• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Fault-Handling Method for the Hamiltonian Cycle in the Hypercube Topology

    2021-12-14 09:58:26AdnanHnaifAbdelfatahTamimiAymanAbdallaandIqbalJebril
    Computers Materials&Continua 2021年7期

    Adnan A.Hnaif,Abdelfatah A.Tamimi,Ayman M.Abdalla and Iqbal Jebril

    Faculty of Science and Information Technology,Al-Zaytoonah University of Jordan,Amman,11733,Jordan

    Abstract:Many routing protocols,such as distance vector and link-state protocols are used for fnding the best paths in a network.To fnd the path between the source and destination nodes where every node is visited once with no repeats,Hamiltonian and Hypercube routing protocols are often used.Nonetheless, these algorithms are not designed to solve the problem of a node failure, where one or more nodes become faulty.This paper proposes an effcient modifed Fault-free Hamiltonian Cycle based on the Hypercube Topology (FHCHT) to perform a connection between nodes when one or more nodes become faulty.FHCHT can be applied in a different environment to transmit data with a high-reliability connection by fnding an alternative path between the source and destination nodes when some nodes fail.Moreover,a proposed Hamiltonian Near Cycle(HNC)scheme has been developed and implemented.HNC implementation results indicated that FHCHT produces alternative cycles relatively similar to a Hamiltonian Cycle for the Hypercube, complete, and random graphs.The implementation of the proposed algorithm in a Hypercube achieved a 31% and 76% reduction in cost compared to the complete and random graphs,respectively.

    Keywords: Hamiltonian cycle; hypercube; fault tolerance; routing protocols;WSN; IoT

    1 Introduction

    State-of-the-art technology, especially the Internet of Things (IoT), has increased the demand for Wireless Sensor Networks (WSNs).A WSN is a network of nodes that communicate with each other, sense the environment, and transmit the collected data via wireless links.A sensor network employs small, lightweight, battery-powered devices, known as sensor nodes [1–4].In WSNs, each sensor node is equipped with a wireless communication module.The goal of sensor networks is to monitor a specifc type of data within a particular area.For example, a sensor network can monitor the humidity, the temperature of the surrounding area, fre hazard, traffc status, or wildlife habitat [5–8].Several routing algorithms, such as distance vector and link-state routing protocols [9,10], may be used to connect the nodes of the network, or [11] to connect the nodes of thead hocnetwork.

    Although WSNs can successfully distribute data collection for IoT applications, they have limited reliability because one or more nodes may become faulty [12] or need to be secured [13].A sensor network may fail to monitor the surrounding area adequately due to the failure of some modules (such as the presence of factory defects in the sensor units), environmental factors, or battery power depletion.These failures will inevitably lead to a breakdown in the data transmission process between the source and the destination nodes and compromise the quality of service of the entire network [14].

    Furthermore, the nature of the region plays an essential role in the distribution of sensors and may increase repair challenges.For example, a geographic territory with steep terrain is not easily accessible for repairing faulty sensors.Therefore, a failure could lead to the partitioning of the network into disjoint blocks, and to changing the routing path.

    The problem of a complete halt in any communication network occurs when no message can be delivered towards its destination due to faulty nodes.Consequently, no communication occurs through the sensor nodes until the network administrator takes exceptional action to handle the problem, which usually requires a long time.Hamiltonian and Hypercube Routing Protocols can be used to solve the faulty node problem and therefore have been used in many applications to avoid deadlock issues [15].

    Hamiltonian routing protocols employ either a Hamiltonian path or a Hamiltonian cycle.The Hamiltonian path requires visiting each node of the graph exactly once during the routing process.When the end node is the same as the start node, it becomes a Hamiltonian cycle [6].

    A Hypercube is either a graphical representation of some nodes and edges or is the set of all n-bit strings denoted by {0,1}nin a single unit in any dimension n, which is called n-cube [16].

    A complete graph, denoted by Kn, is a graph where n is the number of nodes with an edge that links each pair of separate nodes.The graph is assumed to be simple; i.e., it contains no loops or multiple edges.

    A connected graph G is a graph where each pair of nodes is connected by a simple path.

    This paper will present a modifed Hamiltonian cycle protocol implemented on a Hypercube graph to fnd an alternative cycle in case of the occurrence of one or more faulty nodes.Additionally, a new simulator, called HNC, has been designed and implemented to verify the effcacy of this protocol.

    The rest of this paper is organized as follows.Section 2 provides graph-theory preliminaries on the Hamiltonian path and cycle and Hypercube graphs.Section 3 reviews related works.In Section 4, the theorems lying behind the proposed algorithm are proven and the general idea of the algorithm is introduced and explained briefy.The algorithm and pseudo code of the algorithm’s components are given in Section 5, where the simulation results are shown in Section 6.Finally, Section 7 concludes the paper followed by the list of references.

    2 Preliminaries

    This section reviews and discusses some basic concepts and defnitions of the Hamiltonian and Hypercube topologies.

    Defnition 1 (Hamiltonian Path):In a graphG, a Hamiltonian Path is a path that contains every node ofG[17].

    Defnition 2 (Hamiltonian Cycle):In a graphG, a cyclec?ofG, which contains every node ofG, is said to be a Hamiltonian cycle.In this case,Gis called a Hamiltonian graph [18].

