• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Second Law Analysis of Magneto Radiative GO-MoS2/H2O–(CH2OH)2 Hybrid Nanofuid

    2021-12-14 09:57:18AdnanUmarKhanNaveedAhmedSyedTauseefMohyudDinDumitruBaleanuKottakkaranSooppyNisarandIlyasKhan
    Computers Materials&Continua 2021年7期

    Adnan,Umar Khan,Naveed Ahmed,Syed Tauseef Mohyud-Din,Dumitru Baleanu,Kottakkaran Sooppy Nisar and Ilyas Khan

    1Department of Mathematics,Mohi-ud-Din Islamic University,Nerian Sharif AJ&K,12080,Pakistan

    2Department of Mathematics and Statistics,Hazara University,Mansehra,21120,Pakistan

    3Department of Mathematics Faculty of Sciences,HITEC University,Taxila Cantt,47070,Pakistan

    4University of Multan,Multan,66000,Pakistan

    5Department of Mathematics,Cankaya University,Ankara,Turkey

    6Institute of Space Sciences,Magurele,077125,Romania

    7Department of Medical Research,China Medical University Hospital,China Medical University,Taichung,Taiwan

    8Department of Mathematics,College of Arts and Sciences,Prince Sattam bin Abdulaziz University,Wadi,Aldawaser,11991,Saudi Arabia

    9Faculty of Mathematics and Statistics,Ton Duc Thang University,Ho Chi Minh City,72915,Vietnam

    Abstract: Entropy Generation Optimization (EGO) attained huge interest of scientists and researchers due to its numerous applications comprised in mechanical engineering,air conditioners,heat engines,thermal machines,heat exchange,refrigerators,heat pumps and substance mixing etc.Therefore,the study of radiative hybrid nanofluid(GO-MoS2/C2H6O2–H2O) and the conventional nanofluid (MoS2/C2H6O2–H2O) is conducted in the presence of Lorentz forces.The flow configuration is modeled between the parallel rotating plates in which the lower plate is permeable.The models which govern the flow in rotating system are solved numerically over the domain of interest and furnished the results for the temperature,entropy generation and thermophysical characteristics of the hybrid as well as conventional nanofluids, respectively.It is examined that the thermal profile intensifies against stronger thermal radiations and magnetic field.The surface of the plate is heated due to the imposed thermal radiations and magnetic field which cause the increment in the temperature.It is also observed that the temperature declines against more rotating plates.Further,the entropy production increases for more dissipative effects and declines against more magnetized fluid.Thermal conductivities of the hybrid nanofluid enhances promptly in comparison with regular liquid therefore,under consideration hybrid nanofluid is reliable for the heat transfer.Moreover,dominating thermal transport is perceived for the hybrid nanofluid

    Keywords: Heat transfer; thermal radiation; Entropy Generation; GO-MoS2 hybrid nanoparticles; thermophysical characteristics

    1 Introduction

    The analysis of heat transfer is a topic of interest due to its variety of applications comprised in various industries and engineering.The remarkable applications of thermal transport are comprised in pharmaceutical, microelectronics, fuel cells, heat exchanger, home appliance and domestic refrigerator etc.To finish the production process of many industrial ingredients, a huge amount of heat is required.The conventional liquids like kerosene oil, engine oil, ethylene glycol EG and water are less heat transfer fluids which fail to provide the considerable heat transfer.Therefore, researchers and engineers paved their attentions to overcome these major issues of daily life, industrialist and engineers.They thought that the heat transfer in regular liquids (mentioned above) can be enhanced by adding an extra nanomaterial known as nanoparticles in the host liquid.Finally, a new class of heat transfer fluids was developed and termed as Nanofluid.Nanofluids are colloidal mixture of nanomaterial and host liquid in which both the host fluid and the nanomaterial are thermally in equilibrium.These fluids overcome the issues faced by the engineers and industrialist.Despite that nanofluids have an extra heat transfer characteristics,scientists and engineers thought that a new hybrid class of fluids could be developed and focused on a new type of fluids which has remarkable heat transfer properties as compared to that of regular liquids and nanofluids, respectively.This newly developed class is termed as Hybrid Nanofluid.These fluids are the coupling of hybrid nanoparticles in the base liquid or hybrid base liquid.The development of this newly developed heat transfer fluids almost covers the issues of the industrialist.

    Hybrid nanofluids are colloidal suspension of the hybrid nanomaterials into the host liquids.Thermal conductance of the hybrid nanomaterials is high in comparison with conventional nanomaterials.Due to high thermal conductance, hybrid nanofluids are superior over the conventional nanoliquids.Therefore, the hybrid nanoliquids are extensively used in various industries where a large amount of heat transfer is required to accomplish the production processes.The applications of these fluids comprised in medical sciences, chemical engineering, biotechnology, computer chips, coatings, catalytic purposes, civil engineering, flow characteristics of the fluids in various geometries and coatings of the vehicles and in cancer therapy.

