• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Solutions for Heat Transfer of An Unsteady Cavity with Viscous Heating

    2021-12-14 09:57:36WongMuhammadSohailSiriandNoor
    Computers Materials&Continua 2021年7期

    H.F.Wong,Muhammad Sohail,Z.Siri and N.F.M.Noor,*

    1Institute of Mathematical Sciences,Faculty of Science,University of Malaya,50603 Kuala Lumpur,Malaysia

    2Unit of Engineering Design and Product Development,Technology and Engineering Division,Malaysian Rubber Board,47000 Sungai Buloh,Malaysia

    3Department of Applied Mathematics&Statistics,Institute of Space Technology,44000 Islamabad,Pakistan

    Abstract:The mechanism of viscous heating of a Newtonian fluid filled inside a cavity under the effect of an external applied force on the top lid is evaluated numerically in this exploration.The investigation is carried out by assuming a two-dimensional laminar in-compressible fluid flow subject to Neumann boundary conditions throughout the numerical iterations in a transient analysis.All the walls of the square cavity are perfectly insulated and the top moving lid produces a constant finite heat flux even though the fluid flow attains the steady-state condition.The objective is to examine the effects of viscous heating in the fully insulated lid-driven cavity under no-slip and free-slip Neumann boundary conditions coupled with variations in Reynolds and Prandtl numbers.The partial differential equations of time-dependent vorticity-stream function and thermal energy are discretized and solved using a self-developed finite difference code in MATLAB? environment.Time dependence of fluid thermodynamics is envisaged through contour and image plots.A commercial simulation software,Ansys Fluent?utilizing a finite element code is employed to verify the finite difference results produced.Although the effect of viscous heating is very minimal,Neumann no-slip and free-slip boundary conditions are able to trap the heat inside the fully insulated cavity as the heat flux is constantly supplied at the top lid.A lower Reynolds number and a greater Prandtl number with free-slip effects reduce temperature distribution in the cavity with a faster velocity than in the no-slip condition as the free-slip behaves as a lubricant.

    Keywords: Lid-driven; viscous heating; vorticity-stream function; finite difference method; finite element method

    Nomenclature

    1 Introduction

    Viscous heating is generated by a fluid’s viscous friction when the fluid is sheared by an external motion, provided the fluid is not inviscid and sluggish [1].Viscous heating process is important in creating energy sources while Neumann boundary condition (BC) is important in renewable energy applications such as in energy saving or to increase energy efficiency in buildings.Viscous heating is studied in a slipped flow region using a free-slip boundary condition by Mohamed [2].His study shows a momentous effect on the heat transfer and fluid flow peculiarity in microchannel studies even though the fluid has tenuous viscous flow and possesses a tiny value of hydraulic diameter.Koo et al.[3] discovered that viscous dissipation is effectively influenced by Reynolds number and geometrical aspect ratio.The viscous dissipation effect on free-slip BC is also discussed by Rij et al.[4,5] in a 3D micro-channel gas flow where it is dependent on the amount of rarefaction and other factors.

    Another important study of viscous dissipation merged with Joule heating, carried out by Kumar et al.[6], shows an upward trend of temperature distribution in a non-Newtonian fluid flow.The heat transfer process of a Newtonian fluid which takes into account the viscous dissipation in a fully-developed region was performed using an explicit numerical method [7].The variation of the heat transfer process presented an unusual degree in the fully-developed region,both hydro-dynamically and thermally, due to the thermal energy balance between the heated walls is combined with adiabatic walls and the viscous heating [8–10].Other applications of combined Neumann BC and constant wall temperature can be discovered in magnetized nanofluids in a porous cylinder [11], buoyancy effects [12], open trapezoidal cavity [13] and in variation of heat source lengths [14].The catastrophe such as the source of heat in storm or hurricane is derived from the viscous dissipation near the surface [15] and it can be estimated via the turbulent kinetic energy [16] where the heat viscous dissipation is a cubic function of the wind speed.

    In some cases, such as in magneto-hydrodynamic (MHD) and mixed convection studies [17,18], the electrically conducting fluid motion is retarded by the magnetic field [19], hence it produces an insignificant viscous heating as compared with the amount of heat generated by a buoyancy force.Generalized differential quadrature method was utilized to study the MHD non-Newtonian nanofluid flow and the impacts of various physical properties [20].Other numerical methods such as Gear–Chebyshev–Gauss–Lobatto collocation method [21] and the fourth-fifthorder Runge–Kutta–Fehlberg method [22] were used to solve an MHD nanofluid flow with a thermal radiation and an applied magnetic field respectively.The study of MHD flow was also conducted in a fluid thermal analysis where three modes of convection specifically referred as free, forced and Marangoni convections are considered [23].Besides, Zhou et al.[24] examined Boussinesq approximation [25] in the thermal energy equation when a Newtonian fluid is subject to a mixed convection process with different heat sources in a lid-driven cavity.Rahman et al.[26]revealed that the velocity and temperature profiles of a lid-driven flow with a semi-circular heated wall are independent of the viscous heating when they are subject to magnetic field and Joule heating.Anderson [27] derived the thermal energy equation for a highly viscous flow which includes the viscous terms used to estimate the meteorite surface temperature.Newtonian homogenous and heterogenous nanofluids [28–31] can also be considered in the future studies as the occupying fluids in the cavity flows with viscous heating and slip effects.

