• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fractional-Order Control of a Wind Turbine Using Manta Ray Foraging Optimization

    2021-12-14 09:56:58HegazyRezkMohammedMazenAlhatoMohemmedAlhaiderandSoufeneBouallgue
    Computers Materials&Continua 2021年7期

    Hegazy Rezk,Mohammed Mazen Alhato,Mohemmed Alhaider and Soufene Bouallègue,4

    1College of Engineering at Wadi Addawaser,Prince Sattam Bin Abdulaziz University,Al-Kharj,11911,Saudi Arabia

    2Department of Electrical Engineering,Faculty of Engineering,Minia University,61517,Minia,Egypt

    3Research Laboratory in Automatic Control(LARA),National Engineering School of Tunis(ENIT),University of Tunis,Tunis,1002,Tunisia

    4High Institute of Industrial Systems of Gabès,University of Gabès,Gabès,6011,Tunisia

    Abstract:In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator (DFIG) based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order (FO) Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process, the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimizationand genetic algorithmis achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation.

    Keywords: Renewable energy; modeling; wind turbine; doubly fed induction generator; fractional order control; manta ray foraging optimization

    1 Introduction

    Recently, the utilization of renewable energy sources has prompted the reduction of conventional fossil-fuel energy source dependency.Wind energy as a renewable source has gained considerable attention because it is clean and pollution-free.Wind Energy Conversion Systems(WECSs) are mainly based on Wind Turbines (WTs).However, the intensive research that is executed in the wind technology market produced various wind energy configurations.The most popular configuration is the Doubly Fed Induction Generator (DFIG) linked with the WTs [1,2].This type is vastly used due to its considerable advantages, which the decoupled control of active and reactive powers, low converters’costs, and mechanical exertion decrease are the main ones.The DFIG is linked to the grid via a converter consisting of a Rotor Side Converter (RSC) and a Grid Side Converter (GSC).This topology enables the converter to catch the portion of 20%to 30% of the overall power resulting in reducing its cost [3,4].

    Several research works have assured to reinforce the efficiency of WECSs.Among the existing control strategies, the classical Vector Control (VC) is broadly applied.This scheme allows independent control of the power components exchanging between the DFIG and the grid and keeps the DC-link voltage constant.The VC method is mostly attained by regulating the decoupled rotor converter currents using linear Proportional-Integral (PI) controllers [5,6].The major disadvantage of this scheme is that the effectiveness of the DFIG relies on the accurate adjusting of the PI parameters and the exact values of DFIG parameters such as stator resistance, rotor resistance,and inductances [7].Hence, the PI controllers-based VC method provides poor performance and low robustness when actual DFIG parameters deviate from the nominal values, which have been used in the control system [8].

    In this regard, to outperform the drawbacks of the classical VC method based, various control structures are proposed to improve the dynamic response [9].Therefore, the Fractional-Order (FO)PI controllers emerge as a relevant option, as demonstrated by several applications.This type of controller combines the benefits of the classical PI and fractional calculus.Therefore, this leads to better performance [10,11].Applying a FOPI controller in the pitch angle control loop and is compared with a fuzzy PI controller has been suggested in [12].In [13], the authors focused on attenuating the Total Harmonic Distortion (THD) value in the voltage and current signals using the FOPI controllers in the back-to-back converter.However, the design approach was not indicated.Besides, a simple wind speed profile with fixed step changes is investigated.Another solution adopting the FOPI scheme has been discussed for the active power control based DFIG in [14].Besides, the FOPI controllers are applied in the internal loop of rotor current instead of the classical PI controllers.Also, the tuning of the FOPI controllers is executed using the frequency domain specifications.All these studies discussed the FOPI method in the presence of the L-filter at the GSC.

    In this work, the FOPI controller is designed for the DC-link voltage loop in the presence of the LCL filter.This filter leads to improve the THD of the current grids [15].Usually, the FOPI controllers have an extra adjustable parameter than the classical PI controllers.This parameter makes the controller design more complicated.Many methods are adopted for the tuning of FOPI controllers.However, most of these methods depend on the trial-errors procedure and the frequency domain specifications.However, since the FOPI controller gains rely on the mathematical representation, the control schemes become prone to error.Besides, the tuning process can be time-consuming, and the optimal gains may not be caught.To this end, the nature-inspired meta-heuristics such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are applied [16–18].Therefore, this work uses a Manta Ray Foraging Optimization (MRFO) algorithm to attain the FOPI controller gains’[19].The main contributions of the proposed FOPI controller are:(1) It ensures high tracking performance through the selection of the optimal gains for the FOPI controller by using the recent metaheuristic MRFO algorithm.(2) It presents a fast dynamic behavior and high robustness of the closed-loop DC-link voltage loop under external disturbances such as wind speed variation and the voltage dip conditions.(3) It reduces the values of the THD of the grid currents more than the traditional PI controller.