    Defnition 3 (Hypercube):A Hypercube, Q_n, is a graph whose node set V consists of the n-dimensional Boolean vectors, i.e., vectors with binary coordinates 0 or 1, where two nodes are adjacent whenever they differ in exactly one coordinate [6].Fig.1 shows an example of a 4-dimensional Hypercube.

    Figure 1:A 4-dimensional hypercube

    Luca Trevisan [19] proved the following theorem.

    Theorem 1:For everyn≥2, the n-dimensional Hypercube has a Hamiltonian cycle.

    Consequently, we propose solving the faulty node problem in the Hamiltonian cycle routing protocol for the Hypercube.HypercubeQnwith 2nnodes is an undirected graph where each node is labeled with a binary number that differs from each of its adjacent nodes in exactly one bit.The parity of the node is determined based on the number of 1’s in its binary-number label; i.e.,the parity is 0 if the number of ones is even and otherwise it is 1.

    The n-Hypercube graph also called the n-cube graph and commonly denoted as Qnor 2n,is the graph whose vertices are the 2knodes?1,...,?nwhere?i=0 or 1 and two vertices are adjacent if the nodes differ in exactly one coordinate.

    In addition, HypercubeQnis not Hamiltonian if all edges are going in one direction and of the same parity of faulty nodes.Consequently, [20] showed that the Hypercube is Hamiltonian ifn≥4.Accordingly, there are two edges of different parity ifQnhas n ≥4 and is free of faulty nodes.

    Hsieh et al.[21] presented two theorems.The frst theorem verifed that there exists a faultfree Hamiltonian path in an n-dimensional Mobius cube (denoted byMQn) with up to n ?1 faulty nodes for n ≥4.The second theorem showed that a fault-free cycle with a length between 4 and 2n faulty nodes can be tested in a faulty Mobius cubeMQnwith up to n ?2 faulty nodes for n ≥2.

    In order to fnd the most extended cycle in an n-dimensional Hypercube graph G, [22]proposed a twisted Hypercube-like network (THLN) with up to 2n ?9 faulty nodes (F).They showed that(G ?F)contains a Hamiltonian cycle when(δ(G ?F)>2)and(G ?F)include a near Hamiltonian cycle given that(δ(G ?F)≤1).Fig.2 shows a 4-dimensional Hypercube with Hamiltonian cycle.

    Figure 2:A 4-dimensional hypercube with Hamiltonian cycle

    3 Related Work

    This section discusses the traditional Hamiltonian cycle, Hamiltonian path, and Hypercube used to connect nodes.Ammerlaan et al.[18], proved that a Hamiltonian cycle exists between the kth and (n–k)th level of the n-dimensional Hypercube by using the Gray code counting system.To obtain the Gray code counting system, the exclusive-OR operation is computed between the consecutive bits of the corresponding binary number.Other researchers, like [20], implemented an algorithm to detect any Hamiltonian cycle in the cube.They considered an edge u a neighbor of an edge v if u and v are neighbors in Qn and the node(n,v)/∈F is healthy; otherwise, no Hamiltonian cycle is possible.Furthermore, [23] presented a theorem to ensure the existence of a Hamiltonian path in a graph.They assumed G=(V,E)to be a connected graph.For non-adjacent edges, there should be e(u)ande(v)=δ(c,v)≥n+1 and then G will have a Hamiltonian path.

    Xiaofan et al.[24] described the properties of the Hypercube, where a single volumetric unit in any dimension is a Hypercube.All edges that meet at a node are perpendicular to each other.A unique digit of length ‘n’ could label each node if the Hypercube is positioned in the origin of the coordinate system.The number of nodes resulting in a unique binary word is equivalent to the possible binary strings of length ‘n’ and can be calculated as the number of nodes=2n.Likewise, [24] designed a layered structure of a Hypercube graph and noted that each corresponding string (node) can be grouped based on the number of ones.Any edge connects two or more nodes if the difference between the nodes is only one bit.can be used to calculate theith number of nodes, and between node layers i andi+1 there exists an edge layer containing(n ?i),or equivalently,(i+1)edges.

    Guo et al.[25] devised a new condition of diagnosability to enhance the diagnosability issue.The conditional diagnosability implies that not all neighbors of any edge fail at the same time.Similarly, they proposed that any system is called conditionally t-diagnosable when each pair of the set of the faulty nodes (F0, F1) is distinguishable for |F|≤t and proved that tc(EH(s,t))=3s ?2 for t ≥s>2.

    Zhang et al.[22] proposed an architecture called THLN for several multiprocessor systems using Hamiltonian connectivity, based on twisted Hypercube-like networks to improve the communication cost between processors.In addition, they proved that the graph G is an n-dimensional THLN for n ≥5 and F is a subset of V(Gn)∪E(Gn)with |F|.Moreover, they showed that for the node pair(u,v)in the graph Gn ?F, there exists an(n ?2)fault-tolerant Hamiltonian path,except for(u,v)because it is a weak node-pair in Gn ?F.