    Hybrid nanofluids became very popular among the researchers, engineers and industrialist due to their better heat transfer characteristics.Therefore, researchers examined the influences of hybrid nanofluids in the flow regimes, heat transfer rate and local nusselt number in different geometries by considering different flow conditions at the boundaries and far away from the surface.In 2019, Ahmed et al.[1] examined the flow of water suspended by hybrid nanoparticles of Ag–Fe3O4between Riga plates.In ordered to discuss more physical aspects of the flow regimes, they incorporated the influences of nonlinear thermal radiations and chemical reaction phenomenon in the energy and concentration constitutive relations, respectively.Das et al.[2]considered Cu–Al2O3/H2O hybrid nanofluid in the porous channel.Also, they encountered second law analysis and found the interesting results.

    The second law analysis in the hybrid nanofluid composed by graphene and ferromagnetic nanoparticles was presented in [3].They explored the results for thermal enhancement in the hybrid nanofluid by incorporating the magnetic field effects in the energy equation.The remarkable influences of magnetic field in the momentum and temperature of the hybrid nanofluid were examined.In 2018, Huminic et al.[4] discussed the heat transfer rate and entropy generation analysis in a flattened tube.To enhance the amount of heat transfer, they used the hybrid nanofluid and found fascinating results for entropy generation and heat transfer characteristics.In 2017, Hussain et al.[5] explored the mixed convection flow by considering the colloidal suspension of the host liquid suspended by the hybrid nanoparticles in a cavity placed horizontally.The fascinating results regarding to entropy generation and influences of magnetic field were discussed in their study.Three-dimensional squeezing flow of the hybrid liquid (water-EG) saturated by hybrid nanoparticles (Fe3O4–Ag) was presented in [6].An effective thermal conductivity model based on various shape factors of the hybrid nanoparticles was emerged in the energy equation for better thermal enhancement.A comparative colloidal study of the nanofluid and hybrid nanofluid by considering the forced convection effects was reported in [7].They treated the models numerically and found the results for the flow regimes and the heat transfer characteristics.

    Thermal enhancement and entropy generation inspection between the parallel rotating plates situated in Cartesian frame is a topic of interest due to its multifarious applications in chemical and mechanical industries.In 2017, Ahmed et al.[8] reported the flow of chemically reacting fluid over an unsteady stretchable surface.They incorporated the influences of linear thermal radiations and cross diffusion gradients in the energy and concentration laws.They also examined the effects of convective condition in the heat transfer rate and reported the interesting results.A novel investigation of heat transfer analysis in water and EG saturated byγ-nanoparticles was examined in [9].The effects of an effective Prandtl number are also embedded in the energy equation that showed an interesting behavior of heat transfer.Khan et al.[10] reported the numerical analysis of the nanofluids containingγ-nanoparticles and reported the fascinating results for the velocity,temperature and heat transfer.Furthermore, useful analysis of the nanofluids by considering the important flow conditions were described in [11,12].

    From the literature study, it is noted that entropy generation and temperature investigation in GO-MoS2/C2H6O2–H2O hybrid nanofluid between parallel rotating plates is not reported so far.Therefore, this study is makeup to fill this significant research gap.For improved temperature and entropy generation.Moreover, thermal radiations and magnetic field effects are plugged in the energy and momentum relations.The resultant hybrid model is then tackled by numerical scheme known as RK technique.The results for the velocity, temperature and entropy generation are plotted and discussed comprehensively and finally concluding remarks of the analysis are presented.

    2 Statement Geometry and Hybrid Model Formulation

    2.1 Statement and Geometry

    2.1.1 Nanomaterial and Host Liquid

    Three-dimensional rotating flow of hybrid nanofluid between the parallel plates is considered in which:

    i.C2H6O2–H2O is taken as hybrid base liquid

    ii.GO-MoS2is taken as hybrid nanomaterial.

    2.2 Conditions and Assumptions

    The following conditions are imposed during the analysis:

    i.The colloidal suspension is viscous.

    ii.The colloidal suspension is an incompressible.

    iii.The hybrid nanoliquid and hybrid nanomaterial are thermally compatible.

    iv The flow of the hybrid nanofluid is electrically conducting and thermal radiations effects are considered.

    v The flow is unsteady.

    vi The lower plate is static at y = 0 and upper plate is at height h and is defined ash=

    vii The squeezed velocity of the hybrid nanofluid is Vh(t).

    viii The nanofluid and the plates are rotating together oriented counter clockwise with rotating velocityΩ=ωj(1 ?ct)?1.

    ix The plate at lower end is permeable and sucks the hybrid nanofluid with velocity?V0/(1 ?ct).

    x The lower plate is stretched along x-axis withUw=ax(1 ?ct)?1.

    xi Magnetic field is applied perpendicularly with intensityB0(1 ?ct)?0.5.

