• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New BEM for Fractional Nonlinear Generalized Porothermoelastic Wave Propagation Problems

    2021-12-14 09:56:32MohamedAbdelsabourFahmy
    Computers Materials&Continua 2021年7期

    Mohamed Abdelsabour Fahmy

    1Department of Mathematics,Jamoum University College,Umm Al-Qura University,Alshohdaa,25371,Jamoum,Saudi Arabia

    2Department of Basic Sciences,Faculty of Computers and Informatics,Suez Canal University,New Campus,Ismailia,41522,Egypt

    Abstract: The main purpose of the current article is to develop a novel boundary element model for solving fractional-order nonlinear generalized porothermoelastic wave propagation problems in the context of temperaturedependent functionally graded anisotropic (FGA) structures.The system of governing equations of the considered problem is extremely very difficult or impossible to solve analytically due to nonlinearity,fractional order diffusion and strongly anisotropic mechanical and physical properties of considered porous structures.Therefore, an efficient boundary element method (BEM)has been proposed to overcome this difficulty,where,the nonlinear terms were treated using the Kirchhoff transformation and the domain integrals were treated using the Cartesian transformation method (CTM).The generalized modified shift-splitting(GMSS)iteration method was used to solve the linear systems resulting from BEM,also,GMSS reduces the iterations number and CPU execution time of computations.The numerical findings show the effects of fractional order parameter,anisotropy and functionally graded material on the nonlinear porothermoelastic stress waves.The numerical outcomes are in very good agreement with those from existing literature and demonstrate the validity and reliability of the proposed methodology.

    Keywords: Boundary element method; fractional-order; nonlinear generalized porothermoelasticity; wave propagation; functionally graded anisotropic structures; Cartesian transformation method

    1 Introduction

    The fractional order calculus (FOC) is the branch of mathematical analysis dealing with non-integer order calculus and its applications.The essential viewpoints are sketched out for fractional calculus theory in [1] and for fractional calculus applications in [2–6].FOC is nowadays extremely popular due to its applications in different fields such as diffusion equation, quantum mechanics, nanotechnology, solid mechanics, continuum mechanics, biochemistry, wave propagation theory, polymers, robotics and control theory, finance and control theory, electrochemistry,electrical engineering, fluid dynamics, signal and image processing, biophysics, electric circuits,viscoelasticity, electronics, field theory, group theory, etc.

    Several researchers have contributed to the background of fractional calculus [7–9].Recently,Yu et al.[10] introduced new definitions of fractional derivative in the context of thermoelasticity.Research on generalized thermo-elasticity theories [11] has attracted much attention from many scientists, among which are research in magneto-thermoelasticity [12], viscothermoelasticity [13,14] and micropolar-thermoelasticity [15,16].

    Because of computational complexity in solving complex fractional thermoelasticity problems not having any general analytical solution, computational techniques should be used to solve such problems.Among these computational techniques are the boundary element method (BEM) that has been used for magneto thermoviscoelasticity [17,18], computerized engineering models [19,20],and design sensitivity and optimization [21,22] and nonlinear problems [23–26].The BEM presents an attractive alternative numerical method to the domain methods for the investigation of thermoelastic wave propagation problems, like finite element method (FEM) [27–29] and finite volume method (FVM) [30–32].The main feature of BEM over the domain type methods is that it requires boundary-only discretization of the domain under consideration.This feature has significant importance for solving complex thermoelastic problems with fewer elements, and requires very little computational cost, much less preparation of input data, and therefore easier to use.

    In the present paper, we introduce a new boundary element model for solving fractionalorder nonlinear generalized porothermoelastic wave propagation problems.The nonlinear terms are treated using the Kirchhoff transformation.The domain integrals were treated using the Cartesian transformation method.In the proposed BEM technique, the temperature and displacement distributions were calculated using a partitioned semi-implicit predictor–corrector coupling algorithm.Then, we can obtain the propagation of porothermoelastic stress waves in temperaturedependent FGA structures.Numerical results demonstrate the validity, accuracy and efficiency of our proposed model and technique.