    Liu et al.[26] proved two theorems for the n-dimensional twisted Hypercube Hn.The frst theorem proved that Hn has a fault-free Hamiltonian cycle if the number of the faulty nodes>n?2.The second theorem proved that Hn has a faulty open Hamiltonian path if the number of faulty nodes>n?3 for any pair of non-faulty nodes.Nikolaev et al.[27] introduced an algorithm to fnd a Hamiltonian decomposition of the 4-regular multigraph called the variable neighborhood search (VNS) algorithm.The main objective of VNS is to solve the traveling salesperson problem.For nonadjacent nodes, given two Hamiltonian cycles:x and y, if the graph G(x ∪y)contains a Hamiltonian decomposition into node-disconnect cycles z and w different from x and y, then the corresponding nodes xu and yu are not adjacent.

    Chen [28] considered the problem of existing faulty nodes in the Hamiltonian cycle that contains a direct link connection between nodes and avoids the faulty nodes in an n-cube Qn.The author showed that all edges of the matching node M lie on a fault-node-free Hamiltonian cycle in Qn if Qn contains 2n?4?|M| faulty edges and the maximum allowed number of faulty edges is sharp when |M|=1 or |M|=2.

    4 Modifed Hamiltonian Cycle Based On Hypercube Topology

    Theorem 2:Let G be a Hypercube graph with a degree (n ≥2).If A, B, and C are nodes in G, then there exists at least one Hamiltonian path from A to C through B* whereB?∈G and B?B.

    Let G(V,E,w)be a Hypercube graph, where V is the union of all ith node1,2,3,...,The set of nodes in the ith layer can be assigned as shown by Eq.(1)

    Let E ?V×V be the set of edges and ‘w’be the function that assigns a non-negative weight w to every edge.Then, the number of edges from any vi,jnode will be w(vi,j,v?)where v?can be calculated by Eq.(2)

    In general, the number of all edges in the ith node layer of a Hypercube contains anedge layer.

    Proof:Let A=vi,j∈v then:

    Case 1:See Eq.(3)

    and since(n ≥2)then there is at least (See Eq.(4))

    Such that B?B and w(A,B?)exist.

    Case 2:See Eq.(5)

    and since(n ≥2)then there is at least (See Eq.(6))

    Such that B?/B and w(A,B?)exist.

    Case 3:See Eq.(7)and since(n ≥2)then there is at least (See Eq.(8))

    Such that B?/B and w(A,B?)exist.

    Consequently, there exists at least one Hamiltonian path from node A to node C through node B where w(A,B?)and w(B?,C)exist.

    To introduce our own proposed algorithm (FHCHT) based on the above theorems, Fig.3 depicts the fowchart of the proposed modifed Hamiltonian Cycle based on Hypercube Topology.

    Figure 3:A fowchart of the proposed FHCHT algorithm

    To reduce the cost of transmission and avoid existing faulty nodes, the Hamiltonian cycle is used frst to label all nodes and to process the communication between nodes.This phase is called the initialization phase.As mentioned, the Hamiltonian cycle algorithm is used where the source address is the same as the destination address (start node = destination node).At this phase, all nodes are labeled either in binary or in decimal and the transmission phase is applied,which has two scenarios.The frst scenario is called the standard scenario where the packet is transmitted smoothly from the source node to the destination node using the Hamiltonian cycle without any obstacles.The second scenario is when one or more nodes do not work (faulty node).Here, FHCHT is applied to bypass these nodes and go to the next node through an intermediate node, and to fnd other possible paths.

    5 Algorithms of the System

    In this section, we introduce the two proposed algorithms:Extracting Hamiltonian Cycle and Applying FHCHT.

    5.1 Extracting Hamiltonian Cycle

    ?

    Matlab function to create hypercube graph is:G=hypercube (n)Step 2.Find an initial Hamiltonian cycle In order to create a Hamiltonian cycle, choose a starting node, then apply the shortest path algorithm, which will traverse all nodes and end up with the same starting node.For programming purposes, we replace the Hypercube node labels by node label +1 in the Hamiltonian cycle as shown in Fig.4 Matlab function to create hameltonian cycle is:hamPath=fndHam(Graph,Source,Source,totalNodes)

    Figure 4:Initial Hamiltonian cycle

    The code of the algorithm is as follows:

    ?

    ?

    5.2 Applying FHCHT

    Algorithm 2:Apply FHCHT Step 1.Do for the number of inactive nodes:Step 2.Select a random inactive node (i, j) from Graph G (V, E).Step 3.Apply Exclusive-OR (XOR) operations between the current node (i, j) and each of the previous and subsequent nodes of (i, j).Step 4.Connect the node before and the node after to create a near-Hamiltonian path using Theorem 2.Step 5.Repeat until the destination is reached.

    The code for applying the algorithm is as follows:

    The Code for Applying FHCHT Function newPath=re_route (n, off_nodes, hamPath)C=extract the elements of those indexes Indexes=fnd (C)newpath=newPath for i=1:length(indexes)for j=1:n node_before(i, j)=bitxor (newpath (indexes (i)?1),2 ∧(j ?1))node_after(i,j)=bitxor(newpath (indexes(i)+1),2 ∧(j ?1))f=intersect(node_before(i,node_after(i,:))f=f(f~=newpath (indexes (i)))new_node (i)=f (1)newpath (indexes (i))=new_node (i)End

    Figs.5–7 show a near-Hamiltonian cycle with 1, 2 and 3 faulty nodes respectively.