    The flow model of the hybrid nanofluid is obtained in the view of aforementioned assumptions and the flow configuration is depicted in Fig.1.

    2.3 Governing Hybrid Model

    By implementing the above-mentioned assumptions, the following magneto radiative and dissipative hybrid nanofluid model is obtained in dimensional form [13]:

    here,Ξi for i=1,2,...,5, represents an effective density, dynamic viscosity, electrical conductivity,thermal conductivity and heat capacity, respectively.The effective models for the conventional and hybrid nanofluids are as follows [14].

    Figure 1:Configuration of the hybrid nanofluid GO-MoS2/C2H6O2–H2O flow

    In Tab.1, m is the shapes factor and different values of m lead to three different types of nanomaterial.The shapes of these nanoparticles are given in Tab.2.

    Table 1:Effective models for the conventional and hybrid nanofluids

    Table 2:Shape Factor for three different sort of nanoparticles

    Table 3:Thermophysical attributes of the hybrid liquid and hybrid nanoparticles

    Thermophysical properties of under consideration hybrid liquid (H2O–C2H6O2) and hybrid nanoparticles (GO-MoS2) are described in Tab.3.

    The flow conditions at the plates are defined as:

    and

    For the particular hybrid model, the similarity variables are as follows [13]:

    Incorporating the feasible invertible transformations and the partial derivatives in the governing equations, the following two models are obtained on the basis of the nanofluid models.

    2.4 Dimensionless GO-MoS2/C2H6O2-H2O Model

    The dimensional flow conditions reduced in the following dimensionless form:

    The dimensionless flow parameters embedded in the flow models are defined by the following mathematical formulas:

    2.5 Entropy Formulation

    The entropy generation for the under-consideration hybrid models are given in the following way [15]:

    here,Ξ4andΞ2are described in Tab.1 for the conventional and hybrid nanofluids, respectively.

    The entropy generation due to radiative heat flux, thermal transport and friction of the hybrid nanoliquid are incorporated in Eq.(15).By plugging the appropriate invertible transformations in Eq.(15) and after performing the mathematical calculation, the following dimensionless expression is attained:

    In Eq.(17), the characteristics entropy generation is expressed by the following formula:

    The dimensionless thermal difference (Ω) appeared in Eq.(17) is expressed in the following form:

    By incorporating the expressions ofΞ4andΞ2, in Eq.(20), the following mathematical relations are obtained for thehybrid and conventional nanoliquids.

    (MoS2/C2H6O2-H2O)

    and for hybrid nanoliquid (GO-MoS2/C2H6O2–H2O) is expressed as:

    3 Mathematical Treatment of ZnO-SAE50

    Under-consideration models are highly coupled and nonlinear in nature.Therefore, exact solutions for such models are incredible.Thus, the numerical technique together with shooting method is adopted for the solutions purpose [10].For initiation of the technique, first order IVP is obtained by using the following transformations and obtained the solutions of the models.

    Fig.2 represents the solution steps for the implemented mathematical technique.The following flowchart represents the implementation of the technique.

    Figure 2:Flow chart for mathematical analysis of the models

    4 Discussion of the Results

    4.1 Thermal Field

    Fig.3 is plotted to analyzes the behavior of GO-MoS2/C2H6O2–H2O and MoS2/C2H6O2–H2O temperature against varying thermal radiations Rd.It is perceived that the temperatureβ(η) enhances against stronger thermal radiations for both nanofluids.Physically, the plates are heated due to thermal radiations effects due to which the internal kinetic energy of the fluid particles increases and consequently the temperature rises.For S>0, thermal field enhances abruptly because the fluid particles compressed together due to the movement of upper plate in the direction of lower once and more energy transferred between the fluid molecules which lead to increment in the fluid temperature.On the other side, slow increment in the thermal field is perceived because the energy transport between the fluid particles become slow due to away movement of the upper plate.Fig.4 pointed the effects ofΩon the thermal fieldβ(η).The rotational parameterΩresists the nanofluids temperature.The decrement in the temperature is examined slow against S>0 in comparison with S<0.

    Fig.5 is decorated to analyze the thermal behaviorβ(η) against the induced magnetic field.It is pointed that the stronger magnetic field favors the temperature of GO-MoS2/C2H6O2–H2O and MoS2/C2H6O2–H2O nanofluids.For S>0 (upper plate moves in the direction of lower plate),abrupt increment inβ(η) is examined because due to more squeezing effects the temperature rises abruptly.In GO-MoS2/C2H6O2–H2O hybrid nanofluid, the temperature enhances due to larger fraction factor.For S<0, the temperature rises slowly.Physically, for S<0, more free area produced between the plates and more particles move to fill the free space and consequently the velocity drops.Due to this decrement in the velocity, the particles friction drops and consequently the temperature rises slowly.

