妇啪啪啪对白视频| 水蜜桃什么品种好| 久久久精品免费免费高清| 最近最新中文字幕大全免费视频| 亚洲精品国产一区二区精华液| 国产成+人综合+亚洲专区| 亚洲全国av大片| 十八禁网站免费在线| 男人的好看免费观看在线视频 | 又紧又爽又黄一区二区| 91麻豆精品激情在线观看国产 | 国产精品免费大片| av免费在线观看网站| 欧美在线黄色| 久久亚洲真实| av天堂久久9| 午夜激情av网站| 搡老岳熟女国产| 精品国产一区二区三区久久久樱花| bbb黄色大片| 日日爽夜夜爽网站| 老汉色∧v一级毛片| 精品乱码久久久久久99久播| 久久午夜亚洲精品久久| 人妻丰满熟妇av一区二区三区 | 男女之事视频高清在线观看| 婷婷丁香在线五月| 777久久人妻少妇嫩草av网站| 免费少妇av软件| 99精国产麻豆久久婷婷| aaaaa片日本免费| 久久国产亚洲av麻豆专区| 丝袜在线中文字幕| 国产免费现黄频在线看| 99久久精品国产亚洲精品| 在线观看舔阴道视频| 亚洲av成人不卡在线观看播放网| 欧美日韩乱码在线| 多毛熟女@视频| 激情在线观看视频在线高清 | 精品一区二区三区av网在线观看| 纯流量卡能插随身wifi吗| 亚洲熟妇熟女久久| e午夜精品久久久久久久| 中文字幕高清在线视频| 亚洲成人免费av在线播放| 午夜福利在线免费观看网站| 精品久久蜜臀av无| 九色亚洲精品在线播放| 男女床上黄色一级片免费看| 日韩有码中文字幕| 亚洲国产欧美网| 人人妻,人人澡人人爽秒播| 国产男女超爽视频在线观看| 国产精品亚洲av一区麻豆| 亚洲一区二区三区不卡视频| 亚洲片人在线观看| 一区二区三区精品91| 91大片在线观看| 激情视频va一区二区三区| 国产欧美日韩一区二区三| 又大又爽又粗| av国产精品久久久久影院| 国产高清视频在线播放一区| 欧美激情高清一区二区三区| 国产精品 欧美亚洲| 国产精品1区2区在线观看. | www.熟女人妻精品国产| 建设人人有责人人尽责人人享有的| 亚洲成人国产一区在线观看| 欧美成狂野欧美在线观看| 怎么达到女性高潮| videos熟女内射| 性色av乱码一区二区三区2| 精品欧美一区二区三区在线| 在线观看66精品国产| 国产不卡av网站在线观看| 国产精品偷伦视频观看了| 国产片内射在线| 日韩免费高清中文字幕av| 热99国产精品久久久久久7| 九色亚洲精品在线播放| 麻豆乱淫一区二区| 91字幕亚洲| 国产淫语在线视频| 在线天堂中文资源库| 精品国产乱码久久久久久男人| 最新的欧美精品一区二区| av福利片在线| 亚洲精品国产一区二区精华液| 啦啦啦视频在线资源免费观看| 无限看片的www在线观看| 建设人人有责人人尽责人人享有的| 黑人巨大精品欧美一区二区蜜桃| 丰满的人妻完整版| 久久中文字幕人妻熟女| 69精品国产乱码久久久| 黄色毛片三级朝国网站| 亚洲国产看品久久| 成人手机av| 一级毛片精品| 91成人精品电影| 男女下面插进去视频免费观看| 天天操日日干夜夜撸| 成人三级做爰电影| 国产视频一区二区在线看| 99国产精品免费福利视频| 国产精品美女特级片免费视频播放器 | 99国产极品粉嫩在线观看| 天天添夜夜摸| 色综合欧美亚洲国产小说| 一级a爱视频在线免费观看| 日韩欧美一区二区三区在线观看 | 又黄又爽又免费观看的视频| 亚洲av成人av| 婷婷丁香在线五月| 动漫黄色视频在线观看| 老汉色av国产亚洲站长工具| 国产97色在线日韩免费| 女同久久另类99精品国产91| 色94色欧美一区二区| 女人被狂操c到高潮| 国产精品国产高清国产av | 免费在线观看日本一区| 免费黄频网站在线观看国产| 