    2 Formulation of the Problem

    The geometry of the considered problem is depicted in Fig.1.The governing equations for fractional-order nonlinear generalized porothermoelastic wave propagation problems in the context of FGA structures can be written as [33]

    whereσijis the mechanical stress tensor,ρis the bulk density,ρFis the fluid density,Fiis the bulk body forces,φis the porosity,uiis the solid displacement andviis the fluid–solid displacement.

    whereζis the variation of the fluid volume per unit reference volume,qis the instantaneous flux andis the source term.

    The fractional nonlinear heat conduction equation can be expressed in non-dimensionless form as

    in which

    in which the heat source functionh(X,T,t)can be written as

    whereTis the temperature,λis the thermal conductivity,Cijklis the constant elastic moduli,Ais the Biot’s effective stress coefficient,pis the fluid pressure,βijis the stress-temperature coefficients,is the permeability,T0is the reference temperature, ? is a unified parameter that introduces all generalized thermoelasticity theories into a unified system of equations,QandRare solid–fluid coupling parameters,τ0,τ1, andτ2are relaxation times,ρ0=ηφρFandηis the shape factor.

    Figure 1:Geometry of the considered problem

    According to finite difference scheme of Caputo at times(f+1)ΔτandfΔτ, we obtain [34]

    where

    On the basis of Eq.(7), the fractional heat conduction Eq.(3) can be expressed as

    whereJ=1,2,...,Fandf=0,1,2,...,F.

    3 BEM Implementation for Temperature Field

    By using the transformation of KirchhoffEq.(3) can be written as [35]

    The decomposition of the right-hand side of (10) into linear and nonlinear sections, yields

    The nonlinear section can be written as

    Based on [24], we can write (11) into the following form

    where

    Now, by using the fundamental solution of (9), we can write the boundary integral equation corresponding to (13) as [36]

    By substituting ofΘ(P,tn+1)=2ΘP,tn+(1/2)?Θ(P,tn)in (15), we get

    Now, the domain integrals in Eq.(16) can be computed using CTM.Thus, the unknown boundary values can be calculated from the following system

    whereΘΓandQΓareM′dimension vectors, andHandGareM′×M′dimension matrices.

    Thus, the unknown internal values can be calculated from the following system

    If we have assumed that the time step size is constant, then,H,G,andcan be computed at all time steps.Also,F,FNl,, andbe computed at all time steps using CTM.

    3.1 CTM Evaluation of the Domain Integrals with Irregularly Spaced Data Kernels

    Now, we are considering the following regular domain integral [37,38]

    Based on Khosravifard et al.[39], we can write the domain integral (19) as follows

    where

    By applying the composite Gaussian quadrature method to (19), we obtain

    which can be written as

    By implementing the radial point interpolation method (RPIM) [40], we can write

    where M equals the summation of boundary nodesM′and internal pointsM′′.

    Based on [40], the functionp(x1,x2)may be described as

    To build the RPIM shape functions, we applied the following Gaussian radial basis function

    whereαiandbjare unknown coefficients which can be computed from the following system

    and the followingconditions

    By using Eqs.(27) and (28), we can expressαiandbjas

    Thus, based on [40], and using (29), we can write Eq.(25) in the following form

    Thus, we have

    which can be written as

    where p contains boundary and internalpvalues.

    3.2 CTM Evaluation of the Domain Integrals with Regularized Kernels

    We now consider the following domain integrals that appear in the integral Eq.(16)whereEi(x)=?0.57721566+?ln(x)

    According to [25], the weakly singular in (33) can be regularized to obtain

    where

    and

    Also, the domain integral in (34) can be regularized to obtain

    where

    Jack Zipes offers a few theories behind the name s selection in The Great Fairy Tale Tradition: The derivation of this name is not certain. It was known through legend that there was a fool in Alexandria who was referred to as Carabas by the inhabitants of the city, and they mocked him by treating him as if he were a king. The Turkish word Carabag designates a beautiful place in the mountains where the sultans and princes would spend the summer months. Perrault might have come upon this term in the Dictionaire oriental, edited by Barthelemy d Herbelot during this time. (Zipes 2001, 398). Return to place in story.

    and

    Hence, from (18) we get

    where a is an unknown matrix, while X and b are known matrices.