    Figure 3:Influence of Rd on (a) hybrid nanofluid (b) conventional nanofluid on β(η)

    Figure 4:Influence of Ω on (a) hybrid nanofluid (b) conventional nanofluid on β(η)

    4.2 Entropy Analysis

    The study of second law in magneto radiative nanofluids is a potential topic of interest in fluid dynamics.It is the amount of entropy produced during irreversible process.The applications of this phenomena comprised in heat pumps, air conditioners, refrigerators, heat exchanges,thermal mechanics and mixing or expanding of substances.

    The effects of numerous parameters on the entropy generation in GO-MoS2/C2H6O2–H2O and MoS2/C2H6O2–H2O are pointed in Figs.6–12.It is perceived that the entropy declines for stronger induction of magnetic field.For GO-MoS2/C2H6O2–H2O abrupt decrement is perceived near the lower plate.These effects are decorated in Fig.6.The rotational parameterΩresists the entropy for both sort of nanofluids.

    Figure 5:Influence of M on (a) hybrid nanofluid and (b) conventional nanofluid on β(η)

    Figure 6:Influence of M on entropy generation for (a) hybrid nanofluid (b) conventional nanofluid

    Figure 7:Influence of Ω on entropy generation for (a) hybrid nanofluid (b) conventional nanofluid

    Figure 8:Influence of Rd on entropy generation for (a) hybrid nanofluid and (b) conventional nanofluid

    Figure 9:Influence of Ecx on entropy generation for (a) hybrid nanofluid (b) conventional nanofluid

    Figure 10:Influence of M, S<0 on entropy generation for (a) hybrid nanofluid (b) conventional nanofluid

    Figure 11:Influence of Ω, S<0 on entropy generation for (a) hybrid nanofluid (b) conventional nanofluid

    Figure 12:Influence of Rd, S<0 on entropy generation for (a) hybrid nanofluid and (b) conventional nanofluid

    The behavior of entropy generation is detected for both under consideration hybrid and conventional nanofluids.It is pointed that the viscous dissipation allows the rise in entropy production because due to this, internal energy of the fluid enhances due to which the entropy increases.Moreover, it is examined that the entropy drops quickly when the upper plate moves towards the lower plate and slow decrement is perceived for away movement of the upper plate.

    It is analysed that the effective thermal conductivity of the hybrid nanofluid (GOMoS2/C2H6O2–H2O) showed dominating behaviour for varying volume fraction factorφ.Due to superior effective characteristics of the hybrid nanofluid (GO-MoS2/C2H6O2–H2O) than conventional nanofluid (MoS2/C2H6O2–H2O) therefore, the hybrid nanofluids are reliable for industrial and technological purposes.

    Figure 13:Influence of volume fraction on thermal conductivity for hybrid nanofluid and conventional nanofluid

    5 Conclusions

    The colloidal flow of GO-MoS2/C2H6O2–H2O and MoS2/C2H6O2–H2O is presented between parallel rotating magneto radiative plates.From the temperature and entropy analysis, it is investigated that the temperature of the hybrid and conventional nanofluids rises against the stronger thermal radiations.However, significant changes are perceived in the hybrid nanofluid.The temperature drops due to rotating plates in both fluids.The entropy generation increases for more dissipation effects and drops against the imposed magnetic effects.Further, prompt increment in thermal conductivities of the nanofluids is observed.It is also perceived that the hybrid nanofluid has high thermal performance, therefore, these fluids are reliable for the industrial and engineering uses.

    Funding Statement:The author(s) received no specific funding for this study.