    The remainder of this paper is organized as follows.The mathematical model of DFIG based WT is detailed in Section 2.In Section 3, the description of the FOPI controller for the DC-link voltage dynamics is analyzed.Also, such an MRFO algorithm is described and given.Section 4 states the implementation of the proposed MRFO-tuned FOPI control approach.Concluding remarks are given in Section 5.

    2 Modelling of the DFIG Based Wind Energy Converter

    2.1 Modelling of the Wind Turbine

    The rotor blade of the WT is responsible for catching the wind power and converting it into kinetic energy.The captured mechanical power is given as follows [2,3]:

    whereρis the air density,Cpis the power coefficient that depends on both the tip-speed ratioλand the blade pitch angleβ,Ris the turbine radius andVwis the wind speed.

    The tip-speed ratio is defined as the ratio of the blade tip-speed to the wind speed.It is given by:

    where Ωtis the angular speed of the WT.

    2.2 Modelling of the DFIG

    The dynamic equations of the DFIG model can be expressed as [2,3]:

    whereVsandisare the stator voltage and current,Vrandirare the rotor voltage and current,φsandφrare the stator and rotor flux linkages,RsandRrare the stator and rotor resistances,ωsandωmare the stator and rotor angular frequencies, respectively.The subscriptsdandqdenote the direct and quadrature axis components, respectively.

    In this work, the Stator Flux Orientation (SFO) is adopted to implement the power control of the DFIG.Supposing that the electrical grid is stable, the stator flux is constant.Hence, according to the above presumptions, the stator voltages and fluxes can be written as follows [3]:

    whereLs,Lr, andLmare the stator, rotor, and magnetizing inductances, respectively.

    The stator power components and rotor voltages are expressed as [3,4]:

    2.3 Modelling of the GSC and the DC-Link Circuits

    The GSC is connected to the grid through an LCL-filter.However, for better understanding the control of the GSC, it is necessary to describe the model of the grid side system and DClink parts.The mathematical formulation of the GSC in the dq synchronous frame is defined by Eq.(7).The termLTrepresents the sum of the converterLiand grid sideLginductances.In fact,the LCL-filter can be approximated to an L-filter equal to the sum of the LCL-filter inductors [2]:

    whereVdfandVqfare the terms of the power-converter side voltage,igdandigqare the terms of the grid currents,egdandegqare the terms of the grid voltage, andRTis the sum of the converter and grid side resistors.

    The DC-link circuit, which connects the GSC and RSC components, can be modeled as follows [2,9]:

    whereCdcis the DC-link capacitance andirdcis the current flowing between the DFIG rotor and the DC-link.From the voltage dynamics described by Eq.(8), the DC-link voltage can be regulated via the direct grid current.

    3 Control Strategy and Optimization

    3.1 Problem Statement

    Generally, the classical vector control of the DFIG system is divided into the RSC and GSC control diagrams, which the PI controllers are usually used in this control scheme.The RSC is adopted to regulate the stator power components.On the other hand, the GSC is adopted to maintain the DC-link voltage constant.In this work, the FOPI controller is applied in the GSC circuit to improve its control performance.As a result, the excellent tracking performance, the reduced chattering, and the robustness of the DC-link under disturbances are improved.However,a good selection of the FOPI controller gains is a big challenge, where the optimal parameters improve the system performance.Control parameter tuning using the conventional manual trialsand-errors based approach is a time-consuming and non-systematic procedure.The manta ray foraging optimization is proposed to improve the selection of the FOPI regulator gains.The proposed FOPI based DC-link voltage for the DFIG control scheme is shown in Fig.1.

    Figure 1:The proposed control approach applied to the DFIG system

    3.2 Fractional-Order PI Controller

    Fractional-Order (FO) controllers gained great attention and high penetration in many applications.Presently, many researchers tried to achieve the most reliable performance of such controllers [11].Fractional-Order Proportional-Integral-Derivative (FOPID) controller was firstly presented in [20].It is characterized by better performance than the conventional PID one,especially for the closed-loop control process.Five parameters are required to model the PIλDμcontrollers which are the gains of PID (Kp,Ki, andKd), the order of integrator (λ), and the order of derivative (μ).Fig.2 shows the block diagram of the PIλDμcontroller with a plant.

    Figure 2:Block diagram of the PIλ controller with a plant

    Referring to Fig.2, the transfer function of the FOPID controller can be written in the following form:

    whereU(s)andE(s)are the output and input of the FOPID in thes-domain, respectively.