    The cited literatures [17–27] obviously show that viscous heating is important in fluid dynamics and thermal analyses where the viscous heating is comparable with other effects.The intention of this work is to utilize the lid-driven cavity model combined with Neumann BCs [32].To make our analysis easier, the moving top lid is not taken into account in the heat transfer analysis thus it will be presumed as an insulator.In order to facilitate the calculations, all the governing equations employed in our paper are given in terms of the vorticity-stream function [33] and thermal energy equation [25].Then we use an explicit finite difference method (FDM) to discretize all the governing equations and conduct the fluid flow and heat transfer analyses from an unsteady-state until the steady-state flow is achieved.Those results are then compared with the solutions of finite element method (FEM) using Ansys Fluent?.We also impose free-slip BC in the cavity model to investigate how the viscous heating process influences the temperature distribution inside the whole cavity.

    2 Mathematical Model

    The schematic drawing of a two-dimensional lid-driven cavity model within the Cartesian coordinate system is shown in Fig.1.In this case, the external velocity,Uwallis imposed on the top lid,uandvare the velocity vectors inxandydirections,ρa(bǔ)ndμare fluid density and dynamic viscosity,andare the velocity gradients along the fixed wall inx- andy-directions,HandLare height and length of the cavity.Subsequently,kandcare thermal conductivity and specific heat of the fluid,andare the temperature gradients along the fixed wall inx- andy-directions.The fluid flow process is presumed as twodimensional, in-compressible, laminar and the Newtonian fluid properties are not in the function of temperature or they behave as constants.Then the buoyancy force is excluded from the heat transfer analysis as the heat flux (due to viscous heating) is generated from the moving top lid.Therefore, no convection occurs from the bottom fixed lid to the top moving lid while Boussinesq approximation [25] is not included in the thermal energy equation.The top moving lid is presumed fully insulated.

    Figure 1:Schematic drawing of a 2D cavity flow with Neumann BC

    The continuity and governing equations for the two-dimensional in-compressible viscous unsteady Newtonian fluid flow inx- andy-directions are given by [34]

    wheretis time andgx=gy=gis gravity acceleration.The curl [35] of Eqs.(2) and (3) is known as vorticity-stream function scheme or vorticity transport equation and it is given by [33] as

    where stream function,ψis given by Eqs.(5) and (6) while vorticity,ζis given by Eq.(7),

    The vorticity,ζat the moving top lid can be obtained via Taylor series expansion [36] and it is given by:

    The vorticity,ζat the left, right and bottom walls for the free-slip BC are given by:

    where Δx=Δy=his the step size,jis the row,iis the column,nis the number of nodes andlsis a slip length.If the slip length,lsis equal to zero, Eq.(9) till Eq.(11) can be used for vorticity,ζat the left, right and bottom walls for the no-slip BC respectively.

    Two-dimensional unsteady thermal energy equation [25] which includes the effect of viscous dissipation is given by

    whereTis a temperature.Substituting Eqs.(5) and (6) into Eq.(12) will result in

    The temperature,Tat each of the walls and at each of the corners can be obtained by introducing Neumann BC [32] in the unsteady-state condition where they are given by

    3 Numerical Method

    In this section, some matters related to numerical modelling for solution of the twodimensional vorticity transport equation and thermal energy equation will be discussed.These issues are applications of the simplest numerical method, stability issue and iteration algorithm.Since Eq.(4) and Eq.(13) are nonlinear second-order partial differential equations, an explicit FDM is the simplest method among the feasible techniques for the numerical solution.However,it is conditionally stable [33].Eqs.(4) and (13) can be transformed into equivalent finite difference equations (FDE) using forward and central finite-divided-difference formulas.

    Rearranging Eq.(22) yields

    Similarly, the resultant FDE for the thermal energy equation is given by

    Rearranging Eq.(24) yields

    From Eq.(23), the criterion is determined by requiring that the coefficient associated with the node of interest at the previous time is greater than or equal to zero [25], such that

    and from Eq.(24),

    Eqs.(26) and (27) are the conditional stability criteria.However, the maximum allowable time step, Δtshould be evaluated again so that it can fulfill Eqs.(26) and (27).Thus, the adopted maximum allowable time step, Δtmaxis given by

    wheremin( ) means the smallest element is taken inside the bracket.Eq.(28) is called Poisson equation [32].Substituting Eqs.(5) and (6) into Eq.(7) yields

    Similarly, Eq.(29) can be discretized using the FDE as follows:

    wherenis the number of iterations.Eq.(29) can later be solved by using Gauss–Seidel method [35].The time-marching method to solve the forward FDE of the vorticity transport equation and thermal energy equation are carried out in MATLAB?environment following the procedure below:

    Step I:Initial values of stream function,ψand vorticity,ζare set to zero at the first time step,t=0.Values of stream function,ψat the top, bottom, left and right boundaries are set to zero along the iterative process from the 1st time step,t=0 till the last time step,t=tend.

    Step II:The interior nodes of the stream function,ψare solved using Eq.(29) by Gauss–Seidel method or any other method until all these values converge.In this paper, the convergence criterion of 10?5is chosen [37].