    Confict of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    男女无遮挡免费网站观看| a在线观看视频网站| av福利片在线| 欧美久久黑人一区二区| 国产亚洲av高清不卡| 在线观看一区二区三区激情| 欧美激情高清一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 黄色怎么调成土黄色| a级毛片黄视频| 免费黄频网站在线观看国产| 国产亚洲精品久久久久5区| 午夜老司机福利片| 一级毛片精品| 欧美日韩亚洲高清精品| 在线精品无人区一区二区三| a在线观看视频网站| 麻豆国产av国片精品| 亚洲精品国产色婷婷电影| 欧美乱码精品一区二区三区| 新久久久久国产一级毛片| 欧美激情极品国产一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 久久中文看片网| 欧美精品人与动牲交sv欧美| 国产激情久久老熟女| 国产精品熟女久久久久浪| 男女午夜视频在线观看| 狠狠婷婷综合久久久久久88av| 国产精品秋霞免费鲁丝片| 国产片内射在线| 欧美少妇被猛烈插入视频| a级片在线免费高清观看视频| 国产在线观看jvid| 久久毛片免费看一区二区三区| 他把我摸到了高潮在线观看 | 亚洲国产成人一精品久久久| 国产高清视频在线播放一区 | 欧美日韩福利视频一区二区| 操出白浆在线播放| 国产一区二区在线观看av| 十分钟在线观看高清视频www| 欧美一级毛片孕妇| 天堂8中文在线网| 亚洲精品国产av成人精品| 亚洲精品第二区| 成人国产一区最新在线观看| 欧美+亚洲+日韩+国产| h视频一区二区三区| 午夜福利,免费看| 国产欧美日韩一区二区三 | 日韩视频一区二区在线观看| 欧美黄色淫秽网站| 手机成人av网站| 亚洲精品久久成人aⅴ小说| 亚洲国产精品一区二区三区在线| 国产精品欧美亚洲77777| 曰老女人黄片| 宅男免费午夜| 国产av又大| 人人澡人人妻人| 激情视频va一区二区三区| 18禁国产床啪视频网站| 亚洲精品日韩在线中文字幕| 我的亚洲天堂| 国产在线一区二区三区精| 成人免费观看视频高清| 18禁裸乳无遮挡动漫免费视频| 人妻人人澡人人爽人人| 久久精品熟女亚洲av麻豆精品| 久久99一区二区三区| 中文字幕色久视频| 国产无遮挡羞羞视频在线观看| 欧美黄色片欧美黄色片| 日本av免费视频播放| 人人妻人人添人人爽欧美一区卜| 自线自在国产av| 国产一区二区三区在线臀色熟女 | 97在线人人人人妻| 欧美精品人与动牲交sv欧美| 亚洲欧美日韩高清在线视频 | 国产欧美亚洲国产| 成人国产av品久久久| 999久久久精品免费观看国产| 欧美老熟妇乱子伦牲交| 精品国产一区二区久久| 亚洲va日本ⅴa欧美va伊人久久 | 中文精品一卡2卡3卡4更新| 国产精品熟女久久久久浪| 精品视频人人做人人爽| 欧美亚洲 丝袜 人妻 在线| 欧美久久黑人一区二区| 十八禁高潮呻吟视频| 免费观看av网站的网址| 熟女少妇亚洲综合色aaa.| 老司机在亚洲福利影院| 在线精品无人区一区二区三| 性少妇av在线| 色老头精品视频在线观看| 精品一品国产午夜福利视频| 欧美精品一区二区免费开放| 国产免费一区二区三区四区乱码| 精品一品国产午夜福利视频| 免费高清在线观看视频在线观看| 啦啦啦视频在线资源免费观看| 自线自在国产av| 91av网站免费观看| 丰满迷人的少妇在线观看| 超碰97精品在线观看| 日韩三级视频一区二区三区| 国产成人一区二区三区免费视频网站| 老司机影院成人| 两个人免费观看高清视频| 久久久久国内视频| 午夜福利视频精品| 久久精品熟女亚洲av麻豆精品| 最新的欧美精品一区二区| 丰满人妻熟妇乱又伦精品不卡| 99热全是精品| 老汉色av国产亚洲站长工具| 成年女人毛片免费观看观看9 | 男女国产视频网站| 婷婷成人精品国产| 日韩欧美免费精品| 两个人看的免费小视频| 午夜免费成人在线视频| 精品免费久久久久久久清纯 | 国产精品亚洲av一区麻豆| 在线十欧美十亚洲十日本专区| 精品一品国产午夜福利视频| 国产极品粉嫩免费观看在线| 老司机亚洲免费影院| 久久精品国产亚洲av香蕉五月 | 一级,二级,三级黄色视频| 国产一区二区 视频在线| 超碰97精品在线观看| 90打野战视频偷拍视频| 人妻久久中文字幕网| 侵犯人妻中文字幕一二三四区| 亚洲,欧美精品.