    The output of the PIλDμcontroller in the continuous-time framework can be written as follows:

    The main object of the FOPI controller is to feed the plant with the desired input via minimizing the error signal fed to it (i.e., E(s) controller’s input).This can be achieved when the parameters of the PIλcontroller are tuned in a correct manner.

    The parameterλgives more flexibility to enhance the FOPI performance better than the conventional PI.However, many previous works performed the tuning process of the PIλDμcontroller, which is considered a big challenge for most researchers [21].In this work, the MRFO approach is selected to identify the optimal parameters of PIλcontroller for the DC-link voltage loop, which the tuning problem associated with the PIλcontroller, is formulated as a constrained optimization problem.

    Several time-domain performance metrics, i.e., maximum overshoot, steady-state error, rise,and/or settling times can be used as operational constraints for the formulated optimization problem.Such a problem deals to minimize a set of the well-known performance criteria such as Integral Absolute Error (IAE), Integral of Square Error (ISE), and Root Square Mean Error(RSME) as follows:

    whereJm:→R are the cost functions,gq:→R are the problem’s inequality constraints,δdcandare the overshoot and specified maximum overshoot of the DC-link voltage step response, respectively.The termsKpdc,Kidc,λdcindicate the gains of the PIλcontroller for the DC-link voltage control loop.Fig.3 gives the optimization-based tuning scheme of the FOPI controller for the DC-link voltage control.

    Figure 3:FOPI control scheme for the DC-link voltage based MRFO algorithm

    3.3 Manta Ray Foraging Optimization

    Manta rays are fancy creatures although they appear to be terrible.They are one of the largest known marine creatures.MRFO is recently suggested by Zhao et al.[19].It is inspired by three foraging behaviors including chain foraging, cyclone foraging, and somersault foraging.The mathematical models are clearly described in [19].During the chain foraging, manta rays line up head to tail and form a foraging chain.The individuals update their positions based on the following relations:

    whereis the position of theith individual at time t in thedth dimension,rdenotes a random number [0 1],αis a weight coefficient anddenotes the plankton with high concentration.

    When a school of manta rays recognizes a patch of plankton in deep water, they will form a long foraging chain and swim towards the food by a spiral.The following mathematical relation can be used to simulate the spiral-shaped movement of manta rays in 2-D space:

    whereωis a random value.

    This motion behavior can be extended to an n-D space.For simplicity, the model of cyclone foraging can be represented using the following relations:

    whereβdenotes a weight coefficient,Tis the maximum number of iterations andr1is a random value [0 1].

    Then, every individual search for a new position far from the current best one by assigning a new random position as following:

    whereLbdandUbdare the lower and upper limits

    Lastly, in the somersault foraging, the position of the food is viewed as a pivot.Each individual tends to swim to and from around the pivot and somersault to a new location.The following relation can be representing this stage:

    whereSdenotes the somersault factor,S=2,r2, andr3are random values.

    4 Results and Discussion

    This section investigates the numerical simulations executed to assess the effectiveness of the proposed MRFO-tuned FOPI controller design approach for the studied DFIG.The demonstrative control results of the active/reactive powers and DC-link voltage are discussed and analyzed.The parameters of the used DFIG system are presented in [2].To investigate the performance of the proposed algorithm, GA and PSO algorithms are implemented, in which the number of the population size is 10, and the maximum number of iterations is 25.

    Tab.1 lists the optimization results of the problem (11).It can be clearly observed that the proposed MRFO algorithm produces the best mean solutions over the three used indices in comparison with the other algorithms.Fig.4 shows the convergence history of the mean cost functions for the RMSE index.The MRFO algorithm outperforms the compared algorithms in terms of fastness and non-premature convergence.The Box-and-Whisker plots of the mean objective function values are presented in Fig.5.The results of the cost function prove the superiority of the proposed MRFO algorithm.Hence, the parameters of the FOPI controllerbased MRFO optimization algorithm are adopted.The active/reactive powers, DC-link voltage,and THD of the grid currents are displayed to prove the performance of the proposed FOPI controller.The demonstrative results of the FOPI controller are tested under the following conditions:(1) Variations in the DC-link reference.(2) Wind speed step variation.(3) Voltage dips conditions.

    Figure 4:Convergence histories of the optimization algorithms:RMSE index

    Figure 5:Box-and-Whisker plot of the optimization algorithms:RMSE index

    4.1 DC-link Voltage Step Change

    Fig.6 illustrates the dynamic performance of the DC-link voltage control.From Tab.2, it can be observed that the FOPI controller introduces the best time domain performances in terms of settling time, rise time, and overshoot minimization.Besides, it can be noted that the proposed controller reduces the chattering effect in comparison with the PI controller.

