• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kumaraswamy Inverted Topp–Leone Distribution with Applications to COVID-19 Data

    2021-12-14 09:57:44AmalHassanEhabAlmetwallyandGamalIbrahim
    Computers Materials&Continua 2021年7期

    Amal S.Hassan,Ehab M.Almetwally and Gamal M.Ibrahim

    1Faculty of Graduate Studies for Statistical Research,Cairo University,Giza,12613,Egypt

    2Faculty of Business Administration,Delta University of Science and Technology,Mansoura,35511,Egypt

    3High Institute for Management Sciences,Belqas,35511,Egypt

    Abstract: In this paper, an attempt is made to discover the distribution of COVID-19 spread in different countries such as; Saudi Arabia, Italy,Argentina and Angola by specifying an optimal statistical distribution for analyzing the mortality rate of COVID-19.A new generalization of the recently inverted Topp Leone distribution,called Kumaraswamy inverted Topp–Leone distribution,is proposed by combining the Kumaraswamy-G family and the inverted Topp–Leone distribution.We initially provide a linear representation of its density function.We give some of its structure properties,such as quantile function,median,moments,incomplete moments,Lorenz and Bonferroni curves,entropies measures and stress-strength reliability.Then,Bayesian and maximum likelihood estimators for parameters of the Kumaraswamy inverted Topp–Leone distribution under Type-II censored sample are considered.Bayesian estimator is regarded using symmetric and asymmetric loss functions.As analytical solution is too hard, behaviours of estimates have been done viz Monte Carlo simulation study and some reasonable comparisons have been presented.The outcomes of the simulation study confirmed the efficiencies of obtained estimates as well as yielded the superiority of Bayesian estimate under adequate priors compared to the maximum likelihood estimate.Application to COVID-19 in some countries showed that the new distribution is more appropriate than some other competitive models.

    Keywords: Kumaraswamy-G family; maximum likelihood; Bayesian method;COVID-19; moments; quantile function; stress-strength reliability

    1 Introduction

    The inverted distributions are of great importance due to their applicability in many fields like; biological sciences, life testing problems, etc.The density and hazard rate shapes of inverted distributions exhibit dissimilar structure than matching the non-inverted distributions.Applications of inverted distributions have been discussed with various researchers, so the reader can refer to [1–8] among others.

    Recently, [9] provided the inverted Topp–Leone (ITL) distribution with the following probability density function (pdf)

    where,υis the shape parameter.The associated cumulative distribution function (cdf) is given by

    Extensions and generalizations of probability distributions have been regarded by many researchers to enhance flexibility in modelling variety of data in many fields.A well-notable family of adding parameters is the Kumaraswamy-G (K-G) proposed in [10].They defined the cdf and the pdf of K-G as follows:

    and,

    whereG(x), andg(x)are the baseline cdf and pdf,δ,? >0, are shape parameters.A physical clarification of the K-G (3) and (4), forδand?positive integers, is as follows.Consider a system is made of?independent items and that each item is made up ofδindependent sub-items.Suppose the system fails if any of?items fails and that each item fails if all of the sub-items fail.LetZj1,Zj2,...,Zjδdenote the life times of the sub-items within thejth component,j=1,...,?with common cdfG.LetZjdenote the lifetime of thejth item,j=1,...,?and let Z denote the lifetime of the entire system.Then the cdf ofZis given by

    In this work, we provide and study a generalization of ITL model, the so called Kumaraswamy inverted Topp–Leone (KITL) distribution.Using (2) in (4), the cdf of KITL distribution is

    where,?≡(υ,δ,?), a random variable with cdf (6) will be denoted by Z~KITL(υ,δ,?).Forδ=?=1, the KITL distribution provides ITL distribution provided in [9].The pdf of KITL is given by

    The KITL density function can exhibit different behavior for different parameters values (Fig.1).

    Figure 1:Density function of the KITL distribution

    The hazard rate function of KITL distribution is given as follows

    Plots of the hazard rate function (hrf) of KITL distribution for specific values of parameters are shown in Fig.2.We conclude that the hrf of KITL distribution has the increasing, decreasing and upside-down shape.

    Figure 2:The hrf of the KITL distribution

    We are motivated to suggest the KITL model according to:(a) Produce new useful form of ITL with three parameters; (b) discuss several statistical properties (c) introduce more flexible model with decreasing, increasing, and upside-down hazard rate shapes; (d) able to model the COVID-19 data, in Saudi Arabia, Italy, Argentina and Angola, than some other distributions.This article is addressed as follows.Section 2 deals with some important properties.Maximum likelihood (ML) and Bayesian estimators of parameters in presence of Type II censored (T2C) samples are given in Sections 3 and 4 respectively.Monte Carlo simulation is provided in Section 5.Analysis to COVID-19 data sets is carried in Section 6, and conclusions are presented in Section 7.

    2 Signifcant Statistical Measures

    Here, some significant properties of KITL distribution, specifically, linear representation of the pdf, quantile function, moments, Rényi and?-entropies, mean residual life, stress-strength reliability are derived.