| 亚洲欧美成人综合另类久久久| 国产亚洲精品一区二区www | 国产精品国产av在线观看| 在线观看免费日韩欧美大片| 亚洲中文日韩欧美视频| 午夜福利一区二区在线看| 中文欧美无线码| 啦啦啦视频在线资源免费观看| 午夜福利视频在线观看免费| 国产色视频综合| 美女福利国产在线| 久久毛片免费看一区二区三区| 欧美人与性动交α欧美精品济南到| 人人澡人人妻人| 国产免费一区二区三区四区乱码| 亚洲国产av影院在线观看| 精品久久久久久电影网| 国产激情久久老熟女| 色精品久久人妻99蜜桃| 99久久国产精品久久久| 精品第一国产精品| 9热在线视频观看99| 好男人电影高清在线观看| 久久久久精品人妻al黑| 国产一区二区三区av在线| 欧美大码av| 色视频在线一区二区三区| 亚洲自偷自拍图片 自拍| 亚洲va日本ⅴa欧美va伊人久久 | 中文欧美无线码| 香蕉国产在线看| 欧美日韩亚洲国产一区二区在线观看 | 岛国毛片在线播放| 成人手机av| 久久ye,这里只有精品| 777久久人妻少妇嫩草av网站| 亚洲精品一区蜜桃| 欧美日本中文国产一区发布| 91国产中文字幕| 欧美另类一区| 国产在线一区二区三区精| 亚洲七黄色美女视频| 国产免费视频播放在线视频| 久久精品国产亚洲av香蕉五月 | 国产精品偷伦视频观看了| 国产免费一区二区三区四区乱码| 欧美黑人精品巨大| 亚洲伊人久久精品综合| 777久久人妻少妇嫩草av网站| 日韩,欧美,国产一区二区三区| 中文字幕色久视频| 自线自在国产av| 久久久久久久久久久久大奶| 99久久99久久久精品蜜桃| 久久精品aⅴ一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 9热在线视频观看99| 国产欧美亚洲国产| 国产人伦9x9x在线观看| 好男人电影高清在线观看| 啪啪无遮挡十八禁网站| 国产1区2区3区精品| 亚洲精品久久成人aⅴ小说| 最黄视频免费看| 99国产精品一区二区三区| 国产精品香港三级国产av潘金莲| 国产精品成人在线| 下体分泌物呈黄色| 天天添夜夜摸| 午夜免费鲁丝| av视频免费观看在线观看| 99热国产这里只有精品6| 欧美乱码精品一区二区三区| 日本黄色日本黄色录像| 精品一区在线观看国产| 欧美97在线视频| 中文字幕人妻熟女乱码| 国产精品一区二区精品视频观看| 国产免费现黄频在线看| 黄色怎么调成土黄色| 日韩视频在线欧美| 日本wwww免费看| 水蜜桃什么品种好| 香蕉丝袜av| 久久国产精品人妻蜜桃| 男人添女人高潮全过程视频| 亚洲一卡2卡3卡4卡5卡精品中文| 一边摸一边做爽爽视频免费| 满18在线观看网站| 9191精品国产免费久久| 大香蕉久久网| 亚洲欧美日韩高清在线视频 | av网站免费在线观看视频| 国产av国产精品国产| 男人添女人高潮全过程视频| 菩萨蛮人人尽说江南好唐韦庄| 麻豆乱淫一区二区| 69av精品久久久久久 | 午夜免费成人在线视频| 69精品国产乱码久久久| 亚洲欧美日韩另类电影网站| 亚洲欧美精品自产自拍| 黄色毛片三级朝国网站| 国产xxxxx性猛交| 亚洲一区二区三区欧美精品| 老司机福利观看| 狠狠狠狠99中文字幕| 免费不卡黄色视频| 精品久久久精品久久久| 女人高潮潮喷娇喘18禁视频| 中文字幕另类日韩欧美亚洲嫩草| 国产成人欧美在线观看 | 男女边摸边吃奶| 国产片内射在线| 丰满饥渴人妻一区二区三| 99re6热这里在线精品视频| 亚洲av国产av综合av卡| 国产精品一区二区在线不卡| 精品福利观看| 亚洲成人国产一区在线观看| 亚洲色图 男人天堂 中文字幕| 97人妻天天添夜夜摸| 在线永久观看黄色视频| 色精品久久人妻99蜜桃| 久久午夜综合久久蜜桃| 欧美亚洲日本最大视频资源| 精品少妇黑人巨大在线播放| 18禁黄网站禁片午夜丰满| 王馨瑶露胸无遮挡在线观看| 国产在线一区二区三区精| 亚洲七黄色美女视频| 男女国产视频网站| 日韩一区二区三区影片| 一本一本久久a久久精品综合妖精| 后天国语完整版免费观看| 天堂8中文在线网| 成年av动漫网址| 色94色欧美一区二区| 亚洲精品乱久久久久久| 水蜜桃什么品种好| 宅男免费午夜| 久久精品久久久久久噜噜老黄| 黑人操中国人逼视频| 亚洲国产看品久久| 男女下面插进去视频免费观看| 亚洲国产中文字幕在线视频| 亚洲欧美日韩另类电影网站| 在线天堂中文资源库| 亚洲av男天堂| 国产精品久久久久久精品电影小说| 国产免费av片在线观看野外av| 久久九九热精品免费| 日日爽夜夜爽网站| 精品人妻一区二区三区麻豆| 狠狠婷婷综合久久久久久88av| www.