    Figure 5:A near-Hamiltonian cycle with one inactive node

    Figure 6:A near-Hamiltonian cycle with two inactive nodes

    Figure 7:A near-Hamiltonian cycle with three inactive nodes

    6 Experimental Results and Analysis

    In this section, we introduce the implementation of the proposed FHCHT algorithm and show the obtained simulation results.The simulation was run with Matlab 2019 on a laptop computer with Intel Core i5 Duo CPU 2900 4M, 4GB DDR3 RAM, and Windows 10 operating system.

    As an example, let a Hypercube degree (n=4) and therefore the number of nodes will be 24=16, as illustrated in Fig.1.The frst step is the initialization of the Hypercube topology and then the extraction of the Hamiltonian cycle is applied.See Figs.2 and 4, respectively, where a packet runs through the highlighted path (depicted in red).

    The packet format is shown in Tab.1.The input data of Tab.1 are listed below.

    P_ID:packet ID, N_ID:Node ID, N_Node:Next Node, W_msg:Wakeup Message, Ack.:Acknowledgment, F_Nodes:Faulty Node(s) and A_Nodes:Alternative Node(s).

    Table 1:Packet format

    To fnd a near-Hamiltonian path after a faulty node(s) exists, apply Algorithm 2.If a full Hamiltonian cycle exists, then it exits and outputs the Hamiltonian cycle with no faulty nodes.Otherwise, the output is a near-Hamiltonian cycle with one or more loops.

    To increase the effciency of the system, the source node will use Tab.2 for reference to avoid the faulty nodes in the subsequent routes when no updates are available.

    Table 2:Source reference information

    A subcase example is shown in Fig.4.In this example, suppose that node 4 and node 5 become faulty.Consequently, node 2 will send a wakeup message to node 4 and wait to receive an acknowledgment.If the acknowledgment is received, then go to node 4; otherwise, node 4 will be added to the faulty node feld, and FHCHT will be applied to fnd an alternative path from node 2 to node 3.

    Additionally, we implemented a complete connected and random connected graphs with node degree greater than or equals 2, in order to compare the effciency and total cost, when we obtain a Hamiltonian or near-Hamiltonian cycle.Fig.8 depicts the complete graph with a Hamiltonian cycle.graph with two faulty nodes (node 4 and 5).

    Figure 8:The complete graph with a Hamiltonian cycle

    Tab.3 compares the results between a Hypercube, complete, and random graphs based on the number of nodes, the number of faulty nodes, and the name of faulty nodes, where all faulty nodes are selected randomly.The simulator was run on 8 and 16 nodes.For the simulation with 16 nodes, the execution was repeated with three different numbers of faulty nodes–nodes 3, 4,and 5 for all graphs.

    Table 3:A comparison between the results of the Hypercube, completed, and random graphs

    By applying Algorithm 2 twenty times with a fxed number of nodes with randomly generated faulty nodes, we got the results shown in Tab.4, where the number of graph edges in the Hypercube is equal ton?2n?1 and the number of edges in the complete graph equals(2n(2n?1)/2),where n is the Hypercube degree.

    The results show that the time required for the complete graph was better than the time of the Hypercube, while the cost for the complete graph, measured by the number of edges, is greater than in the Hypercube.For instance, for a Hypercube with 16 nodes, the number of edges is 32,while in the complete graph for the same number of nodes the number of edges is 120, which was a signifcant difference between them.

    Table 4:A comparison between the results of hypercube, completed, and random graphs based on the number of the randomly generated faulty nodes

    At the same time, when we use a graph with a random number of edges to reduce cost, we cannot guarantee an existing Hamiltonian or near-Hamiltonian cycle.Thus, it is not preferable to choose a random number of edges.

    7 Conclusion

    In this study, a Modifed Fault-free Hamiltonian cycle based on the Hypercube Topology(FHCHT) and a Hamiltonian Near Cycle (HNC) simulator were developed to obtain one or more alternative paths between the source and the destination nodes in WSNs.FHCHT aims to solve a well-known faulty node problem.HNC was applied as follows.First, Hypercube connectivity was used to establish a connection path between the source and destination through a set of active nodes.Second, a random number was chosen to represent the number of faulty nodes.Third,HNC was applied to create and fnd the shortest path.

    The results obtained from HNC confrmed that the proposed algorithm fnds multiple alternative paths between the source and destination nodes with the existence of many faulty nodes with an approximate 31% reduction of cost over the complete graph and a 76% reduction over the random graph.However, repeated runs for a Hypercube, complete and random graphs show that the Hypercube edges are fewer than the complete graph edges, which reduces the connection cost.Meanwhile, the random connected graph does not guarantee to obtain a Hamiltonian or near Hamiltonian cycle when a number of faulty nodes exist.The rectifed communication process should enhance the overall effcacy of WSN applications.

    Acknowledgement:The authors would like to thank Al-Zaytoonah University of Jordan for supporting this research.

    Funding Statement:The author(s) received no specifc funding for this study.

    Conficts of Interest:The authors declare that they have no conficts of interest to report regarding the present study.