    2.1 Useful Formulae

    Here, an important mathematical formula of KITL distribution is provided.Consider the binomial theorem

    in the pdf (7), we obtain

    Again, employ the binomial expansion in (10), then

    2.2 Quantile Function and Median

    The KITL distribution is easily simulated by inverting (6) as follows:If U has a uniform distribution on (0, 1), then Z can be obtained from

    L=andQ(u)is the quantile function of the KITL distribution.Hence, the medianzMof the distribution is derived by substitutingu=0.5 in (12).

    2.3 Moments Measures

    Thenth moment for KITL distribution about zero is given by using pdf (11) as follows

    which gives

    where,Λs,k,?=2υ(k+1)ψs,kand B(·,·)is the beta function.For,n=1, 2, 3, 4 we obtain the first four moments around origin.Tab.1 gives the basic moments measures for particular values of parameters.

    Table 1:Some moments values of the KITL distribution

    2.4 Incomplete and Conditional Moments

    Therth incomplete moment, say Ξr(z)ofZis obtained from (11) as follows

    whereβ(·,·,x)is the incomplete beta function.Settingr=1 in (15), we obtain the first incomplete moment as follows

    The Lorenz and Bonferroni curves are useful applications of the first incomplete moment defined byLo(p)=Ξ1(P)/E(P)andBo(p)=Lo(p)/F(p)respectively.The mean residual life is another application of Ξ1(t)defined bym1(t)=[1 ?Ξ1(t)]/S(t)?t.

    2.5 Rényi and ?-Entropies

    Here, we obtain Rényi and?-entropies.The Rényi entropyR(η)of a random variableZis defined by

    where,η>0 andη1.Substituting (7) in (17), then after some mathematical abbreviations of(f (z;?))η, we get that:

    Substituting (18) in (17), then we obtain the Rényi entropy of KITL distribution as follows:

    The?-entropy, sayR(?), is determined by the following relation

    The?-entropy of the KITL model will be

    2.6 Stress-Strength Reliability

    The stress-strength reliability (SSR) is defined as the probability that the system is strong frequently to beat the stress applied on it.Consider thatX1andX2are independent stress and strength random variables following the KITL(υ,δ1,?1), and KITL(υ,δ2,?2)distributions,respectively.Then, the SSR of the KITL distribution is defined by

    Using (6) and (7) in (22), then we get

    Using the binomial expansion in last equation and after simplification we have

    3 Maximum Likelihood Estimation

    Here, the ML estimators of the model parameters are determined via T2C scheme.Let z1:n,z2:n,...,zr:nis of T2C sample of size r from a life test of n items whose lifetimes have the KITL distribution with parametersδ,?andυ.Regarding T2C, the test is stopped at specified number of failure r before all n items have failed.Then, the log-likelihood function based on censored observed sample is given by

    ?j:n=The partial derivatives of lnL(z), denoted by ln?, with respect to the

    model parametersδ,?, andυare

    The ML estimators of parameters are determined by solving the non-linear Eqs.(26)–(28).

    4 Bayesian Estimation

    Here, we discuss the Bayesian estimation of the parameters of the KITL distribution.The Bayesian estimator is considered under squared error (SE) loss function which can be defined as;

    and linear exponential (LINEX) loss function which can be expressed as

    wherehreflects the direction and degree of asymmetry.

    Assuming that the prior distribution ofδ,?,υdenoted byπ(δ),π(?),π(υ)have an independent gamma prior distribution.The joint gamma prior density ofδ,?,υcan be written as

    Based on the following likelihood function of the KITL distribution

    and the joint prior density (31), the joint posterior of the KITL distribution with parametersδ,?andυis

    Then the joint posterior can be written as

    To obtain the Bayesian estimators, we can use the Markov Chain Monte Carlo (MCMC)approach.An important sub-class of the MCMC techniques is Gibbs sampling and more general Metropolis within Gibbs samplers.The Metropolis-Hastings (M-H) algorithm together with the Gibbs sampling are the two most popular example of a MCMC method.It’s similar to acceptance rejection sampling, the M-H algorithms consider that, to each iteration of the algorithm, a candidate value can be generated from the KITL distributions.We use the M-H within Gibbs sampling steps to generate random samples from conditional posterior densities of(δ,?,υ)as follows:

    and

    This satisfied the kids, but not the husband. The next day he purchased half a dozen young lilacs bushes and planted them around their yard, and several times since then he has added more.

    The Bayesian estimates based on SE and LINEX loss functions are obtained in simulation section.For more information, please see as an example [11–13].

    5 Simulation Study

    A simulation study for KITL model is conducted for samples of sizesn=20, 50, 100 and the parameters are estimated under complete and T2C samples.The number of failure items;r, is selected for two levels of censoring (LC), as 70% and 90%.10000 iterations are made to compute the ML estimate (MLE), bias and mean square error (MSE).The observed outcomes are listed in Tabs.2–4.