    Table 1:Statistical results of optimization for the problem (11) over 30 independent runs

    Figure 6:Performance comparison of the DC-link voltage under step changes

    Table 2:Time-domain performances’comparison for the DC-link voltage dynamics

    Fig.7 shows the dynamic performance of the reactive power response.It can be noted that the decoupling between the active and reactive powers is ensured.Fig.8 shows the THD of the grid currents for the two control strategies, which this result confirms that the proposed FOPI controller further attenuates the harmonics of the grid currents.

    Figure 7:Performance comparison of the stator reactive power under step changes

    Figure 8:Grid current harmonic spectra:(a) PI controller; (b) FOPI controller

    4.2 Voltage Dip Condition

    To investigate the performance of the proposed controller, the MRFO-based PIλrobustness is examined under the dip voltage scenario.A 30% voltage drop is considered at the simulation times 3 and 4 s.The dynamic responses of the FOPI and PI controllers are presented in Figs.9 and 10, respectively.It can be observed that the proposed control method can successfully mitigate the voltage dip, in which the fluctuations in the DC-link and the stator reactive power during the voltage dips are relatively small.This result confirms the robustness of the proposed FOPI controller-based MRFO.

    Figure 9:Performance comparison of the DC-link voltage under the voltage dip condition

    Figure 10:Performance comparison of the stator reactive power under the voltage dip condition

    4.3 Wind Speed Step Variation

    The step variation scenario is considered for wind speed to appraise the tracking performance of the understudy controllers.This scenario is presented in Fig.11.Besides, Figs.12 and 13 show the simulation results which confirm the efficiency of the MRFO-tuned FOPI.These MRFObased PIλclosed-loop responses can accurately track the reference values with low fluctuations compared to the classical PI one.

    Figure 11:Wind speed step variation between 10 and 14 m/s

    Figure 12:Performance comparison of the DC-link voltage under the wind speed step variation

    Figure 13:Performance comparison of the stator reactive power under the wind speed step variation

    5 Conclusions

    This research work compares the classical PI and FOPI controllers in a DFIG-based WT.The gains of the FOPI are acquired by using the MFRO meta-heuristic algorithm.The obtained results show that the FOPI controller performs better than the traditional PI in the DC-link voltage dynamics.(1) The FOPI-tuned MRFO controller needs a lower rise time and settling time,less tuning time, and better robustness with wind speed variations and voltage dip conditions.(2)The FOPI controller enhances remarkably the start-up performance and makes the system reach its steady-state region without a considerable impact.The gained results show that the proposed FOPI controller tuned-MRFO method is a promising alternative strategy for controlling the DFIG system by systematically tuning the unknown FOPI controllers’parameters efficiently.

    Funding Statement:The authors received no specific funding for this study.