    亚洲天堂国产精品一区在线| 久久这里只有精品中国| 十八禁国产超污无遮挡网站| 美女 人体艺术 gogo| 国产免费一级a男人的天堂| 久久精品国产鲁丝片午夜精品| 免费搜索国产男女视频| 日韩制服骚丝袜av| 亚洲欧美日韩无卡精品| 自拍偷自拍亚洲精品老妇| 精品熟女少妇av免费看| 三级男女做爰猛烈吃奶摸视频| 久久鲁丝午夜福利片| 国产免费男女视频| 久久亚洲国产成人精品v| 波多野结衣巨乳人妻| 亚洲av成人精品一区久久| 如何舔出高潮| 午夜精品在线福利| 国产精品久久久久久av不卡| 亚洲最大成人av| 国产av不卡久久| 久久这里只有精品中国| 黄片wwwwww| 久久热精品热| 边亲边吃奶的免费视频| 插逼视频在线观看| 亚洲成人av在线免费| 伦理电影大哥的女人| 联通29元200g的流量卡| 亚洲美女搞黄在线观看| 国产一级毛片在线| 最近2019中文字幕mv第一页| 99久久无色码亚洲精品果冻| 亚洲国产精品成人综合色| 一个人免费在线观看电影| 黄色视频,在线免费观看| 亚洲熟妇中文字幕五十中出| 亚洲精品日韩av片在线观看| 中文欧美无线码| 亚洲乱码一区二区免费版| 国产三级在线视频| 久久久午夜欧美精品| 国产高潮美女av| 国产成人精品久久久久久| 日韩欧美 国产精品| 人人妻人人澡欧美一区二区| 国产亚洲5aaaaa淫片| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久亚洲av鲁大| 亚洲国产精品sss在线观看| 黄片wwwwww| 国产精品久久久久久精品电影| 丰满的人妻完整版| 久久久成人免费电影| 国产精品人妻久久久影院| 国产高清视频在线观看网站| 国产高清视频在线观看网站| 久久人人爽人人爽人人片va| 国国产精品蜜臀av免费| 99九九线精品视频在线观看视频| 18禁在线播放成人免费| 亚洲aⅴ乱码一区二区在线播放| 欧美xxxx黑人xx丫x性爽| 春色校园在线视频观看| 毛片一级片免费看久久久久| 少妇猛男粗大的猛烈进出视频 | 大型黄色视频在线免费观看| 又粗又爽又猛毛片免费看| 麻豆久久精品国产亚洲av| 国产女主播在线喷水免费视频网站 | 国产精品一区二区三区四区免费观看| 三级男女做爰猛烈吃奶摸视频| 男女啪啪激烈高潮av片| 亚洲成人中文字幕在线播放| 国产三级在线视频| 26uuu在线亚洲综合色| 少妇人妻一区二区三区视频| 99热网站在线观看| 成人毛片60女人毛片免费| 最近2019中文字幕mv第一页| 禁无遮挡网站| 一级黄片播放器| 免费人成视频x8x8入口观看| 91久久精品国产一区二区成人| 哪里可以看免费的av片| 少妇人妻一区二区三区视频| 日本免费一区二区三区高清不卡| 精品人妻偷拍中文字幕| 女同久久另类99精品国产91| 少妇高潮的动态图| 国产色婷婷99| 天堂av国产一区二区熟女人妻| 国产精品麻豆人妻色哟哟久久 | 亚洲国产欧美在线一区| 亚洲国产高清在线一区二区三| 国产精品一区二区三区四区免费观看| 亚洲av二区三区四区| 国产伦理片在线播放av一区 | www日本黄色视频网| 亚洲欧洲国产日韩| 国产 一区精品| 亚洲av中文av极速乱| 久久精品91蜜桃| 久久精品人妻少妇| 九九在线视频观看精品| 在线天堂最新版资源| 人妻夜夜爽99麻豆av| 少妇高潮的动态图| 国产午夜精品论理片| 日日摸夜夜添夜夜添av毛片| 色5月婷婷丁香| 波多野结衣巨乳人妻| 99热精品在线国产| 亚洲天堂国产精品一区在线| 国产精品一二三区在线看| 久久午夜福利片| 国模一区二区三区四区视频| 69人妻影院| 床上黄色一级片| 日韩欧美三级三区| 亚洲国产欧美在线一区| 久久久久久久久久黄片| eeuss影院久久| 日本与韩国留学比较| www.色视频.com| 国产一区二区在线观看日韩| 久久久午夜欧美精品| 日本与韩国留学比较| 美女黄网站色视频| 亚洲综合色惰| 午夜a级毛片| 日本免费一区二区三区高清不卡| 中文欧美无线码| 欧美+亚洲+日韩+国产| 我的老师免费观看完整版| 国产高潮美女av| 哪个播放器可以免费观看大片| 日韩,欧美,国产一区二区三区 | 久久九九热精品免费| 国产亚洲精品久久久久久毛片| 夜夜爽天天搞| 亚洲成人精品中文字幕电影| 五月伊人婷婷丁香| 久久久久久九九精品二区国产| 欧美又色又爽又黄视频| 久久中文看片网| 久久精品国产清高在天天线| www.