    Table 2:Bias and MSE of the MLE and Bayesian estimate for KITL model for complete sample

    Table 3:Bias and MSE of the MLE and Bayes estimate for KITL model under T2C at LC=70%

    Table 4:Bias and MSE of the MLE and Bayes estimate for KITL model under T2C at LC=90%

    From the above tables, we conclude the following

    i.As the sample sizenincreases, the bias decreases.

    ii.As the sample sizenincreases, the MSE decreases.

    iii.As the value ofυincreases, the bias and MSE increase.

    iv.As the value ofδincreases, the bias and MSE increase.

    v.As the value of?increases, the bias and MSE increases.

    vi.As the level of censoring increases, the bias and MSE decrease.

    6 Analysis to COVID-19 Data

    In this section, the KITL distribution is fitted to more famous fields of survival times of COVID-19 data with different country including Saudi Arabia, Italy, Argentina, Angola as well as March precipitation data.The data are available at https://covid19.who.int/.Reference [14]used this link to find data of COVID-19 for Egypt.Reference [15] used a deep neural network approach to train networks for estimating the optimal parameters of an SIR model endemicity of COVID-19 in Spain.The KITL model is compared with other some competitive models as, ITL,inverse Weibull (IW), inverse Lomax (IL), inverse Kumaraswamy (IK) and Topp Leone inverted Kumaraswamy (TLIK) distributions (see [16]).

    Tabs.5–9 provide values of Cramér–von Mises (W?), Anderson–Darling (A?) and Kolmogorov–Smirnov (KS) statistics for all models fitted based on five real data sets.In addition,these tables contain the MLEs and standard errors (SEs) (appear in parentheses) of the parameters for the considered models.We compare the fits of the KITL model with the ITL, IW, IL, IK and TLIK models (see Tabs.5–9).The fitted KITL, pdf and cdf of the five data sets are displayed in Figs.3–7, respectively.These figures indicate that the KITL distribution gets the lowest values of W?, A?, KS among all fitted models.

    6.1 Argentina Data

    The following COVID-19 data represent the daily new deaths which belong to Argentina in 65 days recorded from 1 June to 4 August 2020:20, 11, 19, 10, 18, 27, 27, 14, 14, 28, 19, 24, 31,30, 17, 23, 20, 24, 43, 25, 25, 13, 24, 33, 36, 39, 43, 25, 25, 28, 38, 27, 53, 40, 50, 37, 33, 79, 52,53, 42, 38, 31, 41, 67, 61, 85, 61,71, 42, 35, 145, 80, 111, 105, 125, 66, 43, 126, 118, 111, 155, 77,69, and 55.

    Tab.5 gives the MLEs, SEs and the statistics measures for all models.Tab.5 shows that the KITL model gives the smallest values for the K-S, W?and A?statistics among all fitted models.

    Table 5:MLE and statistical measures for COVID-19 data in Argentina

    Furthermore, we plot the histogram, estimated pdf plots for all models for data of Argentina in Fig.3.

    6.2 Saudi Arabia Data

    The following COVID-19 data belong to Saudi Arabia in 109 days recorded from 17 April to 4 August 2020 (data of daily new cases):762, 1088, 1122, 1132, 1141, 1147, 1158, 1172, 1197,1223, 1258, 1266, 1289, 1325, 1344, 1351, 1357, 1362, 1552, 1573, 1581, 1595, 1618, 1629, 1644,1645, 1686, 1687, 1701, 1704, 1759, 1793, 1815, 1869, 1877, 1881, 1897, 1905, 1911 ,1912, 1931,1966, 1968, 1975, 1993, 2039, 2171, 2201, 2235, 2238, 2307, 2331, 2378, 2399, 2429, 2442, 2476,2504, 2509, 2532, 2565, 2591, 2593, 2613, 2642, 2671, 2691, 2692, 2736, 2764, 2779, 2840 2852,2994, 3036, 3045, 3121, 3123, 3139, 3159, 3183, 3288, 3366, 3369, 3372, 3379, 3383, 3392, 3393,3402, 3580, 3717, 3733, 3921, 3927, 3938, 3941, 3943, 3989, 4128, 4193, 4207, 4233, 4267, 4301,4387, 4507, 4757, 4919.

    Tab.6 gives the MLEs, SEs and the statistics measures for all models for Saudi Arabia data.We conclude that the KITL is an adequate model for these data compared to other models.

    Table 6:MLE and statistical measures for COVID-19 data in Saudi Arabia country

    Furthermore, the histogram and estimated cdf plots for all models for data of Saudi Arabia are plotted in Fig.4.