超色免费av| 黄色毛片三级朝国网站| 日本欧美视频一区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品乱码一区二三区的特点 | 人人妻,人人澡人人爽秒播| 在线看a的网站| 亚洲欧洲精品一区二区精品久久久| 婷婷成人精品国产| 国产成人精品久久二区二区91| 正在播放国产对白刺激| av天堂在线播放| 亚洲一码二码三码区别大吗| 91老司机精品| 老熟女久久久| 十八禁人妻一区二区| 亚洲精品av麻豆狂野| 精品久久久久久,| 国产精品 国内视频| 黄片播放在线免费| 亚洲国产精品sss在线观看 | 亚洲一区高清亚洲精品| 亚洲熟女毛片儿| 久久精品人人爽人人爽视色| 女人被狂操c到高潮| 一级黄色大片毛片| 叶爱在线成人免费视频播放| 国产精品一区二区免费欧美| 村上凉子中文字幕在线| 亚洲一区二区三区欧美精品| 久久国产亚洲av麻豆专区| 在线观看一区二区三区激情| 制服诱惑二区| 女性被躁到高潮视频| 热99久久久久精品小说推荐| 久久久久久亚洲精品国产蜜桃av| 身体一侧抽搐| 狠狠婷婷综合久久久久久88av| 伦理电影免费视频| 亚洲成人免费av在线播放| 在线观看午夜福利视频| 久久精品亚洲精品国产色婷小说| 亚洲av美国av| 一级片'在线观看视频| 亚洲精品中文字幕在线视频| 91av网站免费观看| av国产精品久久久久影院| 在线视频色国产色| 十八禁人妻一区二区| 在线国产一区二区在线| 99热只有精品国产| 国产单亲对白刺激| 亚洲全国av大片| 51午夜福利影视在线观看| 黑人欧美特级aaaaaa片| 国产真人三级小视频在线观看| 成年人黄色毛片网站| 国产在视频线精品| 黄色视频不卡| svipshipincom国产片| 欧美日韩亚洲高清精品| 视频在线观看一区二区三区| 欧美人与性动交α欧美软件| 国产一区二区三区综合在线观看| 国内久久婷婷六月综合欲色啪| 亚洲国产欧美日韩在线播放| 一级片免费观看大全| 日日摸夜夜添夜夜添小说| 精品一区二区三卡| 日本vs欧美在线观看视频| 亚洲国产精品合色在线| 欧美激情极品国产一区二区三区| 国产片内射在线| 婷婷精品国产亚洲av在线 | 每晚都被弄得嗷嗷叫到高潮| 亚洲一码二码三码区别大吗| 黑人操中国人逼视频| 国产精品久久久人人做人人爽| 国产精品秋霞免费鲁丝片| 国产精品99久久99久久久不卡| 国产精品.久久久| 日韩欧美在线二视频 | 熟女少妇亚洲综合色aaa.| 欧美 日韩 精品 国产| 亚洲av第一区精品v没综合| 欧美久久黑人一区二区| 久热这里只有精品99| 午夜老司机福利片| 老汉色∧v一级毛片| 亚洲av日韩在线播放| 日日夜夜操网爽| 亚洲精品久久成人aⅴ小说| 成人黄色视频免费在线看| 9色porny在线观看| 757午夜福利合集在线观看| 中文字幕制服av| 久久中文字幕人妻熟女| 精品国内亚洲2022精品成人 | 国产极品粉嫩免费观看在线| 亚洲中文字幕日韩| 母亲3免费完整高清在线观看| 精品高清国产在线一区| 高清视频免费观看一区二区| 丰满人妻熟妇乱又伦精品不卡| 好男人电影高清在线观看| 麻豆av在线久日| 精品久久久精品久久久| 国产亚洲欧美在线一区二区| 久久人人爽av亚洲精品天堂| 国产真人三级小视频在线观看| 99精品久久久久人妻精品| 777久久人妻少妇嫩草av网站| 国产精品一区二区在线观看99| 国产片内射在线| 91成人精品电影| 国产欧美日韩一区二区精品| 欧美成人午夜精品| 国产精品 国内视频| 国产亚洲精品一区二区www | 美女国产高潮福利片在线看| 