    Step III:The values of vorticity at those four boundaries,ζtop,ζbottom,ζleftandζrightare calculated using Eqs.(8)–(11).

    Step IV:The interior nodes of vorticity,ζare updated using Eq.(23).The maximum allowable time step, Δtmaxis ensured to be within the limit prescribed by Eq.(28).

    Step V:An initial value of temperature throughout the lid-driven is given.Then Eq.(25)is coupled to the function,ψwith the value obtained from Eq.(30).Similarly, the maximum allowable time step,tmaxis utilized inStep IV.

    Step VI:The values of temperature at those four walls and four corners namelyare calculated using Eq.(14) till Eq.(21).

    Step VII:Steps II–VIare repeated until the steady-state condition of the flow is achieved or at any desired time step.

    4 Results and Analysis

    In this study, the aspect ratio,A=1 (1 m×1 m) will be used throughout our paper.There are six case studies considered to characterize the flow field and temperature distribution in the two-dimensional lid-driven cavity flow with insulated walls in order to understand the effect of viscous heating in both no-slip and free-slip Neumann BCs.The six test cases with different fluid properties and laminar unsteady flow conditions are performed in an iterative procedure until the analysis period,t=1.5 s is achieved (longer than the steady-state criterion ofe=10?5).The applied velocity isUwall=10 m/s (exceptUwall=5 m/s in the 3rd and 4th test cases).The fluid density,ρis set to 15 kg/m3, dynamic viscosity,μ= 2 Pa.s, thermal conductivity,k=10 W/mK,specific heat,c=10J/kg·K (exceptc=20 J/kg·K in the 5th and 6th cases) and initial temperature,Tiof the whole fluid inside the cavity is set to 25°C.The time step, Δtis set to 0.001 s and the entire computation is performed on uniform grids 40 × 40 (Δx=Δy=h).The Prandtl number,Pr is defined as

    whereνis a kinematic viscosity andαis a thermal diffusivity defined by

    The Reynolds number,ReLcan be reckoned via Eq.(33) [38] as

    whereLis height of the cavity.Then, free-slip BC with slip length value,ls=1 m is assigned in the second, fourth and sixth test cases while the no-slip BC is assigned with the slip length value,ls=0 m in other test cases.Tab.1 shows the values of Pr,ReLandαin all these test cases.

    Table 1:Flow conditions of six test cases

    Throughout this paper, the 1st and 2nd test cases will serve as the benchmarks (both cases with identical Reynold number, ReL, but subject to no-slip and free-slip BCs) for comparison with other test cases 3 until 6.The seven steps of FDM as discussed in Section 3 are implemented here and the self-developed FDM code is used to analyse the fluid flow and thermal energy results of the square cavity model in contour and image plots.First and foremost, the 1st test case results are compared with those results of FEM using a commercial engineering software Ansys Fluent?.Figs.2 and 3 show the comparison of contour plots ofu-andv-velocity and temperature distributions respectively produced using the MATLAB?code (FDM) and Ansys Fluent?(FEM).Stream function distribution at the end of iteration and at the location of the maximum stream function value,ψmax(designated as point A, evaluated based on the steady-state criterion ofe=10?5) in the stream function distribution for the 1st test case (no-slip BC) are shown in Fig.4.The steady-state criteria ofe=10?5[33] ande=10?8are shown in the stream function profile of the point A as shown in Fig.5.Centre vertical line and centre horizontal line of the lid-driven model as shown in Fig.1 were used to create the comparison ofu- andv-velocity profiles between FDM (MATLAB?) and FEM (Ansys Fluent?) att=1.50 s.Fig.6 shows a good agreement is achieved foru-velocity profile along the centre horizontal line andv-velocity profile along the centre vertical line at the steady-state condition.Once the FDM MATLAB?code is verified using Ansys Fluent?, the 2nd test case (free-slip BC) is then simulated using FDM.

    Figure 2:Comparison of contour plots at t=1.50 s:(a) u-velocity using FDM MATLAB? and(b) FEM Ansys Fluent? (c) v-velocity using FDM MATLAB? and (d) FEM Ansys Fluent?

    Figure 3:Comparison of image plot at t=1.50 s (a) using FDM MATLAB? and (b) FEM Ansys

    Figure 4:Stream function distribution at t=1.50 s

    Figure 5:Stream function profile at the point A

    Stream function, temperature distribution and location of the maximum temperature,Tmaxfor the 2nd test case are shown in Fig.7.Besides, the associated contour plots ofu- andv-velocity distributions of the cavity flow are shown in Fig.8.Based on Figs.3a and 7b, the temperature distributions are quite similar in both no-slip (1st test case) and free-slip (2nd test case) BCs.The heat is generated from the moving top lid and concentrated at the top right corner first.Subsequently the heat is slowly propagated to the right bottom corner and to the entire cavity.However, the overall temperature distribution is lower when the lid-driven flow is subject to the free-slip BC in Fig.7b (2nd test case).Formation of eddies in the free-slip BC is also restricted in contrast with the no-slip BC (1st test case) as depicted in Fig.7a.Comparison of temperature profiles at the point A for both test cases is shown in Fig.9.