    Figure 4:The histogram and estimated cdf for all models of COVID-19 in Saudi Arabia country

    6.3 Italy Data

    The considered COVID-19 data belong to Italy of 111 days that are recorded from 1 April to 20 July 2020.This data formed of daily new deaths divided by daily new cases.The data are as follows:0.2070, 0.1520, 0.1628, 0.1666, 0.1417, 0.1221, 0.1767, 0.1987, 0.1408, 0.1456, 0.1443,0.1319, 0.1053, 0.1789, 0.2032, 0.2167, 0.1387, 0.1646, 0.1375, 0.1421, 0.2012, 0.1957, 0.1297,0.1754, 0.1390, 0.1761, 0.1119, 0.1915, 0.1827, 0.1548, 0.1522, 0.1369, 0.2495, 0.1253, 0.1597,0.2195, 0.2555, 0.1956, 0.1831, 0.1791, 0.2057, 0.2406, 0.1227, 0.2196, 0.2641, 0.3067, 0.1749,0.2148, 0.2195, 0.1993, 0.2421, 0.2430, 0.1994, 0.1779, 0.0942, 0.3067, 0.1965, 0.2003, 0.1180,0.1686, 0.2668, 0.2113, 0.3371, 0.1730, 0.2212, 0.4972, 0.1641, 0.2667, 0.2690, 0.2321, 0.2792,0.3515, 0.1398, 0.3436, 0.2254, 0.1302, 0.0864, 0.1619, 0.1311, 0.1994, 0.3176, 0.1856, 0.1071,0.1041, 0.1593, 0.0537, 0.1149, 0.1176, 0.0457, 0.1264, 0.0476, 0.1620, 0.1154, 0.1493, 0.0673,0.0894, 0.0365, 0.0385, 0.2190, 0.0777, 0.0561, 0.0435, 0.0372, 0.0385, 0.0769, 0.1491, 0.0802,0.0870, 0.0476, 0.0562, 0.0138.

    Tab.7 provides the MLEs, SEs and the statistics measures for all models for Italy data.We conclude that the KITL is an adequate model for these data compared to other models.

    Also, the histogram and estimated cdf plots for all models for data of Italy country are plotted in Fig.5.

    Figure 5:The histogram and estimated cdf for all models of COVID-19 in Italy

    Table 7:MLE and statistical measures for COVID-19 data in Italy country

    Table 8:MLE and statistical measures for COVID-19 data in Angola

    Table 9:MLE and statistical measures for March precipitation data

    6.4 Angola Data

    The considered COVID19 data represent the daily new cases which are belonging to Angola of 27 days recorded from 8 July to 3 August 2020.The data are as follows:33, 10, 62, 4, 21, 23,19, 16, 35, 31, 31, 49, 18, 44, 30, 33, 39, 29, 36, 16, 18, 50, 78, 31, 39, 16, 116.

    Tab.8 presents the MLEs, SEs and the statistics measures for all models for Angola data.We conclude that the KITL is an adequate model for these data compared to other models.

    Fig.6 gives the histogram and estimated cdf plots for all models for data of Angola country.

    Figure 6:The histogram and estimated cdf for all models of COVID-19 in Angola

    6.5 March Precipitation Data in Minneapolis/St Paul

    Reference [17] reported data that contain 30 observations of the March precipitation (in inches) in Minneapolis/St Paul.The observed values are:0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75,2.48, 0.96, 1.89, 0.90, 2.05.

    Tab.9 presents the MLEs, SEs and the statistics measures for all models for March precipitation data.We conclude that the KITL is an adequate model for these data compared to other models.Fig.7 gives the histogram and estimated cdf plots for all models for data of March precipitation.

    Figure 7:CDF and PDF for different distribution for March precipitation data

    7 Conclusions

    This article formulates a generalization of inverted Topp–Leone distribution, named as Kumaraswamy inverted Topp–Leone distribution.Some statistical properties of the KITL distribution are provided.Bayesian and ML methods of estimation are considered.The Bayesian estimator is deduced under LINEX and SE loss functions.Monte Carlo simulation study is designed to assess the performance of estimates.Generally, we conclude that the Bayesian estimates are preferable than the corresponding other estimates in approximately most of the situations.Five real data of COVID-19 obtained from Saudi Arabia, Italy, Argentina, and Angola as well as March precipitation data are considered and they showed that KITL distribution is an adequate model for these data compared with other competitive distributions.

    Funding Statement:The authors received no specific funding for this study.