    4 BEM Implementation for Displacement Field

    Based on the weighted residual technique, we can write Eqs.(1) and (2) as follows

    where

    On using integration by parts for the first term of Eqs.(42) and (43), we get

    Based on Fahmy [24], elastic stress can be expressed as

    where

    Now, we consider the following definitions

    Substituting above definitions into (47), we get

    which after integration can be written as

    where

    Now, we can write (50) as

    which can be expressed as follows

    where the vectors Q, P, i, and j are displacements, tractions, pore pressure, and pore pressure gradients, respectively.

    Substituting the boundary conditions into (54), we obtain the following system of equations

    in which A represents unknown matrix, while X and B represent known matrices.

    According to Breuer et al.[41], a robust and efficient partitioned semi-implicit predictor–corrector coupling algorithm was implemented with GMSS [42] for solving the resulting linear Eqs.(41) and (54) arising from the boundary element discretization, where poro-thermo-elastic coupling is considered instead of fluid-structure-interaction coupling.

    5 Numerical Results and Discussion

    The proposed BEM technique which is based on the coupling algorithm [41], should be applied to a wide variety of fractional-order nonlinear porothermoelastic wave propagation problems.

    In the present paper, we considered the temperature-dependent properties of anisotropic porous copper material, where the specific heat and density are tabulated in Tab.1 [43].

    Table 1:Temperature-dependent specific heat and density of porous copper material

    The thermal conductivity is given by

    The domain boundary of the current problem has been discretized into 42 boundary elements and 68 internal points as depicted in Fig.2.

    Figure 2:Boundary element model of the considered problem

    Figs.3–5 illustrate the propagation of nonlinear thermal stress wavesσ11,σ12, andσ22for different values(a=0.4,0.7 and 1.0)of the fractional order parameter (FOP).It can be seen from these figures that the FOP has a great influence on the nonlinear thermal stress waves of FGA porous structures.

    Figure 3:Propagation of the nonlinear thermal stress σ11 waves with time t for different values of the fractional-order parameter

    Figure 4:Propagation of the nonlinear thermal stress σ12 waves with time t for different values of the fractional-order parameter

    Figure 5:Propagation of the nonlinear thermal stress σ22 waves with time t for different values of the fractional-order parameter

    According to the relationship of elastic constants for anisotropic, isotropic, and orthotropic materials [44].We therefore considered these three materials in the current study.

    Figs.6–8 show the propagation of nonlinear thermal stress wavesσ11,σ12, andσ22for anisotropic, isotropic and orthotropic functionally graded porous structures.It can be shown from these figures that the effects of anisotropy are very pronounced.

    Figure 6:Propagation of the nonlinear thermal stress σ11 waves with time t for isotropic,orthotropic and anisotropic porous materials

    Figure 7:Propagation of the nonlinear thermal stress σ12 waves with time t for isotropic,orthotropic and anisotropic porous materials

    Figure 8:Propagation of the nonlinear thermal stress σ22 waves with time t for isotropic,orthotropic and anisotropic porous materials

    Figs.9–11 display the propagation of nonlinear thermal stress wavesσ11,σ12, andσ22for homogeneous(m= 0)and functionally graded(m=0.4 and 0.7)porous structures.It can be shown from these figures that the effect of functionally graded material is very pronounced.

    Figure 9:Propagation of the nonlinear thermal stress σ11 waves with time t for homogeneous and functionally graded porous materials

    Figure 10:Propagation of the nonlinear thermal stress σ12 waves with time t for homogeneous and functionally graded porous materials

    Figure 11:Propagation of the nonlinear thermal stress σ22 waves with time t for homogeneous and functionally graded porous materials

    The effectiveness of our proposed approach has been established through the use of the GMSS which doesn’t need the entire matrix to be stored in the memory and converges quickly without the need for complicated calculations.During our treatment of the considered problem,we implemented GMSS, Uzawa-HSS, and regularized iteration methods [45].Tab.2 displays the number of iterations (IT), processor time (CPU), relative residual (RES), and error (ERR) of the considered methods computed for different fractional order values.It can be noted from Tab.2 that the GMSS needs the lowest IT and CPU times, which means that GMSS method has better performance than Uzawa-HSS and regularized methods.