熟女人妻精品国产| 老司机靠b影院| 五月开心婷婷网| 日韩中文字幕视频在线看片| 老司机影院成人| 日韩欧美一区二区三区在线观看 | 下体分泌物呈黄色| 18禁国产床啪视频网站| 丝袜人妻中文字幕| 色视频在线一区二区三区| 成人国产一区最新在线观看| 黄频高清免费视频| √禁漫天堂资源中文www| 亚洲熟女毛片儿| 欧美激情极品国产一区二区三区| 亚洲av男天堂| 欧美 亚洲 国产 日韩一| 久久毛片免费看一区二区三区| 欧美人与性动交α欧美精品济南到| 午夜日韩欧美国产| 国产精品麻豆人妻色哟哟久久| 亚洲精华国产精华精| 国产99久久九九免费精品| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| 日本av手机在线免费观看| 精品亚洲成a人片在线观看| 色精品久久人妻99蜜桃| 免费在线观看日本一区| 涩涩av久久男人的天堂| 最近最新免费中文字幕在线| 天堂8中文在线网| av在线app专区| 伊人亚洲综合成人网| 91老司机精品| av在线app专区| 1024视频免费在线观看| av在线播放精品| 少妇精品久久久久久久| 国产精品 国内视频| 亚洲精品久久午夜乱码| 免费黄频网站在线观看国产| 久久天躁狠狠躁夜夜2o2o| 脱女人内裤的视频| 久久人人97超碰香蕉20202| 男女下面插进去视频免费观看| 制服人妻中文乱码| 成年av动漫网址| 亚洲精品自拍成人| 免费在线观看日本一区| 午夜免费成人在线视频| 午夜福利在线观看吧| 窝窝影院91人妻| 国产成人系列免费观看| 视频在线观看一区二区三区| 在线观看免费高清a一片| 天天影视国产精品| 青草久久国产| 9191精品国产免费久久| 午夜免费观看性视频| av福利片在线| 欧美国产精品va在线观看不卡| a级片在线免费高清观看视频| 精品久久久久久电影网| a 毛片基地| 女性生殖器流出的白浆| 2018国产大陆天天弄谢| 亚洲精品中文字幕在线视频| 免费女性裸体啪啪无遮挡网站| 久久久精品94久久精品| 亚洲全国av大片| 99国产精品一区二区蜜桃av | 午夜福利在线免费观看网站| 一级片'在线观看视频| 999久久久精品免费观看国产| 欧美日韩亚洲综合一区二区三区_| 免费av中文字幕在线| 91字幕亚洲| 亚洲av欧美aⅴ国产| 丁香六月欧美| avwww免费| 男人操女人黄网站| 欧美精品啪啪一区二区三区 | 日本一区二区免费在线视频| 国产老妇伦熟女老妇高清| 亚洲成av片中文字幕在线观看| 99热网站在线观看| 亚洲三区欧美一区| 国产精品av久久久久免费| 久久午夜综合久久蜜桃| 波多野结衣av一区二区av| 久久久久国内视频| 黑人操中国人逼视频| 考比视频在线观看| 亚洲伊人久久精品综合| 丰满饥渴人妻一区二区三| 狠狠婷婷综合久久久久久88av| 黑人欧美特级aaaaaa片| 新久久久久国产一级毛片| 中文欧美无线码| 我要看黄色一级片免费的| 国产一区二区三区综合在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 午夜视频精品福利| 亚洲性夜色夜夜综合| 夫妻午夜视频| 亚洲av成人不卡在线观看播放网 | av网站在线播放免费| 热re99久久精品国产66热6| 肉色欧美久久久久久久蜜桃| 亚洲精品久久午夜乱码| 亚洲精品久久成人aⅴ小说| 性少妇av在线| 欧美成人午夜精品| 男女之事视频高清在线观看| 日本av手机在线免费观看| 一个人免费看片子| tocl精华| 9热在线视频观看99| 黄色视频,在线免费观看| 久久综合国产亚洲精品| 女人高潮潮喷娇喘18禁视频| 亚洲美女黄色视频免费看| 老司机在亚洲福利影院| 国产成人精品在线电影| 国产精品欧美亚洲77777| 男女午夜视频在线观看| 免费人妻精品一区二区三区视频| 精品国产国语对白av| 欧美激情 高清一区二区三区| 各种免费的搞黄视频| 超碰97精品在线观看| 伊人亚洲综合成人网| 大片免费播放器 马上看| 1024香蕉在线观看| 一本色道久久久久久精品综合| 超碰97精品在线观看| 亚洲av欧美aⅴ国产| 国产成人精品久久二区二区免费| 黄片小视频在线播放| 国产成人啪精品午夜网站| 亚洲少妇的诱惑av| 亚洲国产欧美一区二区综合| 在线观看舔阴道视频| 亚洲国产精品999| 亚洲国产中文字幕在线视频| 国产亚洲一区二区精品| 人人妻人人爽人人添夜夜欢视频| 老司机福利观看| 99热全是精品| 欧美激情高清一区二区三区| 久久99热这里只频精品6学生| 久久精品国产亚洲av香蕉五月 | 80岁老熟妇乱子伦牲交| 两性夫妻黄色片| 精品高清国产在线一区| 美女中出高潮动态图| 国产一区二区三区av在线| 91九色精品人成在线观看| 国产免费av片在线观看野外av| 黄色片一级片一级黄色片| 