色视频.com| 2021天堂中文幕一二区在线观| 91麻豆精品激情在线观看国产| 99热网站在线观看| 日韩欧美一区二区三区在线观看| av免费在线看不卡| 日本免费a在线| 一夜夜www| 偷拍熟女少妇极品色| 乱人视频在线观看| 欧美一区二区国产精品久久精品| 国产一区二区在线av高清观看| 亚洲aⅴ乱码一区二区在线播放| 精品无人区乱码1区二区| 国产色婷婷99| 国产成人一区二区在线| 免费人成在线观看视频色| 成人欧美大片| 日韩一区二区视频免费看| 亚洲性久久影院| 日本-黄色视频高清免费观看| 我的老师免费观看完整版| 久久热精品热| 天天躁夜夜躁狠狠久久av| 免费不卡的大黄色大毛片视频在线观看 | 亚洲在久久综合| 1000部很黄的大片| 久久久久久伊人网av| 久久综合国产亚洲精品| 青青草视频在线视频观看| 女人十人毛片免费观看3o分钟| 色播亚洲综合网| 秋霞在线观看毛片| 精品久久久久久成人av| 中文字幕人妻熟人妻熟丝袜美| 亚洲,欧美,日韩| 三级男女做爰猛烈吃奶摸视频| 日本成人三级电影网站| 国产精品不卡视频一区二区| 久久久久久久久中文| 麻豆成人av视频| 亚洲在久久综合| 亚洲乱码一区二区免费版| 精品一区二区免费观看| 99热只有精品国产| 69av精品久久久久久| 国产亚洲精品久久久com| 精品一区二区三区视频在线| 久久久久网色| 99久久成人亚洲精品观看| 美女被艹到高潮喷水动态| 精品久久久久久久人妻蜜臀av| 插逼视频在线观看| 国产精品综合久久久久久久免费| 久久久久久九九精品二区国产| 2021天堂中文幕一二区在线观| 久久久久久国产a免费观看| 成年女人永久免费观看视频| 一个人免费在线观看电影| 午夜激情欧美在线| 亚洲精品456在线播放app| 午夜精品国产一区二区电影 | 日本黄大片高清| 全区人妻精品视频| 日韩人妻高清精品专区| 日韩中字成人| 欧美性感艳星| 69av精品久久久久久| 午夜精品国产一区二区电影 | 99精品在免费线老司机午夜| 免费人成在线观看视频色| 久久久欧美国产精品| 国产极品精品免费视频能看的| 悠悠久久av| 中文欧美无线码| 淫秽高清视频在线观看| 18禁在线播放成人免费| 久久6这里有精品| 欧美激情在线99| 一级av片app| 亚洲三级黄色毛片| 日本熟妇午夜| 亚洲精品自拍成人| 久久精品国产自在天天线| 99久久中文字幕三级久久日本| 中文精品一卡2卡3卡4更新| 中国美女看黄片| 麻豆国产av国片精品| 欧美另类亚洲清纯唯美| 久久亚洲国产成人精品v| 国产白丝娇喘喷水9色精品| 精品熟女少妇av免费看| av.在线天堂| 国产蜜桃级精品一区二区三区| 久久精品国产清高在天天线| 成人特级av手机在线观看| 综合色av麻豆| 国产精华一区二区三区| 国产单亲对白刺激| 亚洲av电影不卡..在线观看| 欧洲精品卡2卡3卡4卡5卡区| 伊人久久精品亚洲午夜| 国产午夜精品一二区理论片| 啦啦啦观看免费观看视频高清| 国产在线精品亚洲第一网站| 三级经典国产精品| 小蜜桃在线观看免费完整版高清| 国产精品人妻久久久久久| 欧美潮喷喷水| 天堂中文最新版在线下载 | 男女边吃奶边做爰视频| 国产视频首页在线观看| 国产精品久久久久久av不卡| 亚洲国产欧美人成| 好男人视频免费观看在线| 人妻系列 视频| 久久久久久久久久久丰满| 国产高清不卡午夜福利| 国产老妇女一区| 日韩精品青青久久久久久| 亚洲精品亚洲一区二区| 一边亲一边摸免费视频| а√天堂www在线а√下载| 99九九线精品视频在线观看视频| 91在线精品国自产拍蜜月| 国产v大片淫在线免费观看| 亚洲在线自拍视频| 亚洲欧美成人精品一区二区| 国内精品一区二区在线观看| 99国产极品粉嫩在线观看| 日韩中字成人| 91麻豆精品激情在线观看国产| 久久精品综合一区二区三区| 一本久久精品| 嘟嘟电影网在线观看| 精品久久久久久成人av| 波野结衣二区三区在线| 日本五十路高清| 一区福利在线观看| 亚洲欧美日韩东京热| 中文资源天堂在线| av在线亚洲专区| 九九在线视频观看精品| 91麻豆精品激情在线观看国产| 中国国产av一级| 国模一区二区三区四区视频| 日本欧美国产在线视频| 精品人妻一区二区三区麻豆| 免费av观看视频| 人妻制服诱惑在线中文字幕| 亚洲av二区三区四区| 亚洲美女视频黄频| 久久久久久久午夜电影| 搡老妇女老女人老熟妇| 插阴视频在线观看视频| 亚洲精品久久国产高清桃花| 国产精品久久视频播放| 免费不卡的大黄色大毛片视频在线观看 | 在线播放无遮挡| 欧美+日韩+精品| 夫妻性生交免费视频一级片| 最好的美女福利视频网| 