    Conficts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    狂野欧美激情性bbbbbb| 高清黄色对白视频在线免费看 | 久久人人爽人人片av| 国产 精品1| 免费黄网站久久成人精品| 美女中出高潮动态图| 色综合色国产| 成人午夜精彩视频在线观看| 亚洲第一av免费看| 男女无遮挡免费网站观看| 成人亚洲精品一区在线观看 | 精品国产一区二区三区久久久樱花 | 91久久精品电影网| 一区二区三区精品91| 日本色播在线视频| 亚洲第一区二区三区不卡| 身体一侧抽搐| 日韩不卡一区二区三区视频在线| 亚洲内射少妇av| 毛片一级片免费看久久久久| 免费在线观看成人毛片| 国产色婷婷99| 一个人看的www免费观看视频| 精华霜和精华液先用哪个| 91精品一卡2卡3卡4卡| 国产免费又黄又爽又色| 少妇高潮的动态图| 2022亚洲国产成人精品| 一本色道久久久久久精品综合| 高清不卡的av网站| 久久精品国产亚洲网站| 久久久久久久大尺度免费视频| 国产中年淑女户外野战色| 久久久久久人妻| 亚洲av中文字字幕乱码综合| 国产又色又爽无遮挡免| 日韩成人伦理影院| 欧美日韩亚洲高清精品| 久久久久久久国产电影| 在线观看一区二区三区激情| 国产精品人妻久久久久久| 人妻制服诱惑在线中文字幕| 大陆偷拍与自拍| 国产黄频视频在线观看| 国产精品秋霞免费鲁丝片| 亚洲欧洲日产国产| 日韩成人av中文字幕在线观看| 日韩欧美精品免费久久| 少妇人妻精品综合一区二区| 久久久久久久国产电影| 欧美97在线视频| 看免费成人av毛片| 亚洲av男天堂| 最近中文字幕高清免费大全6| 成人二区视频| 国产在线免费精品| 在线观看免费日韩欧美大片 | 免费看光身美女| 蜜桃久久精品国产亚洲av| 新久久久久国产一级毛片| 秋霞伦理黄片| 一个人看的www免费观看视频| 久久久亚洲精品成人影院| 国内揄拍国产精品人妻在线| 免费久久久久久久精品成人欧美视频 | 女性生殖器流出的白浆| 午夜福利网站1000一区二区三区| 国产真实伦视频高清在线观看| 黑人高潮一二区| 久久久久久久精品精品| 五月天丁香电影| 久久国产精品男人的天堂亚洲 | 亚洲精品第二区| 国产成人午夜福利电影在线观看| 亚洲精品日韩av片在线观看| 女人十人毛片免费观看3o分钟| 欧美日韩亚洲高清精品| 欧美日韩一区二区视频在线观看视频在线| 一本色道久久久久久精品综合| av不卡在线播放| 国产日韩欧美在线精品| 亚洲精品视频女| 噜噜噜噜噜久久久久久91| 韩国av在线不卡| 国产精品不卡视频一区二区| 国产精品偷伦视频观看了| 免费大片18禁| 九九爱精品视频在线观看| 国产精品.久久久| 草草在线视频免费看| av国产久精品久网站免费入址| 亚洲国产精品国产精品| 男的添女的下面高潮视频| av一本久久久久| 青春草国产在线视频| 伦精品一区二区三区| 精品人妻视频免费看| 久久97久久精品| 丝瓜视频免费看黄片| 夫妻性生交免费视频一级片| 国产国拍精品亚洲av在线观看| 黄色视频在线播放观看不卡| 日本黄色日本黄色录像| av免费在线看不卡| 久久精品国产亚洲网站| 一个人看的www免费观看视频| 高清日韩中文字幕在线| 最近的中文字幕免费完整| 尾随美女入室| 日韩制服骚丝袜av| 狂野欧美激情性bbbbbb| 亚洲色图av天堂| 亚洲av.av天堂| 免费观看的影片在线观看| 国产日韩欧美在线精品| 国产一区二区三区av在线| 嫩草影院新地址| 直男gayav资源| 亚洲国产高清在线一区二区三| 有码 亚洲区| 天堂俺去俺来也www色官网| 一个人看视频在线观看www免费| 99热国产这里只有精品6| 性色avwww在线观看| 久久国产精品男人的天堂亚洲 | av线在线观看网站| 91午夜精品亚洲一区二区三区| 伦理电影免费视频| 丝瓜视频免费看黄片| 精品熟女少妇av免费看| 亚洲av电影在线观看一区二区三区| 免费看日本二区| av福利片在线观看| 成人影院久久| 九九爱精品视频在线观看| 欧美xxⅹ黑人| 精品少妇久久久久久888优播| 久久精品国产亚洲av天美| 高清午夜精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 久久精品久久久久久久性| 日韩av在线免费看完整版不卡| 日韩伦理黄色片| 欧美xxxx黑人xx丫x性爽| 国产成人a区在线观看| 亚洲av国产av综合av卡| 好男人视频免费观看在线| 欧美97在线视频| 国产精品偷伦视频观看了| 国产免费视频播放在线视频| 小蜜桃在线观看免费完整版高清| 午夜福利在线在线| 嫩草影院入口| 80岁老熟妇乱子伦牲交| 成人国产麻豆网| 在现免费观看毛片| 免费大片黄手机在线观看| 国产成人免费观看mmmm| 干丝袜人妻中文字幕| .