老熟妇乱子伦视频在线观看 | 久久性视频一级片| 国产成+人综合+亚洲专区| 午夜福利一区二区在线看| 中文字幕人妻熟女乱码| 成年人午夜在线观看视频| 宅男免费午夜| 一本—道久久a久久精品蜜桃钙片| 97人妻天天添夜夜摸| 色94色欧美一区二区| 搡老乐熟女国产| 欧美+亚洲+日韩+国产| 母亲3免费完整高清在线观看| 一边摸一边抽搐一进一出视频| 久久人妻熟女aⅴ| 真人做人爱边吃奶动态| 黄片小视频在线播放| 久久久精品94久久精品| 啦啦啦免费观看视频1| 夜夜夜夜夜久久久久| 韩国精品一区二区三区| 午夜精品久久久久久毛片777| 国产亚洲一区二区精品| 中国美女看黄片| 国产精品一区二区精品视频观看| 欧美xxⅹ黑人| 两性午夜刺激爽爽歪歪视频在线观看 | 热re99久久国产66热| 亚洲av美国av| 欧美精品av麻豆av| 男女无遮挡免费网站观看| 777米奇影视久久| 国产亚洲精品第一综合不卡| 极品人妻少妇av视频| 午夜视频精品福利| 一区在线观看完整版| 亚洲熟女毛片儿| 久久久久国内视频| 曰老女人黄片| 男女免费视频国产| av电影中文网址| 午夜福利免费观看在线| 啦啦啦在线免费观看视频4| www.999成人在线观看| 丰满迷人的少妇在线观看| 久久天堂一区二区三区四区| 国产片内射在线| 80岁老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 一区福利在线观看| 777米奇影视久久| 啦啦啦免费观看视频1| 日韩大片免费观看网站| 老熟女久久久| 黄色片一级片一级黄色片| 飞空精品影院首页| 伊人亚洲综合成人网| 日日摸夜夜添夜夜添小说| 国产免费av片在线观看野外av| 狂野欧美激情性xxxx| 一边摸一边做爽爽视频免费| 国产亚洲精品久久久久5区| 一本久久精品| 亚洲人成77777在线视频| 国产99久久九九免费精品| 日韩,欧美,国产一区二区三区| 久久综合国产亚洲精品| 日本精品一区二区三区蜜桃| 青青草视频在线视频观看| 亚洲第一青青草原| 欧美久久黑人一区二区| 高清视频免费观看一区二区| 国产成人av激情在线播放| 免费在线观看完整版高清| 黄色a级毛片大全视频| 亚洲av美国av| 久久综合国产亚洲精品| 宅男免费午夜| 久久热在线av| 国产精品二区激情视频| 久久综合国产亚洲精品| 欧美黑人欧美精品刺激| 脱女人内裤的视频| 国产精品九九99| 啦啦啦在线免费观看视频4| 五月开心婷婷网| 亚洲av成人一区二区三| 90打野战视频偷拍视频| 咕卡用的链子| 狠狠婷婷综合久久久久久88av| 热99国产精品久久久久久7| 啪啪无遮挡十八禁网站| 久热爱精品视频在线9| 又大又爽又粗| 亚洲中文字幕日韩| 大香蕉久久成人网| 亚洲精品国产区一区二| 中文字幕人妻熟女乱码| 日韩欧美国产一区二区入口| 精品久久久久久电影网| 国产精品久久久久久人妻精品电影 | 亚洲人成电影免费在线| 丝袜在线中文字幕| 一区二区av电影网| 久久精品国产a三级三级三级| av片东京热男人的天堂| 亚洲欧美色中文字幕在线| av网站在线播放免费| 国产精品久久久人人做人人爽| 制服人妻中文乱码| 美女高潮喷水抽搐中文字幕| 中文字幕最新亚洲高清| 99精品欧美一区二区三区四区| 亚洲情色 制服丝袜| 亚洲精品粉嫩美女一区| 在线观看免费高清a一片| 俄罗斯特黄特色一大片| 国产成+人综合+亚洲专区| 亚洲欧美一区二区三区黑人| 久久久久网色| 亚洲av国产av综合av卡| 婷婷色av中文字幕| 日本wwww免费看| 国产日韩欧美亚洲二区| 一本—道久久a久久精品蜜桃钙片| 啦啦啦免费观看视频1| 久久久精品94久久精品| 亚洲男人天堂网一区| 丁香六月欧美| 肉色欧美久久久久久久蜜桃| 手机成人av网站| 最新的欧美精品一区二区| 国产成人欧美| 一区二区av电影网| av在线老鸭窝| 国产精品亚洲av一区麻豆| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人啪精品午夜网站| 欧美黄色片欧美黄色片| 久久青草综合色| 老司机影院毛片| 超碰成人久久| 国产成人精品久久二区二区91| 国产精品免费视频内射| 日本av免费视频播放| 日韩制服丝袜自拍偷拍| 一本—道久久a久久精品蜜桃钙片| 午夜福利乱码中文字幕| 精品一区在线观看国产| 精品乱码久久久久久99久播| 久久国产亚洲av麻豆专区| 精品久久久久久久毛片微露脸 | videos熟女内射| 各种免费的搞黄视频| 久久久精品免费免费高清| 午夜免费鲁丝| 国产有黄有色有爽视频| 777久久人妻少妇嫩草av网站| 成人手机av|