    Conficts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    变态另类丝袜制服| 亚洲av免费在线观看| 亚州av有码| 亚洲最大成人av| 免费看美女性在线毛片视频| av视频在线观看入口| 性插视频无遮挡在线免费观看| 亚洲国产最新在线播放| 一本一本综合久久| 国产v大片淫在线免费观看| 久久久久久久久久久丰满| 国产亚洲av片在线观看秒播厂 | 国产精品伦人一区二区| 丝袜喷水一区| 尾随美女入室| 一级黄色大片毛片| 日本与韩国留学比较| 国产伦精品一区二区三区视频9| 亚洲av免费在线观看| 亚洲av电影在线观看一区二区三区 | 午夜精品在线福利| 亚洲欧美一区二区三区国产| 精品一区二区三区视频在线| 久久人人爽人人片av| 亚洲精品一区蜜桃| 亚洲成av人片在线播放无| 国产亚洲午夜精品一区二区久久 | 亚洲精华国产精华液的使用体验| 国产黄片美女视频| 黄片无遮挡物在线观看| 黑人高潮一二区| 最近最新中文字幕免费大全7| 中国国产av一级| 久久韩国三级中文字幕| 欧美xxxx性猛交bbbb| 亚洲美女搞黄在线观看| 日韩欧美在线乱码| 永久免费av网站大全| 亚洲精品久久久久久婷婷小说 | 黄色一级大片看看| 国内精品一区二区在线观看| 欧美激情久久久久久爽电影| 日韩av在线免费看完整版不卡| 成人国产麻豆网| 欧美性猛交黑人性爽| 18禁在线无遮挡免费观看视频| 亚洲最大成人手机在线| 亚洲国产精品久久男人天堂| 成人欧美大片| 亚洲国产精品合色在线| 国产极品天堂在线| 欧美精品国产亚洲| 精品久久久久久久末码| 女的被弄到高潮叫床怎么办| 免费av观看视频| 久久久久久久久久久免费av| 久久久午夜欧美精品| 亚洲怡红院男人天堂| 国产精品女同一区二区软件| 亚洲人与动物交配视频| 中文字幕亚洲精品专区| 亚洲,欧美,日韩| 精品一区二区三区人妻视频| 免费电影在线观看免费观看| 久久6这里有精品| 午夜爱爱视频在线播放| 老师上课跳d突然被开到最大视频| 日日摸夜夜添夜夜添av毛片| 久久热精品热| 九色成人免费人妻av| 18禁在线无遮挡免费观看视频| 成人二区视频| 日韩成人伦理影院| 永久网站在线| 看非洲黑人一级黄片| 蜜臀久久99精品久久宅男| 国产成人精品久久久久久| 在线天堂最新版资源| 精品酒店卫生间| 中文资源天堂在线| 成人午夜精彩视频在线观看| 亚洲真实伦在线观看| 青春草亚洲视频在线观看| 最近的中文字幕免费完整| 成人午夜精彩视频在线观看| 亚洲自拍偷在线| 天美传媒精品一区二区| 久久久久久久国产电影| h日本视频在线播放| 精品国产三级普通话版| 欧美xxxx黑人xx丫x性爽| 亚洲精品一区蜜桃| 久久久久久九九精品二区国产| 久久精品综合一区二区三区| 久久精品国产99精品国产亚洲性色| 特级一级黄色大片| 精品久久久久久久久亚洲| 亚洲欧美日韩卡通动漫| 直男gayav资源| 精品国产露脸久久av麻豆 | 亚洲精品乱久久久久久| 国产黄色视频一区二区在线观看 | 欧美zozozo另类| 亚洲av电影不卡..在线观看| 午夜福利在线观看免费完整高清在| 五月玫瑰六月丁香| 一级黄片播放器| 高清视频免费观看一区二区 | 岛国在线免费视频观看| 又黄又爽又刺激的免费视频.| 国产极品精品免费视频能看的| 国产男人的电影天堂91| 国产视频内射| 国产成人freesex在线| 看非洲黑人一级黄片| 美女xxoo啪啪120秒动态图| 国产单亲对白刺激| 久久鲁丝午夜福利片| 免费播放大片免费观看视频在线观看 | 精品人妻熟女av久视频| 精品少妇黑人巨大在线播放 | av在线老鸭窝| 久久99精品国语久久久| 好男人视频免费观看在线| 丝袜喷水一区| 精品人妻视频免费看| 女人十人毛片免费观看3o分钟| 亚洲不卡免费看| 美女脱内裤让男人舔精品视频| 五月玫瑰六月丁香| 久久草成人影院| 白带黄色成豆腐渣| 少妇的逼好多水| 韩国高清视频一区二区三区| 国产精品一区二区在线观看99 | 激情 狠狠 欧美| 成人鲁丝片一二三区免费| 国产精品.久久久| 永久网站在线| 一个人免费在线观看电影| 亚洲av不卡在线观看| 欧美最新免费一区二区三区| 我要看日韩黄色一级片| 国产精品伦人一区二区| 国产免费福利视频在线观看| 日本爱情动作片www.