    Figure 6:Comparison of results for (a) the u-velocity profile and (b) the v-velocity profile

    Figure 7:(a) Stream function and (b) temperature distribution for the 2nd test case (free-slip BC)

    Figure 8:(a) U-velocity and (b) V-velocity distributions for the 2nd test case (free-slip BC)

    Figure 9:Temperature profile at the point A:(a) 1st test case (no-slip) and (b) 2nd test case (freeslip)

    Both slip BCs show similar trend in temperature profile at the point A (location of maximum stream function,ψmaxas shown in Figs.3 and 7) and the temperatures keep increasing, but the no-slip BC gives an upper offset than the free-slip BC as shown in Fig.9.This is due to the free-slip of the fluid at the wall or solid interface, thus no frictional heat can be generated at the wall.These two benchmarks (1st and 2nd test cases) are then compared with the 3rd and 4th test cases (with lower Reynold number,ReLthan those benchmarks) as shown in Fig.10.The 3rd and 4th cases show a reduction in temperature profile due to the lower value of applied velocity,Uwallwhich leads to a smaller stream function distribution in the whole lid-driven flow as prescribed by

    Eqs.(5) and (6).Because of the last term on the right-hand side of thermal energy equation in Eq.(12), the viscous heating term is much related to the stream function,ψmaxand the resultant viscous heating will bring about a reduction in the temperature profileT(ψmax)at the point A.The benchmarks (the 1st and 2nd test cases) are then compared with the 5th and 6th test cases(with higher Prandtl number, Pr than those benchmarks) as shown in Fig.11 for the temperature profile at the point A.All the results of the 1st until the 6th test cases are shown in Tab.2.

    Both the test cases (no-slip and free-slip BCs) show lower temperature profiles at the point A as compared to the benchmarks.Since Pr is directly proportional to specific heat,c, a higher value ofcwill result in a reduction of thermal boundary layer thickness.Recall that Prandtl number, Pr is a ratio of momentum and energy transport by diffusion in the velocity and thermal boundary layers given by [25]:

    Figure 10:Temperature profile at the point A (ReL=100 vs.ReL=50)

    Figure 11:Temperature profile at the point A (Pr=1 vs.Pr=2)

    whereδis thickness of the velocity boundary layer andδtis thickness of the thermal boundary layer.It is also noticeable that the steady-state period at the criterion ofe=10?5for the 5th and 6th test cases are similar with the benchmarks.Although the fluid flow has attained its steady-state condition as elucidated in Fig.5, no steady-state condition can be observed in the temperature profiles of all the test cases as shown in Figs.10 and 11.Moreover, temperature profile increases in quasi-linear behaviour even though Eq.(13) is an elliptic equation [32] due to the moving top lid provides an additional finite heat flux to the entire cavity.It can also be deduced that the temperature profile at the point A (or even at any point inside the cavity) will keep increasing if the iteration is extended at any period.The 1st test case is executed at the unsteady-state condition for 3 s as shown in Fig.12 and it proves that the temperature profile is increasing quasi-linearly.This temperature rise is due to each of the fluid layers is being sheared relative to each other and this will create viscous heating caused by the fluid viscosity.The heat is being trapped inside the cavity flow by the insulated walls with no way to escape.Thus, temperature profile at every point inside the cavity flow (or temperature distribution of the cavity flow) will keep increasing.Based on Tab.2, location of the maximum stream function,ψmax(point A) at the end of the iteration is merely influenced by Reynold number, ReLand free-slip BC whereas there is nothing to do with thermal conductivity,kand specific heat,cof the fluid.This is because solution of the stream function,ψfrom Eq.(23) can be done without consideration of Eq.(25).Also, the location of the maximum temperature,Tmaxat the end of the iteration is constant for all the test cases.

    Table 2:Results of six test cases

    Figure 12:Temperature profile at the point A (1st test case at prolonged period)

    5 Conclusion

    In our study, we assume the two-dimensional unsteady lid-driven cavity model is perfectly insulated and no heat loss from the heat flux (viscous heating) is produced by the moving top lid to the environment.The FDM MATLAB solutions are verified earlier with FEM Ansys Fluent?before the six test cases are examined based on no-slip and free-slip BCs.The main findings are as follows:

    ? Temperature profile shows an increasing trend in all test cases as the produced constant heat flux is supplied continuously by the moving top lid.If the iteration period is prolonged to any other period, the temperature profiles of these test cases will keep increasing.This is the reason why the surface temperature of a meteorite during its free-fall keeps increasing although the frictional heating or viscous heating due to the atmospheric air contributes a very small portion of heat.

    ? Neumann BC is able to trap the heat produced inside the cavity model as the temperature profiles keep increasing quasi-linearly.Trapped heat is important for energy efficiency such as for building insulation during winter season.

    ? The lower value of Reynolds number, ReL, the lower value of thermal diffusivity,αand the free-slip effect of the fluid flow can create lower temperature distributions.

    ? Greater value of Prandtl number, Pr can reduce the temperature distribution inside the cavity model.

    ? Free-slip effect will cause the fluid to flow faster but with a lower temperature distribution than that of the no-slip BC as the free-slip effect is assumed to act like a lubricant.

    ? Although FDM scheme is simple and sufficient to explain the phenomenon of Neumann BC and free-slip effect, this method is limited to simple geometry only.