狠狠婷婷综合久久久久久88av| 国产99久久九九免费精品| av在线播放免费不卡| 久久久精品国产亚洲av高清涩受| 一进一出抽搐gif免费好疼 | 精品国产国语对白av| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久| 精品久久久久久,| 99香蕉大伊视频| 亚洲欧美日韩另类电影网站| av网站免费在线观看视频| 亚洲欧美一区二区三区久久| 亚洲中文av在线| 欧美大码av| 一级a爱片免费观看的视频| 日韩有码中文字幕| 亚洲国产欧美日韩在线播放| 日韩人妻精品一区2区三区| 午夜福利影视在线免费观看| 久久国产精品大桥未久av| 人人妻人人添人人爽欧美一区卜| 免费在线观看完整版高清| 欧美日韩亚洲国产一区二区在线观看 | 99re6热这里在线精品视频| 免费久久久久久久精品成人欧美视频| av中文乱码字幕在线| 欧美色视频一区免费| 国产精品99久久99久久久不卡| 欧美日韩亚洲综合一区二区三区_| 精品国内亚洲2022精品成人 | 自拍欧美九色日韩亚洲蝌蚪91| 老汉色∧v一级毛片| av网站免费在线观看视频| 99久久99久久久精品蜜桃| 亚洲熟妇中文字幕五十中出 | 国产视频一区二区在线看| 久久精品国产亚洲av高清一级| 中文字幕av电影在线播放| 午夜福利,免费看| 法律面前人人平等表现在哪些方面| 国产亚洲精品第一综合不卡| 亚洲人成电影免费在线| 亚洲国产欧美日韩在线播放| 欧美色视频一区免费| 亚洲精品成人av观看孕妇| 国产成人精品久久二区二区91| 欧美日韩国产mv在线观看视频| 国产欧美亚洲国产| xxx96com| 黄色视频不卡| 久久天堂一区二区三区四区| 夜夜爽天天搞| 国产成人av激情在线播放| 国产日韩欧美亚洲二区| 亚洲精华国产精华精| 丁香六月欧美| 久久国产乱子伦精品免费另类| a在线观看视频网站| 丰满迷人的少妇在线观看| 麻豆成人av在线观看| 每晚都被弄得嗷嗷叫到高潮| 夜夜爽天天搞| 9191精品国产免费久久| 亚洲成人国产一区在线观看| aaaaa片日本免费| 欧美日韩黄片免| 一夜夜www| 精品国产乱子伦一区二区三区| 国产一区在线观看成人免费| 18禁黄网站禁片午夜丰满| 水蜜桃什么品种好| 国产免费现黄频在线看| 人妻久久中文字幕网| 亚洲国产欧美日韩在线播放| 免费女性裸体啪啪无遮挡网站| 高清在线国产一区| 欧美+亚洲+日韩+国产| 在线观看午夜福利视频| 在线观看舔阴道视频| 国产欧美日韩一区二区三| 国产精品亚洲av一区麻豆| 亚洲色图av天堂| 亚洲av电影在线进入| 成人18禁高潮啪啪吃奶动态图| 男女午夜视频在线观看| 一级片免费观看大全| 亚洲午夜理论影院| 国产精品免费一区二区三区在线 | 两个人看的免费小视频| 亚洲精品在线观看二区| 母亲3免费完整高清在线观看| 丁香六月欧美| 欧美黑人精品巨大| 日韩有码中文字幕| a级毛片黄视频| 亚洲精品粉嫩美女一区| 精品午夜福利视频在线观看一区| 妹子高潮喷水视频| 色94色欧美一区二区| svipshipincom国产片| 亚洲伊人色综图| 成人手机av| 激情在线观看视频在线高清 | 成人18禁在线播放| 丝瓜视频免费看黄片| av网站免费在线观看视频| 亚洲精品av麻豆狂野| 欧美黑人精品巨大| 最新在线观看一区二区三区| 国产精品99久久99久久久不卡| 高清视频免费观看一区二区| 成年人黄色毛片网站| 黄色怎么调成土黄色| 精品久久久久久,| 午夜福利在线观看吧| 一级毛片女人18水好多| 91成人精品电影| 亚洲国产欧美一区二区综合| 人妻丰满熟妇av一区二区三区 | 