在线观看| 国产av一区在线观看免费| 精品国产露脸久久av麻豆 | 色综合站精品国产| 亚洲精品一区蜜桃| 中文天堂在线官网| 视频中文字幕在线观看| 亚洲在线观看片| 日韩精品青青久久久久久| 91在线精品国自产拍蜜月| 久久精品国产鲁丝片午夜精品| 我的老师免费观看完整版| 欧美性感艳星| 欧美一级a爱片免费观看看| 亚洲精品亚洲一区二区| 日韩欧美精品免费久久| 亚洲,欧美,日韩| 久久久成人免费电影| 2021少妇久久久久久久久久久| 午夜免费男女啪啪视频观看| 亚洲综合色惰| 国产亚洲一区二区精品| 午夜福利在线观看免费完整高清在| 国产亚洲最大av| 特大巨黑吊av在线直播| 边亲边吃奶的免费视频| 欧美zozozo另类| 天堂网av新在线| 亚洲精品亚洲一区二区| 18禁在线无遮挡免费观看视频| 国产探花在线观看一区二区| www日本黄色视频网| 能在线免费看毛片的网站| 天堂av国产一区二区熟女人妻| 欧美日韩在线观看h| 亚洲五月天丁香| 国产淫语在线视频| 国内揄拍国产精品人妻在线| 麻豆乱淫一区二区| 寂寞人妻少妇视频99o| 国产高清国产精品国产三级 | 国产成年人精品一区二区| 久久99热6这里只有精品| 免费av不卡在线播放| 99在线人妻在线中文字幕| 国产单亲对白刺激| 天天躁夜夜躁狠狠久久av| 两个人视频免费观看高清| 成人美女网站在线观看视频| 欧美日韩在线观看h| 男插女下体视频免费在线播放| 精品久久久久久久人妻蜜臀av| eeuss影院久久| 2021少妇久久久久久久久久久| av在线亚洲专区| 国产私拍福利视频在线观看| 99久国产av精品| 你懂的网址亚洲精品在线观看 | 免费无遮挡裸体视频| 亚洲自偷自拍三级| 国产久久久一区二区三区| 两个人的视频大全免费| 丰满少妇做爰视频| 国产伦一二天堂av在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 熟女电影av网| 一级毛片久久久久久久久女| 国产精品麻豆人妻色哟哟久久 | av又黄又爽大尺度在线免费看 | ponron亚洲| 亚洲av熟女| 欧美一级a爱片免费观看看| 97人妻精品一区二区三区麻豆| 国产亚洲精品久久久com| 亚洲无线观看免费| 少妇的逼好多水| 精品久久久久久成人av| 亚洲精品自拍成人| 春色校园在线视频观看| 岛国毛片在线播放| 亚洲国产欧美人成| 国产亚洲av片在线观看秒播厂 | 国产成人免费观看mmmm| 久久99热6这里只有精品| 日本黄色视频三级网站网址| 性插视频无遮挡在线免费观看| 国产午夜精品一二区理论片| 日韩制服骚丝袜av| 国产v大片淫在线免费观看| 成人毛片a级毛片在线播放| 69av精品久久久久久| 男女那种视频在线观看| 少妇被粗大猛烈的视频| 成年免费大片在线观看| 亚洲精品aⅴ在线观看| 亚洲欧美日韩卡通动漫| 欧美日韩国产亚洲二区| a级毛片免费高清观看在线播放| 国产乱人偷精品视频| 国产三级在线视频| 成人性生交大片免费视频hd| 熟女电影av网| 亚洲精品影视一区二区三区av| 国产午夜精品一二区理论片| 少妇的逼好多水| 日本三级黄在线观看| 久久精品人妻少妇| 午夜精品在线福利| 中文亚洲av片在线观看爽| 免费看美女性在线毛片视频| 亚洲丝袜综合中文字幕| 亚洲国产欧美在线一区| 国产乱人偷精品视频| 黄片无遮挡物在线观看| 国产真实乱freesex| 国产精品一区二区在线观看99 | 最后的刺客免费高清国语| 欧美激情国产日韩精品一区| 久久久精品94久久精品| 中文字幕人妻熟人妻熟丝袜美| 免费看a级黄色片| 男插女下体视频免费在线播放| 久久鲁丝午夜福利片| 97在线视频观看| 99久久成人亚洲精品观看| 亚洲欧美日韩无卡精品| 免费黄色在线免费观看| 日韩欧美 国产精品| av卡一久久| 国产午夜精品论理片| 国产一区亚洲一区在线观看| 国产又黄又爽又无遮挡在线| 免费av毛片视频| 又爽又黄无遮挡网站| 精品人妻偷拍中文字幕| 一本一本综合久久| 欧美日韩一区二区视频在线观看视频在线 | 老司机影院毛片| 天美传媒精品一区二区| 亚洲性久久影院| 国产亚洲午夜精品一区二区久久 | 成人亚洲精品av一区二区| 2022亚洲国产成人精品| 欧美性猛交黑人性爽| 真实男女啪啪啪动态图| 美女国产视频在线观看| 高清毛片免费看| 少妇人妻一区二区三区视频| 三级国产精品片| 91久久精品电影网| 午夜精品在线福利| 人人妻人人澡人人爽人人夜夜 | 亚洲高清免费不卡视频| 国产精品国产高清国产av| 青春草亚洲视频在线观看| 欧美潮喷喷水| 精品久久久久久久久av| 国产成人精品一,二区| 日本wwww免费看| 国产单亲对白刺激| 深夜a级毛片| 秋霞在线观看毛片| 亚洲精品自拍成人| 热99re8久久精品国产| av.