    Funding Statement:The authors acknowledged the funding received from the Ministry of Higher Education, Malaysia and University of Malaya (https://umresearch.um.edu.my/) under the Project No:IIRG006C-19IISS leaded by Z.Siri for this study.

    Conficts of Interest:The authors declare no conflicts of interest to report regarding the present study.

    亚洲一区高清亚洲精品| 99久久精品热视频| 色综合色国产| 亚洲无线观看免费| 美女 人体艺术 gogo| 成年人黄色毛片网站| 黄色视频,在线免费观看| 国产高潮美女av| 国产精品久久久久久久久免| 免费搜索国产男女视频| 亚州av有码| 女同久久另类99精品国产91| 99精品在免费线老司机午夜| 一边摸一边抽搐一进一小说| 两人在一起打扑克的视频| 2021天堂中文幕一二区在线观| 日本在线视频免费播放| 18禁裸乳无遮挡免费网站照片| 欧美日韩精品成人综合77777| 亚洲成人久久爱视频| 88av欧美| 国产三级在线视频| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看日本一区| 亚洲avbb在线观看| 成人性生交大片免费视频hd| 一区二区三区四区激情视频 | 久久久久久久久中文| 直男gayav资源| 美女高潮的动态| 国产成人影院久久av| 免费看美女性在线毛片视频| 国产精品久久久久久精品电影| 村上凉子中文字幕在线| 国产熟女欧美一区二区| 日韩在线高清观看一区二区三区 | 国产精品1区2区在线观看.| 在线国产一区二区在线| 久久精品国产鲁丝片午夜精品 | 日韩一本色道免费dvd| 变态另类成人亚洲欧美熟女| 91狼人影院| 日韩大尺度精品在线看网址| 内地一区二区视频在线| 麻豆国产av国片精品| 69人妻影院| a级毛片a级免费在线| 深夜精品福利| 热99在线观看视频| 最好的美女福利视频网| 亚洲国产高清在线一区二区三| 亚洲国产精品合色在线| 小蜜桃在线观看免费完整版高清| 国产大屁股一区二区在线视频| 一级av片app| 51国产日韩欧美| 国产精华一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产欧美人成| 亚洲av免费在线观看| www.色视频.com| av国产免费在线观看| av中文乱码字幕在线| 悠悠久久av| 成年女人看的毛片在线观看| www.www免费av| 国产三级中文精品| av在线蜜桃| 亚洲中文字幕日韩| 亚洲av五月六月丁香网| 韩国av一区二区三区四区| 日日摸夜夜添夜夜添小说| 天堂影院成人在线观看| 婷婷丁香在线五月| 麻豆精品久久久久久蜜桃| 国产精华一区二区三区| 一边摸一边抽搐一进一小说| 91久久精品国产一区二区成人| 国内毛片毛片毛片毛片毛片| 亚洲精品国产成人久久av| 亚洲内射少妇av| 亚洲av.av天堂| 久久精品国产亚洲av香蕉五月| 五月伊人婷婷丁香| 亚洲美女黄片视频| 波多野结衣高清无吗| 国产精品综合久久久久久久免费| 欧美一区二区精品小视频在线| 国产在线男女| 成人二区视频| 国产成人aa在线观看| 久久久久国内视频| 欧美一区二区亚洲| 偷拍熟女少妇极品色| avwww免费| 亚洲电影在线观看av| 午夜免费男女啪啪视频观看 | 69av精品久久久久久| 国产精品爽爽va在线观看网站| 免费电影在线观看免费观看| 美女大奶头视频| 国产乱人伦免费视频| 久久人妻av系列| 无人区码免费观看不卡| 日本 欧美在线| 有码 亚洲区| 亚洲欧美日韩无卡精品| 日本黄大片高清| 黄色配什么色好看| 精品久久久久久久人妻蜜臀av| 国产精品永久免费网站| 久久久国产成人精品二区| 非洲黑人性xxxx精品又粗又长| 久9热在线精品视频| 好男人在线观看高清免费视频| 亚洲最大成人手机在线| 国产精华一区二区三区| 国产亚洲精品久久久com| 久久九九热精品免费| 亚洲最大成人手机在线| 午夜精品在线福利| 给我免费播放毛片高清在线观看| 国产精华一区二区三区| 日韩亚洲欧美综合| 国产人妻一区二区三区在| 亚洲国产色片| 乱系列少妇在线播放| 在线免费观看不下载黄p国产 | 精品人妻偷拍中文字幕| 97碰自拍视频| 日本五十路高清| 亚洲真实伦在线观看| 少妇人妻一区二区三区视频| 国产不卡一卡二| 日韩精品有码人妻一区| 一进一出好大好爽视频| 日本精品一区二区三区蜜桃| 亚洲内射少妇av| 亚洲最大成人av| 男女之事视频高清在线观看| 亚洲欧美日韩卡通动漫| 久久亚洲真实| 最后的刺客免费高清国语| 最后的刺客免费高清国语| 国产精品嫩草影院av在线观看 | 日日摸夜夜添夜夜添小说| 亚洲精华国产精华液的使用体验 | 久久久久久久精品吃奶| 国模一区二区三区四区视频| 一本久久中文字幕| 亚洲国产色片| 国产日本99.