国产精品久久| 九色成人免费人妻av| 青春草国产在线视频| 亚洲av二区三区四区| 亚洲国产欧美在线一区| 久热久热在线精品观看| 永久免费av网站大全| 国产精品一区二区在线不卡| 乱码一卡2卡4卡精品| 精品人妻偷拍中文字幕| 久久午夜福利片| 亚洲三级黄色毛片| 精品国产三级普通话版| 51国产日韩欧美| 久久精品国产亚洲av涩爱| av免费在线看不卡| 特大巨黑吊av在线直播| 日韩一本色道免费dvd| 高清不卡的av网站| 91精品一卡2卡3卡4卡| 国产伦精品一区二区三区视频9| 国产精品久久久久久精品电影小说 | 久久精品久久久久久噜噜老黄| 一区二区三区乱码不卡18| 国产在线男女| 日韩制服骚丝袜av| 国产精品久久久久久精品古装| 欧美日韩综合久久久久久| 2018国产大陆天天弄谢| 男人爽女人下面视频在线观看| 国产淫语在线视频| 国产成人a区在线观看| 人妻一区二区av| 国产白丝娇喘喷水9色精品| 久久人妻熟女aⅴ| 美女国产视频在线观看| 国产成人a∨麻豆精品| 91精品国产九色| 不卡视频在线观看欧美| 国产黄频视频在线观看| 一级毛片久久久久久久久女| 人妻系列 视频| 91精品一卡2卡3卡4卡| 免费人妻精品一区二区三区视频| 丰满乱子伦码专区| 秋霞在线观看毛片| 亚洲性久久影院| 亚洲精品,欧美精品| 青青草视频在线视频观看| 国产亚洲一区二区精品| 熟女av电影| 少妇丰满av| 性色avwww在线观看| 精品亚洲成国产av| 免费观看a级毛片全部| 99久久精品国产国产毛片| 91精品一卡2卡3卡4卡| 国产精品秋霞免费鲁丝片| 久久久久国产精品人妻一区二区| 你懂的网址亚洲精品在线观看| 久久综合国产亚洲精品| 成人综合一区亚洲| 亚洲怡红院男人天堂| 在线免费观看不下载黄p国产| 波野结衣二区三区在线| 国产综合精华液| 亚洲第一av免费看| 99热网站在线观看| 亚洲精品国产av蜜桃| av网站免费在线观看视频| 国产av国产精品国产| 亚洲三级黄色毛片| 丰满人妻一区二区三区视频av| 秋霞在线观看毛片| 亚洲av欧美aⅴ国产| 国产成人免费无遮挡视频| 一级毛片aaaaaa免费看小| 免费播放大片免费观看视频在线观看| 亚洲欧美日韩另类电影网站 | 欧美一区二区亚洲| 午夜视频国产福利| 国产成人精品婷婷| 涩涩av久久男人的天堂| 亚洲欧美成人综合另类久久久| 精品一区二区三区视频在线| 精品国产露脸久久av麻豆| 欧美一区二区亚洲| 欧美高清成人免费视频www| 国产精品秋霞免费鲁丝片| 麻豆精品久久久久久蜜桃| 午夜福利在线观看免费完整高清在| 嫩草影院新地址| 日韩欧美一区视频在线观看 | 日韩欧美精品免费久久| 国产探花极品一区二区| 欧美性感艳星| 国产av一区二区精品久久 | 男人狂女人下面高潮的视频| 日韩av在线免费看完整版不卡| 亚洲欧美清纯卡通| h日本视频在线播放| 亚洲精品国产色婷婷电影| 久久久a久久爽久久v久久| 少妇人妻一区二区三区视频| 韩国av在线不卡| 大话2 男鬼变身卡| 日本一二三区视频观看| 亚洲成色77777| 免费大片18禁| 久久亚洲国产成人精品v| 十分钟在线观看高清视频www | 国产色婷婷99| 亚洲精品乱久久久久久| 伊人久久国产一区二区| 少妇人妻 视频| 人妻系列 视频| 成年美女黄网站色视频大全免费 | 欧美日韩视频高清一区二区三区二| 国产亚洲av片在线观看秒播厂| 日韩中字成人| 最近2019中文字幕mv第一页| 男女免费视频国产| 大片免费播放器 马上看| 欧美+日韩+精品| 多毛熟女@视频| 亚洲美女搞黄在线观看| 日韩精品有码人妻一区| 啦啦啦啦在线视频资源| 日产精品乱码卡一卡2卡三| 日韩亚洲欧美综合| 欧美三级亚洲精品| 高清欧美精品videossex| 国产成人freesex在线| 一边亲一边摸免费视频| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人 | 国产大屁股一区二区在线视频| 国产精品国产三级专区第一集| 中文字幕精品免费在线观看视频 | 在线 av 中文字幕| 寂寞人妻少妇视频99o| 六月丁香七月| 国产伦在线观看视频一区| 日本猛色少妇xxxxx猛交久久| 