狂野欧美激情性xxxx在线观看| 夜夜爽天天搞| 女人被狂操c到高潮| 国产综合懂色| 最近最新中文字幕大全电影3| 两性午夜刺激爽爽歪歪视频在线观看| av天堂中文字幕网| 亚州av有码| 长腿黑丝高跟| 女人十人毛片免费观看3o分钟| 久久久国产成人免费| 一本精品99久久精品77| 熟妇人妻久久中文字幕3abv| 国产爱豆传媒在线观看| 欧美一区二区国产精品久久精品| 亚洲精品久久国产高清桃花| 日韩av在线大香蕉| 中国美女看黄片| 51国产日韩欧美| 精品人妻一区二区三区麻豆| 成人欧美大片| 久久欧美精品欧美久久欧美| 日韩制服骚丝袜av| 美女xxoo啪啪120秒动态图| 精品日产1卡2卡| 免费观看精品视频网站| 国产精品人妻久久久久久| 国产一区二区三区av在线 | 亚洲精品456在线播放app| 老师上课跳d突然被开到最大视频| 欧美变态另类bdsm刘玥| 亚洲第一区二区三区不卡| 精品午夜福利在线看| 亚洲七黄色美女视频| 人妻系列 视频| 99热精品在线国产| 国产精品一区二区在线观看99 | 精品不卡国产一区二区三区| 国产成年人精品一区二区| 亚洲精品影视一区二区三区av| 成人性生交大片免费视频hd| 日韩成人伦理影院| 午夜福利高清视频| 久久亚洲精品不卡| 国内精品宾馆在线| 精品久久久久久久久久久久久| 欧美+日韩+精品| 色综合亚洲欧美另类图片| 69av精品久久久久久| 51国产日韩欧美| 人妻制服诱惑在线中文字幕| 91午夜精品亚洲一区二区三区| 久久久久久国产a免费观看| 精品日产1卡2卡| 亚洲成av人片在线播放无| 两个人的视频大全免费| 在线观看美女被高潮喷水网站| 国产亚洲av嫩草精品影院| 中文字幕精品亚洲无线码一区| 久久久a久久爽久久v久久| 久久精品人妻少妇| 国国产精品蜜臀av免费| 久久午夜福利片| 久久草成人影院| 国产午夜精品论理片| 精品人妻偷拍中文字幕| 校园人妻丝袜中文字幕| 最近的中文字幕免费完整| 亚洲av成人精品一区久久| 国产精品福利在线免费观看| 长腿黑丝高跟| 老司机影院成人| 国产成人一区二区在线| 久久99蜜桃精品久久| 久久久久久国产a免费观看| 麻豆国产av国片精品| 观看免费一级毛片| 亚洲av二区三区四区| 日本五十路高清| 欧美成人一区二区免费高清观看| 精品99又大又爽又粗少妇毛片| 尾随美女入室| 亚洲真实伦在线观看| 成人特级av手机在线观看| 一区二区三区四区激情视频 | 日韩国内少妇激情av| 麻豆久久精品国产亚洲av| 亚洲av.av天堂| 在线免费观看不下载黄p国产| 国产亚洲精品av在线| 男女啪啪激烈高潮av片| 一级毛片aaaaaa免费看小| 特级一级黄色大片| 91久久精品电影网| 少妇猛男粗大的猛烈进出视频 | 国产老妇女一区| 最新中文字幕久久久久| 国产精品一区www在线观看| 日韩视频在线欧美| 欧美一区二区精品小视频在线| 听说在线观看完整版免费高清| 麻豆精品久久久久久蜜桃| 亚洲av二区三区四区| 美女黄网站色视频| 麻豆成人午夜福利视频| 国产欧美日韩精品一区二区| 成人漫画全彩无遮挡| 中文字幕久久专区| 在线观看一区二区三区| 国产乱人偷精品视频| 自拍偷自拍亚洲精品老妇| 99在线视频只有这里精品首页| 日韩av不卡免费在线播放| 免费看美女性在线毛片视频| 欧美变态另类bdsm刘玥| 国产成年人精品一区二区| 精品日产1卡2卡| 精品一区二区免费观看| 特大巨黑吊av在线直播| 亚洲乱码一区二区免费版| 久久久国产成人免费| 波多野结衣高清无吗| 亚洲七黄色美女视频| 99精品在免费线老司机午夜| 爱豆传媒免费全集在线观看| 欧美潮喷喷水| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 久久6这里有精品| 亚洲精华国产精华液的使用体验 | 最近2019中文字幕mv第一页| 中文欧美无线码| 一进一出抽搐动态| 国产女主播在线喷水免费视频网站 | 国产伦精品一区二区三区四那| 亚洲精品乱码久久久久久按摩| 亚洲成a人片在线一区二区| 三级国产精品欧美在线观看| 春色校园在线视频观看| 亚洲国产精品合色在线| 男人的好看免费观看在线视频| 婷婷亚洲欧美| 亚洲自拍偷在线| 如何舔出高潮| av在线观看视频网站免费| 最近手机中文字幕大全| 成人亚洲欧美一区二区av| 1024手机看黄色片| 高清午夜精品一区二区三区 | 99热这里只有精品一区| 草草在线视频免费看| 国产91av在线免费观看| 蜜臀久久99精品久久宅男| 