免费观看| 极品教师在线视频| 精品久久久久久久久久久久久| 亚洲欧美日韩高清在线视频| 可以在线观看毛片的网站| 国产在线男女| 内射极品少妇av片p| 免费观看人在逋| 欧美zozozo另类| 亚洲精品影视一区二区三区av| 18禁裸乳无遮挡免费网站照片| 久久久国产成人免费| 很黄的视频免费| 中出人妻视频一区二区| 色尼玛亚洲综合影院| 真实男女啪啪啪动态图| 精品国内亚洲2022精品成人| 在线观看舔阴道视频| 成人高潮视频无遮挡免费网站| av天堂中文字幕网| 成人av一区二区三区在线看| 人人妻,人人澡人人爽秒播| 3wmmmm亚洲av在线观看| 国产91精品成人一区二区三区| 天堂√8在线中文| 舔av片在线| 男女视频在线观看网站免费| 国产亚洲av嫩草精品影院| 国产麻豆成人av免费视频| 男人狂女人下面高潮的视频| 国产精品久久电影中文字幕| 久久国产精品人妻蜜桃| av专区在线播放| 一个人看视频在线观看www免费| 婷婷精品国产亚洲av| 国产高潮美女av| 久久人人精品亚洲av| 搡女人真爽免费视频火全软件 | 亚洲成人久久性| 亚洲国产精品sss在线观看| 高清日韩中文字幕在线| 亚洲国产欧美人成| 亚洲欧美日韩卡通动漫| 久久九九热精品免费| 色视频www国产| 中文字幕人妻熟人妻熟丝袜美| 美女被艹到高潮喷水动态| 日本熟妇午夜| 亚洲人成网站在线播放欧美日韩| 老熟妇仑乱视频hdxx| 成人三级黄色视频| 88av欧美| 一个人免费在线观看电影| 一本久久中文字幕| 桃色一区二区三区在线观看| 国内久久婷婷六月综合欲色啪| 日韩一区二区视频免费看| 又黄又爽又免费观看的视频| 999久久久精品免费观看国产| 日日啪夜夜撸| 亚洲综合色惰| 乱人视频在线观看| 一边摸一边抽搐一进一小说| 三级毛片av免费| 国产久久久一区二区三区| 看片在线看免费视频| 国产精品一区二区三区四区免费观看 | 一区二区三区免费毛片| 亚洲人与动物交配视频| 欧洲精品卡2卡3卡4卡5卡区| a级一级毛片免费在线观看| 亚洲色图av天堂| 亚洲专区中文字幕在线| 成人国产麻豆网| 狂野欧美激情性xxxx在线观看| 一区二区三区免费毛片| 国产日本99.免费观看| 最近最新中文字幕大全电影3| 国产精品人妻久久久久久| 亚洲专区国产一区二区| 欧美+亚洲+日韩+国产| 黄色女人牲交| 淫秽高清视频在线观看| 日韩欧美精品免费久久| 国产69精品久久久久777片| 国产色爽女视频免费观看| 国产探花极品一区二区| av在线蜜桃| 亚洲美女视频黄频| 久久久精品欧美日韩精品| 日韩欧美精品免费久久| 啦啦啦啦在线视频资源| 亚洲在线观看片| 久久久久国产精品人妻aⅴ院| 99久久久亚洲精品蜜臀av| 国产高清激情床上av| 九九热线精品视视频播放| 最后的刺客免费高清国语| 男人狂女人下面高潮的视频| 99精品在免费线老司机午夜| 国产精品98久久久久久宅男小说| av在线观看视频网站免费| 美女黄网站色视频| 欧美zozozo另类| 亚洲欧美激情综合另类| 亚洲av成人精品一区久久| 国产毛片a区久久久久| 亚洲精品在线观看二区| 欧美黑人欧美精品刺激| 91久久精品国产一区二区成人| 欧美性感艳星| 两个人视频免费观看高清| 国产欧美日韩一区二区精品| 99久国产av精品| 联通29元200g的流量卡| 亚洲国产精品合色在线| 最后的刺客免费高清国语| 校园春色视频在线观看| 亚洲专区国产一区二区| 亚州av有码| 欧美色视频一区免费| 欧美一级a爱片免费观看看| av在线蜜桃| or卡值多少钱| 久久草成人影院| 国产精品98久久久久久宅男小说| 久久精品国产亚洲av香蕉五月| 成人无遮挡网站| 欧美高清性xxxxhd video| 成人永久免费在线观看视频| 亚洲精品一区av在线观看| 亚洲精品色激情综合| 国产精品女同一区二区软件 | 亚洲无线观看免费| 国内精品美女久久久久久| 亚洲国产精品sss在线观看| 日韩欧美国产一区二区入口| 久久精品久久久久久噜噜老黄 | 国产一区二区三区视频了| 日韩精品青青久久久久久| 久久精品久久久久久噜噜老黄 | 日本与韩国留学比较| 丰满的人妻完整版| 一个人免费在线观看电影| 亚洲人与动物交配视频| 国产又黄又爽又无遮挡在线| 