国产欧美日韩精品亚洲av| 国产麻豆69| 手机成人av网站| 五月开心婷婷网| 在线av久久热| 国产视频一区二区在线看| 午夜福利乱码中文字幕| 日本wwww免费看| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女 | 久9热在线精品视频| 国产精品一区二区免费欧美| 午夜免费成人在线视频| 欧美日韩成人在线一区二区| 欧美日韩瑟瑟在线播放| 岛国毛片在线播放| 成年女人毛片免费观看观看9 | 国产主播在线观看一区二区| 女警被强在线播放| 热re99久久精品国产66热6| 中亚洲国语对白在线视频| 中文字幕精品免费在线观看视频| 亚洲精品国产精品久久久不卡| 久久国产精品人妻蜜桃| 一区福利在线观看| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 国产色视频综合| 在线观看66精品国产| 日本a在线网址| 成人精品一区二区免费| 久久久精品免费免费高清| 欧美黄色淫秽网站| 动漫黄色视频在线观看| 又紧又爽又黄一区二区| 99国产精品免费福利视频| 熟女少妇亚洲综合色aaa.| 韩国精品一区二区三区| 99riav亚洲国产免费| 欧美激情久久久久久爽电影 | 久久人妻av系列| 午夜福利乱码中文字幕| 国产区一区二久久| 三上悠亚av全集在线观看| 国产精品久久视频播放| 一本大道久久a久久精品| 女性生殖器流出的白浆| 亚洲自偷自拍图片 自拍| 亚洲av欧美aⅴ国产| 国产精品亚洲一级av第二区| 69精品国产乱码久久久| 午夜免费成人在线视频| 色综合欧美亚洲国产小说| 国产av一区二区精品久久| 丰满迷人的少妇在线观看| 国产一区二区三区综合在线观看| 在线观看免费高清a一片| 国产男女超爽视频在线观看| 国产免费男女视频| 夜夜爽天天搞| 亚洲精品中文字幕在线视频| 国产精品秋霞免费鲁丝片| 亚洲成人免费av在线播放| av网站在线播放免费| 午夜免费观看网址| 啦啦啦在线免费观看视频4| 国产一区二区三区综合在线观看| 午夜91福利影院| 国产成人精品无人区| 黑人巨大精品欧美一区二区mp4| 高清视频免费观看一区二区| 我的亚洲天堂| 黑丝袜美女国产一区| 女性被躁到高潮视频| 又大又爽又粗| 精品国产亚洲在线| 亚洲人成电影观看| 在线观看66精品国产| 波多野结衣一区麻豆| 悠悠久久av| 91国产中文字幕| 麻豆成人av在线观看| 在线观看日韩欧美| 999久久久精品免费观看国产| 视频在线观看一区二区三区| 亚洲成a人片在线一区二区| 不卡av一区二区三区| 黄色视频,在线免费观看| 亚洲av片天天在线观看| 国产一区二区三区综合在线观看| 人妻丰满熟妇av一区二区三区 | 日韩欧美一区二区三区在线观看 | 亚洲少妇的诱惑av| 午夜成年电影在线免费观看| 久久久水蜜桃国产精品网| 美国免费a级毛片| 母亲3免费完整高清在线观看| 欧美成人午夜精品| 18禁黄网站禁片午夜丰满| 国产精品久久久av美女十八| 丰满迷人的少妇在线观看| 国产午夜精品久久久久久| 免费在线观看视频国产中文字幕亚洲| 18禁裸乳无遮挡免费网站照片 | 满18在线观看网站| 999久久久精品免费观看国产| 亚洲人成伊人成综合网2020| 亚洲片人在线观看| 久久青草综合色| 中文字幕另类日韩欧美亚洲嫩草| 女同久久另类99精品国产91| 一级作爱视频免费观看| 国产精品久久久av美女十八| 亚洲情色 制服丝袜| 国产男女超爽视频在线观看| 在线观看66精品国产| 在线观看日韩欧美| 精品一区二区三卡| 国产精品一区二区免费欧美| 国产一区二区三区在线臀色熟女 | 