熟女人妻精品中文字幕| 久久亚洲国产成人精品v| 精品午夜福利在线看| 最近的中文字幕免费完整| 国产精品一区二区性色av| 欧美成人一区二区免费高清观看| 免费av观看视频| 一级毛片电影观看 | 日韩 亚洲 欧美在线| 美女脱内裤让男人舔精品视频 | 性欧美人与动物交配| 亚洲电影在线观看av| 亚洲精品国产成人久久av| 一个人看视频在线观看www免费| 黄色视频,在线免费观看| 国内精品久久久久精免费| 国产成人91sexporn| 热99re8久久精品国产| 3wmmmm亚洲av在线观看| 亚洲成a人片在线一区二区| 午夜福利高清视频| 久久午夜亚洲精品久久| 国产精品久久久久久亚洲av鲁大| 久99久视频精品免费| 人妻夜夜爽99麻豆av| 校园人妻丝袜中文字幕| 在线天堂最新版资源| 六月丁香七月| 亚洲国产精品合色在线| 欧美性猛交╳xxx乱大交人| 黄色日韩在线| 亚洲高清免费不卡视频| 不卡视频在线观看欧美| 男插女下体视频免费在线播放| 免费无遮挡裸体视频| 久久精品综合一区二区三区| 久久精品国产鲁丝片午夜精品| 菩萨蛮人人尽说江南好唐韦庄 | 欧美一级a爱片免费观看看| 小蜜桃在线观看免费完整版高清| 村上凉子中文字幕在线| 欧美zozozo另类| 精品国内亚洲2022精品成人| 国产一区二区在线观看日韩| 国产精品久久久久久精品电影小说 | 亚洲av第一区精品v没综合| 91精品国产九色| 久久精品91蜜桃| 久久久久久国产a免费观看| 欧美3d第一页| 麻豆成人av视频| 免费不卡的大黄色大毛片视频在线观看 | 此物有八面人人有两片| 免费看美女性在线毛片视频| 级片在线观看| 99国产极品粉嫩在线观看| 亚洲精品久久国产高清桃花| 亚洲av中文字字幕乱码综合| 国内精品久久久久精免费| 中文字幕av成人在线电影| 乱系列少妇在线播放| 精品不卡国产一区二区三区| 18禁裸乳无遮挡免费网站照片| 久久鲁丝午夜福利片| 美女xxoo啪啪120秒动态图| 午夜视频国产福利| 国产一区二区在线av高清观看| 国产成人a区在线观看| 我的女老师完整版在线观看| 美女高潮的动态| 日韩制服骚丝袜av| 久久精品国产亚洲av天美| 久久亚洲精品不卡| 尤物成人国产欧美一区二区三区| www日本黄色视频网| 成人美女网站在线观看视频| 国产一区亚洲一区在线观看| 成人综合一区亚洲| 国产高清视频在线观看网站| 特级一级黄色大片| 午夜亚洲福利在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 一区二区三区四区激情视频 | 国产黄a三级三级三级人| 国产免费男女视频| 1024手机看黄色片| 看非洲黑人一级黄片| 美女被艹到高潮喷水动态| 国产精品爽爽va在线观看网站| 小说图片视频综合网站| 麻豆av噜噜一区二区三区| 美女国产视频在线观看| 久久人妻av系列| 日韩成人av中文字幕在线观看| 搞女人的毛片| 卡戴珊不雅视频在线播放| 九九在线视频观看精品| 一本一本综合久久| 精品人妻偷拍中文字幕| 精品欧美国产一区二区三| 亚洲成人精品中文字幕电影| 国产亚洲精品久久久com| 国产一级毛片七仙女欲春2| 日本一二三区视频观看| av国产免费在线观看| 蜜桃亚洲精品一区二区三区| 成人国产麻豆网| 桃色一区二区三区在线观看| 日日撸夜夜添| 国产大屁股一区二区在线视频| 国产高清视频在线观看网站| 亚洲三级黄色毛片| 欧美成人a在线观看| 精品不卡国产一区二区三区| 毛片女人毛片| 26uuu在线亚洲综合色| 国产乱人偷精品视频| av又黄又爽大尺度在线免费看 | 国产乱人视频| 亚洲第一电影网av| 国产精品人妻久久久影院| 免费一级毛片在线播放高清视频| 国产成人精品婷婷| 少妇高潮的动态图| 在线观看午夜福利视频| 亚洲一区二区三区色噜噜| av女优亚洲男人天堂| 日韩欧美 国产精品| 色尼玛亚洲综合影院| av免费在线看不卡| 啦啦啦韩国在线观看视频| 欧美一区二区国产精品久久精品| 在线天堂最新版资源| 亚洲av免费高清在线观看| 国产女主播在线喷水免费视频网站 | 久久人妻av系列| 久久人人爽人人爽人人片va| 免费一级毛片在线播放高清视频| 午夜老司机福利剧场| 悠悠久久av| 干丝袜人妻中文字幕| 九色成人免费人妻av| 中文资源天堂在线| 欧美在线一区亚洲| 国产免费男女视频| 在线免费十八禁| 婷婷亚洲欧美| 少妇猛男粗大的猛烈进出视频 | 久久久久免费精品人妻一区二区| 99国产精品一区二区蜜桃av| 全区人妻精品视频|