免费黄频网站在线观看国产| 国产成人91sexporn| 免费看日本二区| 久久精品人妻少妇| 欧美xxxx性猛交bbbb| 制服丝袜香蕉在线| av不卡在线播放| 久久久久久久久久人人人人人人| 嫩草影院入口| 成人免费观看视频高清| 欧美zozozo另类| 亚洲久久久国产精品| 一级毛片电影观看| 国产在线男女| 成人影院久久| 欧美日本视频| 激情 狠狠 欧美| 成人午夜精彩视频在线观看| 亚洲国产欧美在线一区| 久久久a久久爽久久v久久| 亚洲怡红院男人天堂| 久久久久久久大尺度免费视频| 亚洲欧美精品专区久久| 建设人人有责人人尽责人人享有的 | av在线观看视频网站免费| 中文乱码字字幕精品一区二区三区| 美女脱内裤让男人舔精品视频| 91精品国产国语对白视频| 国产成人freesex在线| 一级二级三级毛片免费看| 亚洲av中文字字幕乱码综合| 大片电影免费在线观看免费| 日韩视频在线欧美| 日本猛色少妇xxxxx猛交久久| 国产免费又黄又爽又色| 日韩av免费高清视频| 老师上课跳d突然被开到最大视频| 一区在线观看完整版| 免费看av在线观看网站| 日本色播在线视频| 久热久热在线精品观看| 精品人妻偷拍中文字幕| 最近中文字幕高清免费大全6| 99热6这里只有精品| 日日摸夜夜添夜夜爱| 国产v大片淫在线免费观看| 日韩,欧美,国产一区二区三区| 少妇被粗大猛烈的视频| 日韩亚洲欧美综合| 亚洲,欧美,日韩| 亚洲av成人精品一二三区| 日本欧美国产在线视频| 色5月婷婷丁香| 一本色道久久久久久精品综合| 国产69精品久久久久777片| 免费观看在线日韩| 欧美性感艳星| 国产一区有黄有色的免费视频| 国产一区二区三区av在线| 色婷婷久久久亚洲欧美| 欧美日本视频| 18禁裸乳无遮挡动漫免费视频| 国产无遮挡羞羞视频在线观看| 国产成人精品久久久久久| 久久99热这里只频精品6学生| 欧美97在线视频| 男女下面进入的视频免费午夜| 99热6这里只有精品| 色网站视频免费| 一区二区三区四区激情视频| 一级毛片aaaaaa免费看小| 搡女人真爽免费视频火全软件| 春色校园在线视频观看| 少妇高潮的动态图| 精品少妇久久久久久888优播| 熟女av电影| 亚洲欧洲日产国产| 国产欧美日韩一区二区三区在线 | 国产成人a区在线观看| 黑人高潮一二区| 日韩视频在线欧美| 激情五月婷婷亚洲| 高清视频免费观看一区二区| 免费观看无遮挡的男女| 九九在线视频观看精品| 国产片特级美女逼逼视频| 三级国产精品欧美在线观看| 少妇人妻精品综合一区二区| 国产精品无大码| 欧美成人精品欧美一级黄| 日本色播在线视频| 亚洲av在线观看美女高潮| 亚洲av.av天堂| 国产精品麻豆人妻色哟哟久久| 最近最新中文字幕免费大全7| 99热这里只有是精品50| 免费av中文字幕在线| 日韩在线高清观看一区二区三区| 青青草视频在线视频观看| 日韩,欧美,国产一区二区三区| 国产成人免费无遮挡视频| 国产精品一区二区在线观看99| 王馨瑶露胸无遮挡在线观看| 永久网站在线| 免费黄色在线免费观看| av在线观看视频网站免费| 男人狂女人下面高潮的视频| 国产精品秋霞免费鲁丝片| 直男gayav资源| 97超视频在线观看视频| 日韩一区二区视频免费看| 日韩强制内射视频| 久久久久久久久久成人| 六月丁香七月| 国产精品一区二区性色av| av女优亚洲男人天堂| 男女啪啪激烈高潮av片| 久久精品久久久久久久性| 美女主播在线视频| 日日啪夜夜爽| 一级片'在线观看视频| h视频一区二区三区| 国产精品一区二区在线不卡| 岛国毛片在线播放| 最后的刺客免费高清国语| 高清黄色对白视频在线免费看 | kizo精华| 91久久精品国产一区二区成人| 久久女婷五月综合色啪小说| 中文乱码字字幕精品一区二区三区| 国产高潮美女av| 麻豆乱淫一区二区| 少妇丰满av| 又爽又黄a免费视频| 免费不卡的大黄色大毛片视频在线观看| 日韩电影二区| 丰满迷人的少妇在线观看| 国产一区二区三区综合在线观看 | 日韩人妻高清精品专区| 国产精品久久久久久精品古装| 精品国产三级普通话版| 免费少妇av软件| av一本久久久久| 不卡视频在线观看欧美| 国产 一区精品| 国产91av在线免费观看| 国产一区亚洲一区在线观看| 欧美变态另类bdsm刘玥| 天美传媒精品一区二区| 99视频精品全部免费 在线| 在线免费十八禁| 日日啪夜夜撸| 熟妇人妻不卡中文字幕| 又粗又硬又长又爽又黄的视频| 97超碰精品成人国产| 国产av国产精品国产| 99视频精品全部免费 在线| 