在线天堂| 国产成人a∨麻豆精品| 高清视频免费观看一区二区 | 人妻系列 视频| 欧美一区二区精品小视频在线| 久久国内精品自在自线图片| 国产熟女欧美一区二区| 毛片一级片免费看久久久久| 黄色一级大片看看| 99国产精品一区二区蜜桃av| 亚洲最大成人中文| 天美传媒精品一区二区| 国产伦在线观看视频一区| 麻豆国产97在线/欧美| 国产成人精品一,二区| 久久久久久伊人网av| 内地一区二区视频在线| 搡女人真爽免费视频火全软件| 久久久国产成人精品二区| 亚洲激情五月婷婷啪啪| 国产麻豆成人av免费视频| 两个人的视频大全免费| 国产人妻一区二区三区在| 日本黄色视频三级网站网址| 国内精品宾馆在线| 亚洲中文字幕一区二区三区有码在线看| 欧美成人a在线观看| 国产毛片a区久久久久| 精品免费久久久久久久清纯| 亚洲在久久综合| 深爱激情五月婷婷| 亚洲在久久综合| 深爱激情五月婷婷| 一个人看视频在线观看www免费| 欧美性感艳星| 不卡视频在线观看欧美| 69人妻影院| 久久精品国产亚洲av涩爱| 久久久精品欧美日韩精品| 欧美潮喷喷水| 亚洲精品国产成人久久av| 国产激情偷乱视频一区二区| 亚洲欧洲日产国产| 天堂av国产一区二区熟女人妻| 变态另类丝袜制服| 国产淫语在线视频| 丰满乱子伦码专区| kizo精华| 青春草亚洲视频在线观看| kizo精华| 国产黄色小视频在线观看| 久久久欧美国产精品| 久久久精品94久久精品| 亚洲国产日韩欧美精品在线观看| 中国国产av一级| 亚洲成av人片在线播放无| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区四那| 国产男人的电影天堂91| a级一级毛片免费在线观看| 精品久久国产蜜桃| 亚洲精华国产精华液的使用体验| 亚洲av一区综合| 久久精品国产亚洲av涩爱| 搡老妇女老女人老熟妇| 久久久久国产网址| 欧美成人a在线观看| h日本视频在线播放| 嫩草影院入口| av.在线天堂| 男人和女人高潮做爰伦理| 日本-黄色视频高清免费观看| 久久久久九九精品影院| 日本黄大片高清| 国产淫片久久久久久久久| 中文天堂在线官网| 国产乱来视频区| av播播在线观看一区| 最近的中文字幕免费完整| 婷婷色麻豆天堂久久 | 午夜a级毛片| 亚洲精品乱码久久久v下载方式| 久久精品久久久久久噜噜老黄 | 国产私拍福利视频在线观看| 日韩视频在线欧美| 色哟哟·www| 午夜免费男女啪啪视频观看| 深爱激情五月婷婷| 国产成人一区二区在线| 久久99热这里只频精品6学生 | 舔av片在线| 97超碰精品成人国产| 欧美一区二区亚洲| 欧美不卡视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 欧美区成人在线视频| 久久久久九九精品影院| 成人毛片a级毛片在线播放| 狂野欧美白嫩少妇大欣赏| 2022亚洲国产成人精品| 欧美成人精品欧美一级黄| 国内揄拍国产精品人妻在线| 最近最新中文字幕大全电影3| 亚洲自偷自拍三级| 亚洲人成网站在线观看播放| 深爱激情五月婷婷| 久久鲁丝午夜福利片| 欧美成人a在线观看| 在线天堂最新版资源| 久久久色成人| 男女啪啪激烈高潮av片| 欧美3d第一页| 亚洲怡红院男人天堂| 久久久a久久爽久久v久久| 国产精品人妻久久久影院| 黄色欧美视频在线观看| 综合色av麻豆| 国产探花极品一区二区| 男女视频在线观看网站免费| 全区人妻精品视频| 成人性生交大片免费视频hd| 91aial.com中文字幕在线观看| 18禁动态无遮挡网站| 色综合亚洲欧美另类图片| 老师上课跳d突然被开到最大视频| 国产精品一区二区三区四区久久| 成人午夜精彩视频在线观看| 精品免费久久久久久久清纯| 色网站视频免费| 男人和女人高潮做爰伦理| 91午夜精品亚洲一区二区三区| 国产亚洲一区二区精品| 亚洲美女视频黄频| 黄色欧美视频在线观看| av在线天堂中文字幕| 亚洲国产精品合色在线| 禁无遮挡网站| 久久久午夜欧美精品| 极品教师在线视频| 色综合亚洲欧美另类图片| 精品久久久噜噜| 国产精品三级大全| 不卡视频在线观看欧美| 丰满少妇做爰视频| 在线观看av片永久免费下载| 国产一级毛片在线| 久久99热这里只有精品18| 99热这里只有是精品50| 性插视频无遮挡在线免费观看| 亚洲成色77777| 