两个人免费观看高清视频| 看免费av毛片| 亚洲欧美一区二区三区黑人| 成人特级黄色片久久久久久久| 国产成人一区二区三区免费视频网站| 午夜福利欧美成人| 亚洲欧美日韩高清在线视频| 亚洲九九香蕉| 亚洲精品成人av观看孕妇| 人人妻人人澡人人看| 国产又色又爽无遮挡免费看| 怎么达到女性高潮| 亚洲欧美一区二区三区黑人| 欧美日韩黄片免| 免费不卡黄色视频| 欧美激情 高清一区二区三区| 亚洲国产欧美网| 亚洲国产欧美一区二区综合| 国产精品综合久久久久久久免费 | 久久精品国产亚洲av高清一级| 激情视频va一区二区三区| 免费不卡黄色视频| 久久精品国产清高在天天线| 一级毛片高清免费大全| 国产精品久久视频播放| 国产在线一区二区三区精| svipshipincom国产片| 成人免费观看视频高清| 国产精品98久久久久久宅男小说| 中文字幕人妻熟女乱码| 国产在线观看jvid| 精品国产乱子伦一区二区三区| 午夜亚洲福利在线播放| 国产一区二区三区视频了| 久久精品国产99精品国产亚洲性色 | 多毛熟女@视频| 国产一区二区激情短视频| 久久久久国产精品人妻aⅴ院 | 精品久久久久久,| xxx96com| 51午夜福利影视在线观看| 身体一侧抽搐| 大片电影免费在线观看免费| 国产三级黄色录像| av免费在线观看网站| 热99re8久久精品国产| 午夜福利乱码中文字幕| 在线国产一区二区在线| 最新的欧美精品一区二区| 亚洲少妇的诱惑av| 黄片播放在线免费| 亚洲av日韩在线播放| 老司机靠b影院| 亚洲精品国产一区二区精华液| 大香蕉久久网| 国产精品98久久久久久宅男小说| 国产成人一区二区三区免费视频网站| 国产欧美日韩一区二区三| 欧美日韩国产mv在线观看视频| 欧美亚洲 丝袜 人妻 在线| 村上凉子中文字幕在线| 黄片播放在线免费| 在线看a的网站| 一进一出抽搐gif免费好疼 | 欧美精品亚洲一区二区| 久久这里只有精品19| 一级a爱片免费观看的视频| 91麻豆av在线| 久久精品国产a三级三级三级| 人人妻人人爽人人添夜夜欢视频| 亚洲国产中文字幕在线视频| 80岁老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图| 日韩欧美一区视频在线观看| 多毛熟女@视频| 久久香蕉国产精品| 一级a爱视频在线免费观看| 亚洲人成伊人成综合网2020| 亚洲精品一二三| 高清欧美精品videossex| 久9热在线精品视频| 国产高清激情床上av| 亚洲国产欧美网| 男人的好看免费观看在线视频 | 一级片'在线观看视频| 国产精品九九99| 女同久久另类99精品国产91| 免费在线观看亚洲国产| 亚洲av美国av| 国产亚洲精品一区二区www | 亚洲成人免费av在线播放| 精品少妇久久久久久888优播| 交换朋友夫妻互换小说| 国产深夜福利视频在线观看| 国产精品一区二区在线不卡| а√天堂www在线а√下载 | 成熟少妇高潮喷水视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品自拍成人| 日韩成人在线观看一区二区三区| 国产激情欧美一区二区| 中国美女看黄片| 亚洲专区字幕在线| 别揉我奶头~嗯~啊~动态视频| 久久精品国产亚洲av香蕉五月 | 老鸭窝网址在线观看| 极品少妇高潮喷水抽搐| 人妻丰满熟妇av一区二区三区 | 国产成+人综合+亚洲专区| 后天国语完整版免费观看| 日韩欧美一区视频在线观看| 精品久久久精品久久久| 69精品国产乱码久久久| 一进一出好大好爽视频| 欧美国产精品va在线观看不卡| 99久久国产精品久久久|