老熟妇乱子伦视频在线观看| 2021天堂中文幕一二区在线观| 99在线人妻在线中文字幕| 91在线精品国自产拍蜜月| 99热这里只有是精品在线观看| 免费观看精品视频网站| 国产亚洲精品久久久久久毛片| 最新中文字幕久久久久| 校园人妻丝袜中文字幕| 久久99热6这里只有精品| 中文字幕高清在线视频| 一区二区三区高清视频在线| 免费电影在线观看免费观看| 久久天躁狠狠躁夜夜2o2o| 欧美另类亚洲清纯唯美| 免费看光身美女| 少妇人妻一区二区三区视频| 偷拍熟女少妇极品色| 在线看三级毛片| 欧美高清成人免费视频www| 欧美+亚洲+日韩+国产| 成年女人永久免费观看视频| 精品欧美国产一区二区三| 成人美女网站在线观看视频| 亚洲电影在线观看av| 久久中文看片网| 精品久久久久久久末码| 亚洲精品乱码久久久v下载方式| 国产免费男女视频| 精品国内亚洲2022精品成人| 精品一区二区三区人妻视频| 亚洲国产欧洲综合997久久,| 国产亚洲av嫩草精品影院| 国产高清三级在线| 夜夜看夜夜爽夜夜摸| 97超视频在线观看视频| 男插女下体视频免费在线播放| 真实男女啪啪啪动态图| 亚洲国产高清在线一区二区三| 国产精品国产三级国产av玫瑰| 午夜老司机福利剧场| 天堂影院成人在线观看| 熟女电影av网| 深夜精品福利| 精品一区二区三区视频在线| 国产精品电影一区二区三区| 久久久久久九九精品二区国产| 亚洲国产欧洲综合997久久,| 最近在线观看免费完整版| 国产精品电影一区二区三区| 欧美一区二区精品小视频在线| 麻豆国产97在线/欧美| 国产麻豆成人av免费视频| 日韩欧美在线乱码| 又粗又爽又猛毛片免费看| 最近视频中文字幕2019在线8| 两人在一起打扑克的视频| 国产成人一区二区在线| av中文乱码字幕在线| 一个人免费在线观看电影| 欧美成人免费av一区二区三区| 欧美不卡视频在线免费观看| 久久99热这里只有精品18| 亚洲va在线va天堂va国产| 淫妇啪啪啪对白视频| 91久久精品电影网| 久久精品影院6| 无人区码免费观看不卡| 在线观看舔阴道视频| 亚洲国产精品sss在线观看| 欧美zozozo另类| 99久久成人亚洲精品观看| 日本-黄色视频高清免费观看| 99在线人妻在线中文字幕| 在线免费观看不下载黄p国产 | 91久久精品国产一区二区三区| 99热这里只有是精品在线观看| 一个人看视频在线观看www免费| 久久精品久久久久久噜噜老黄 | 在线看三级毛片| 亚洲最大成人中文| 久久婷婷人人爽人人干人人爱| 97热精品久久久久久| 黄色欧美视频在线观看| 嫩草影视91久久| 日本免费a在线| 嫁个100分男人电影在线观看| 男女那种视频在线观看| 久久热精品热| 亚洲av一区综合| 国产69精品久久久久777片| 欧美不卡视频在线免费观看| 美女黄网站色视频| 人妻少妇偷人精品九色| 色5月婷婷丁香| 国产高清激情床上av| 日本欧美国产在线视频| 人人妻人人看人人澡| 国产真实伦视频高清在线观看 | 可以在线观看毛片的网站| av中文乱码字幕在线| 日韩av在线大香蕉| 国产成人a区在线观看| 男人舔奶头视频| 欧美zozozo另类| 亚洲av成人精品一区久久| 国产精品久久久久久亚洲av鲁大| 欧美成人性av电影在线观看| 老师上课跳d突然被开到最大视频| ponron亚洲| 亚洲av第一区精品v没综合| 精品久久久久久久久久久久久| 国产高潮美女av| 一夜夜www| 久久国产精品人妻蜜桃| 亚洲精品亚洲一区二区| 欧美激情在线99| 天堂网av新在线| 亚洲乱码一区二区免费版| 精品久久久久久久末码| 欧美潮喷喷水| www日本黄色视频网| 久久九九热精品免费| 国产精品不卡视频一区二区| 国产高清激情床上av| 久久久国产成人免费| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久精品电影| 国产美女午夜福利| 黄色一级大片看看| 欧美精品国产亚洲| 成人二区视频| 午夜福利在线观看免费完整高清在 | 97超级碰碰碰精品色视频在线观看| 亚洲av五月六月丁香网| 变态另类丝袜制服| 女的被弄到高潮叫床怎么办 | 一本久久中文字幕| 国产亚洲精品综合一区在线观看| 久久这里只有精品中国| 国产精品美女特级片免费视频播放器| 国内精品一区二区在线观看| 国产亚洲91精品色在线| 国产v大片淫在线免费观看| 午夜福利在线观看免费完整高清在 | 国产精品嫩草影院av在线观看 | 黄色日韩在线| 午夜a级毛片| 男插女下体视频免费在线播放| 尾随美女入室| 亚洲av美国av| 老司机午夜福利在线观看视频| 国产一区二区三区视频了| 男女之事视频高清在线观看| 成人美女网站在线观看视频| 别揉我奶头 嗯啊视频| 老熟妇仑乱视频hdxx| 