午夜精品在线福利| 2021天堂中文幕一二区在线观| 精品99又大又爽又粗少妇毛片| 国产精品国产三级国产av玫瑰| 国产伦精品一区二区三区四那| 男女边吃奶边做爰视频| 亚洲最大成人中文| 午夜免费激情av| 纵有疾风起免费观看全集完整版 | 高清在线视频一区二区三区 | 色尼玛亚洲综合影院| 日韩三级伦理在线观看| 中文资源天堂在线| videossex国产| 寂寞人妻少妇视频99o| 99热全是精品| 成人国产麻豆网| 国产色婷婷99| av在线天堂中文字幕| 亚洲经典国产精华液单| 成人性生交大片免费视频hd| 亚洲国产精品sss在线观看| 精品久久久久久久久久久久久| 国产一区亚洲一区在线观看| 日韩成人伦理影院| 成人无遮挡网站| 亚洲国产高清在线一区二区三| 国产美女午夜福利| 精华霜和精华液先用哪个| 观看免费一级毛片| 亚洲精品国产成人久久av| 亚洲最大成人中文| 在现免费观看毛片| 日韩欧美精品v在线| 久久久久久久久久久丰满| 久久人人爽人人爽人人片va| 国产伦在线观看视频一区| 亚洲国产最新在线播放| 国产三级中文精品| 国产91av在线免费观看| 国产高清视频在线观看网站| 搞女人的毛片| 亚洲精品国产av成人精品| 久久欧美精品欧美久久欧美| 色尼玛亚洲综合影院| 国产亚洲午夜精品一区二区久久 | 日韩在线高清观看一区二区三区| 色播亚洲综合网| 两个人的视频大全免费| 国产精品蜜桃在线观看| 又粗又硬又长又爽又黄的视频| 中国美白少妇内射xxxbb| 97热精品久久久久久| 亚洲激情五月婷婷啪啪| 日本三级黄在线观看| 男女边吃奶边做爰视频| 白带黄色成豆腐渣| 国产精品美女特级片免费视频播放器| 男人舔女人下体高潮全视频| 亚洲丝袜综合中文字幕| 国产免费视频播放在线视频 | 国国产精品蜜臀av免费| 少妇熟女aⅴ在线视频| 在现免费观看毛片| 日本午夜av视频| 黄色欧美视频在线观看| 最近中文字幕高清免费大全6| 午夜福利在线观看免费完整高清在| 日本黄色片子视频| 国产精品一及| 国产伦在线观看视频一区| 亚洲欧美清纯卡通| 国产一区二区三区av在线| 国产精品麻豆人妻色哟哟久久 | 久久草成人影院| 亚洲国产欧美在线一区| 久久鲁丝午夜福利片| 国产片特级美女逼逼视频| 精华霜和精华液先用哪个| 中文字幕久久专区| 亚洲欧美日韩卡通动漫| 22中文网久久字幕| 久久精品国产亚洲av天美| 成人特级av手机在线观看| 波野结衣二区三区在线| 麻豆乱淫一区二区| 丰满人妻一区二区三区视频av| 久久精品熟女亚洲av麻豆精品 | 午夜福利在线在线| 久久精品国产99精品国产亚洲性色| 婷婷六月久久综合丁香| 99热这里只有是精品50| 男女国产视频网站| 不卡视频在线观看欧美| 成人午夜高清在线视频| 少妇高潮的动态图| 成人无遮挡网站| 亚洲av日韩在线播放| 99热6这里只有精品| 国产一区二区三区av在线| 99久国产av精品| 精品国产三级普通话版| 国产精品麻豆人妻色哟哟久久 | 99久国产av精品| 国产黄a三级三级三级人| 精品酒店卫生间| 久久精品夜色国产| 亚洲伊人久久精品综合 | 又粗又硬又长又爽又黄的视频| 国内精品一区二区在线观看| 国产成人aa在线观看| 热99在线观看视频| 国产在线男女| 亚洲va在线va天堂va国产| 亚洲欧美日韩无卡精品| 啦啦啦韩国在线观看视频| 欧美zozozo另类| 午夜日本视频在线| 久久人妻av系列| 校园人妻丝袜中文字幕| 91久久精品电影网| 久久精品国产鲁丝片午夜精品| 一级二级三级毛片免费看| 欧美三级亚洲精品| 欧美成人免费av一区二区三区| 久久精品影院6| 亚洲经典国产精华液单| 好男人在线观看高清免费视频| 男人舔奶头视频| 蜜桃亚洲精品一区二区三区| 国产一区二区亚洲精品在线观看| 免费无遮挡裸体视频| 一本一本综合久久| av在线观看视频网站免费| 亚洲精品乱码久久久v下载方式| 亚洲av电影在线观看一区二区三区 | 国产综合懂色| 91在线精品国自产拍蜜月| 亚洲精品亚洲一区二区| 男女那种视频在线观看| 欧美激情在线99| 久久精品人妻少妇| 十八禁国产超污无遮挡网站| 嫩草影院新地址| 久久精品人妻少妇| 久久久a久久爽久久v久久| 久久6这里有精品| 国产精品国产三级专区第一集| 丝袜喷水一区| 卡戴珊不雅视频在线播放| 蜜臀久久99精品久久宅男| 啦啦啦观看免费观看视频高清| 亚洲五月天丁香| 国产真实伦视频高清在线观看| 看片在线看免费视频| 美女cb高潮喷水在线观看|