国产片特级美女逼逼视频| 免费高清在线观看视频在线观看| 狠狠精品人妻久久久久久综合| 美女国产视频在线观看| 成人午夜精彩视频在线观看| 国产亚洲91精品色在线| 大又大粗又爽又黄少妇毛片口| 色哟哟·www| 99国产精品免费福利视频| 午夜福利视频精品| 边亲边吃奶的免费视频| 少妇人妻精品综合一区二区| 99热国产这里只有精品6| tube8黄色片| 精品一区在线观看国产| 亚洲欧美日韩东京热| 国语对白做爰xxxⅹ性视频网站| 交换朋友夫妻互换小说| 香蕉精品网在线| 日日撸夜夜添| 国产精品人妻久久久久久| 久久国产亚洲av麻豆专区| 免费观看av网站的网址| 少妇熟女欧美另类| 免费播放大片免费观看视频在线观看| 亚洲三级黄色毛片| 日本爱情动作片www.在线观看| 国产有黄有色有爽视频| 亚洲人与动物交配视频| 免费播放大片免费观看视频在线观看| 美女中出高潮动态图| 欧美一区二区亚洲| 国产有黄有色有爽视频| 一级黄片播放器| 26uuu在线亚洲综合色| 欧美一级a爱片免费观看看| 国产精品一区二区在线不卡| 老司机影院毛片| 日韩 亚洲 欧美在线| 亚洲成人中文字幕在线播放| 精品久久久噜噜| 亚洲av电影在线观看一区二区三区| 黄色日韩在线| 日韩 亚洲 欧美在线| 看非洲黑人一级黄片| 国产色婷婷99| 啦啦啦中文免费视频观看日本| 亚洲第一区二区三区不卡| 天堂俺去俺来也www色官网| 亚洲国产精品专区欧美| 日韩在线高清观看一区二区三区| 欧美日韩国产mv在线观看视频 | 九九爱精品视频在线观看| 2018国产大陆天天弄谢| 大香蕉久久网| 乱系列少妇在线播放| 欧美日韩精品成人综合77777| 免费少妇av软件| 视频中文字幕在线观看| 高清午夜精品一区二区三区| 日本黄色片子视频| 各种免费的搞黄视频| 伦精品一区二区三区| 日本一二三区视频观看| 日本av免费视频播放| 亚洲人成网站高清观看| 99九九线精品视频在线观看视频| 国产av精品麻豆| 麻豆精品久久久久久蜜桃| 国产成人免费观看mmmm| 亚洲欧美成人精品一区二区| 久久午夜福利片| 午夜福利在线在线| 欧美成人午夜免费资源| 成人国产av品久久久| 一级毛片久久久久久久久女| 亚洲人成网站在线观看播放| 少妇裸体淫交视频免费看高清| 国产精品.久久久| 午夜福利影视在线免费观看| 成人毛片60女人毛片免费| 国产精品欧美亚洲77777| 男人添女人高潮全过程视频| 国产精品一区二区在线不卡| 精品一区二区三卡| 丰满乱子伦码专区| 人妻 亚洲 视频| 免费av中文字幕在线| 亚洲人与动物交配视频| 国产熟女欧美一区二区| 日韩伦理黄色片| 最近最新中文字幕大全电影3| a级毛片免费高清观看在线播放| 99国产精品免费福利视频| videossex国产| 欧美精品一区二区大全| 少妇人妻精品综合一区二区| 日韩中字成人| 欧美日韩亚洲高清精品| 只有这里有精品99| 99热这里只有精品一区| 大码成人一级视频| 亚洲欧美成人精品一区二区| 午夜福利视频精品| 成年美女黄网站色视频大全免费 | 日韩伦理黄色片| 国产日韩欧美在线精品| 国产精品免费大片| 久久av网站| 黄色怎么调成土黄色| 久久久久久久久久人人人人人人| 国产老妇伦熟女老妇高清| 国产极品天堂在线| 中文字幕制服av| 18禁裸乳无遮挡动漫免费视频| 国产av一区二区精品久久 | 久久久久久久国产电影| 成人国产麻豆网| 精品亚洲成a人片在线观看 | 夜夜爽夜夜爽视频| 夫妻午夜视频| 色5月婷婷丁香| 91精品国产国语对白视频| 你懂的网址亚洲精品在线观看| 在线免费十八禁| 日本与韩国留学比较| 欧美日韩亚洲高清精品| 日日撸夜夜添| 国产欧美日韩精品一区二区| 国产精品女同一区二区软件| 免费大片黄手机在线观看| 中文字幕精品免费在线观看视频 | 欧美老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图 | 国国产精品蜜臀av免费| 国产伦理片在线播放av一区| 亚洲成人手机| 天天躁夜夜躁狠狠久久av| 女的被弄到高潮叫床怎么办| 亚州av有码| 人妻一区二区av| 亚洲综合精品二区| 男女啪啪激烈高潮av片| 欧美高清性xxxxhd video| 国产精品人妻久久久影院| 色5月婷婷丁香| 免费观看无遮挡的男女| 高清午夜精品一区二区三区| 久久久久精品性色| 久久99精品国语久久久| 国产一级毛片在线| 最近最新中文字幕免费大全7| 少妇的逼水好多| 啦啦啦视频在线资源免费观看| 国产精品久久久久久久电影|