91久久精品国产一区二区成人| 成人欧美大片| 草草在线视频免费看| 国产欧美日韩一区二区精品| 看黄色毛片网站| 精品国产三级普通话版| 日韩 亚洲 欧美在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲内射少妇av| 国产精品久久久久久久久免| 一区二区三区激情视频| 国产一区二区三区在线臀色熟女| 99热这里只有精品一区| 精品一区二区三区视频在线观看免费| 亚洲内射少妇av| 欧美丝袜亚洲另类 | 丰满人妻一区二区三区视频av| 国产精品一区www在线观看 | 国产欧美日韩精品亚洲av| 国产69精品久久久久777片| 国产极品精品免费视频能看的| 欧美日韩乱码在线| 亚洲欧美日韩高清在线视频| 少妇被粗大猛烈的视频| 日本一二三区视频观看| 午夜精品一区二区三区免费看| 久久久午夜欧美精品| 日本a在线网址| 中文字幕人妻熟人妻熟丝袜美| 一进一出抽搐gif免费好疼| 免费观看人在逋| 精品人妻一区二区三区麻豆 | 亚洲人成网站在线播| 一区二区三区激情视频| 中文字幕熟女人妻在线| 久久精品国产亚洲av天美| 国产免费一级a男人的天堂| 我要搜黄色片| 老师上课跳d突然被开到最大视频| 村上凉子中文字幕在线| 亚洲欧美日韩高清专用| 色综合色国产| 露出奶头的视频| 日韩大尺度精品在线看网址| 久久99热这里只有精品18| 成人鲁丝片一二三区免费| ponron亚洲| 午夜福利视频1000在线观看| 白带黄色成豆腐渣| 超碰av人人做人人爽久久| 国产伦精品一区二区三区四那| 我的女老师完整版在线观看| а√天堂www在线а√下载| 看片在线看免费视频| 88av欧美| 精品久久久久久久久久久久久| 美女免费视频网站| 亚洲欧美激情综合另类| 一进一出抽搐gif免费好疼| 男插女下体视频免费在线播放| 精品福利观看| 国产伦人伦偷精品视频| 免费av观看视频| 有码 亚洲区| 淫妇啪啪啪对白视频| 久久久久久久久大av| 亚洲人成网站在线播| 亚洲国产精品sss在线观看| 很黄的视频免费| 日韩一本色道免费dvd| 最近在线观看免费完整版| 在线天堂最新版资源| 亚洲国产精品成人综合色| 欧美绝顶高潮抽搐喷水| 国产精品精品国产色婷婷| 日日夜夜操网爽| 亚洲国产欧洲综合997久久,| 久久人妻av系列| 亚洲av.av天堂| 色尼玛亚洲综合影院| avwww免费| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美日韩无卡精品| 国产视频内射| 精品人妻1区二区| 在线免费观看不下载黄p国产 | 男人和女人高潮做爰伦理| 久久香蕉精品热| 日韩高清综合在线| 在线观看免费视频日本深夜| 久久天躁狠狠躁夜夜2o2o| 看十八女毛片水多多多| 久久6这里有精品| 亚洲最大成人中文| 精品免费久久久久久久清纯| 国产精品99久久久久久久久| or卡值多少钱| 国产亚洲精品综合一区在线观看| 成人特级av手机在线观看| 精品久久久久久久人妻蜜臀av| 亚洲精品粉嫩美女一区| 可以在线观看毛片的网站| 亚洲内射少妇av| 窝窝影院91人妻| 国产av不卡久久| 免费人成在线观看视频色| 九色成人免费人妻av| 国产欧美日韩精品一区二区| 床上黄色一级片| 国产精品电影一区二区三区| 床上黄色一级片| 精品久久久久久久人妻蜜臀av| 久久久久久久午夜电影| 波多野结衣巨乳人妻| 亚洲最大成人av| 久久久久免费精品人妻一区二区| 欧美性感艳星| 国产探花极品一区二区| 日日干狠狠操夜夜爽| 成人国产综合亚洲| 日本 欧美在线| 国产视频一区二区在线看| 高清毛片免费观看视频网站| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 日日啪夜夜撸| 久久久国产成人精品二区| www日本黄色视频网| 内地一区二区视频在线| 一进一出好大好爽视频| 国产色爽女视频免费观看| 国产欧美日韩精品亚洲av| av专区在线播放| 露出奶头的视频| 内射极品少妇av片p| 99国产精品一区二区蜜桃av| .国产精品久久| 久久国内精品自在自线图片| 12—13女人毛片做爰片一| 热99re8久久精品国产| 国产精品福利在线免费观看| 性欧美人与动物交配| av国产免费在线观看| 亚洲美女搞黄在线观看 | 久久中文看片网| 免费人成在线观看视频色| 欧美性猛交黑人性爽| 伦精品一区二区三区| 欧美zozozo另类| 九九在线视频观看精品| 麻豆国产av国片精品| 国内少妇人妻偷人精品xxx网站| 在线看三级毛片| eeuss影院久久| 午夜久久久久精精品| 久久精品影院6| 日日摸夜夜添夜夜添av毛片 | 伦精品一区二区三区| 啪啪无遮挡十八禁网站|