    For comparison purposes with other methods, we only considered the one-dimensional special case.Therefore, the time distribution results of the nonlinear thermal stressσ11are plotted in Fig.12 for the proposed BEM and compared with the FDM results obtained by Awrejcewicz et al.[46] and FEM results obtained by Shakeriaski et al.[47], it can be shown from Fig.12 that the BEM outcomes are in very good agreement with the FDM and FEM outcomes.Thus, the validity, accuracy, and usefulness of the proposed BEM have been demonstrated.

    Table 2:Numerical results for the tested iteration methods

    Figure 12:Propagation of the nonlinear thermal stress σ11 waves with time t for a special case and different methods

    6 Conclusion

    The main objective of the current paper is to develop a new boundary element model for solving fractional-order nonlinear generalized porothermoelastic wave propagation problems in FGA structures, which are difficult or impossible to solve analytically.Therefore, an efficient numerical procedure based on BEM has been proposed to overcome this challenge.The Kirchhoff transformation is first used to treat the nonlinear terms.Then, the Cartesian transformation method (CTM) has been applied to transform the domain integration into boundary integration,As a result, the computational complexity of integration and CPU computing time are significantly reduced.The memory requirements and Processing time are also reduced by applying the GMSS method which does not need that the entire matrix is stored in the memory, and it is rapidly converging without the need for complicated calculations.The numerical outcomes are presented graphically to show the effects of fractional parameter, anisotropy, and functionally graded material on the nonlinear thermal stress waves.The numerical outcomes also show very good agreement with the earlier work in the literature as a special case.These outcomes also confirm the validity, accuracy, and effectiveness of the proposed methodology.

    Funding Statement:The author received no specific funding for this study.

    Conficts of Interest:The author declares that he has no conflicts of interest to report regarding the present study.

    国产一卡二卡三卡精品| 亚洲第一青青草原| 亚洲国产欧美日韩在线播放| 男男h啪啪无遮挡| 亚洲 欧美一区二区三区| 成人18禁在线播放| 在线观看免费日韩欧美大片| 国产熟女午夜一区二区三区| 久久午夜亚洲精品久久| 中国美女看黄片| 1024视频免费在线观看| 欧美成人一区二区免费高清观看 | 一二三四在线观看免费中文在| 又黄又爽又免费观看的视频| 国产免费男女视频| 真人做人爱边吃奶动态| 午夜福利成人在线免费观看| 成人18禁在线播放| 亚洲 欧美一区二区三区| 久久精品国产综合久久久| 亚洲专区字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 免费无遮挡裸体视频| 国产精品一区二区精品视频观看| 九色亚洲精品在线播放| 美女国产高潮福利片在线看| 男男h啪啪无遮挡| 丁香六月欧美| 高清在线国产一区| 级片在线观看| 免费在线观看日本一区| 久久人妻av系列| 成人精品一区二区免费| 中文字幕高清在线视频| 香蕉久久夜色| 两性午夜刺激爽爽歪歪视频在线观看 | 精品第一国产精品| 中文字幕久久专区| 日日摸夜夜添夜夜添小说| 国产亚洲精品综合一区在线观看 | 久久久水蜜桃国产精品网| av在线播放免费不卡| 久久精品国产清高在天天线| 99re在线观看精品视频| 久久天堂一区二区三区四区| 国产91精品成人一区二区三区| 变态另类丝袜制服| 视频区欧美日本亚洲| 亚洲中文av在线| 亚洲性夜色夜夜综合| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕久久专区| 午夜日韩欧美国产| 久久久久国产精品人妻aⅴ院| 一二三四在线观看免费中文在| 成人国产综合亚洲| 久久久久久免费高清国产稀缺| 亚洲人成网站在线播放欧美日韩| 精品国产超薄肉色丝袜足j| 97碰自拍视频| 国产蜜桃级精品一区二区三区| 国产av一区二区精品久久| 久久精品影院6| 亚洲七黄色美女视频| 久久久久久久精品吃奶| 好男人在线观看高清免费视频 | 在线观看免费日韩欧美大片| 99精品久久久久人妻精品| 夜夜夜夜夜久久久久| 欧洲精品卡2卡3卡4卡5卡区| 在线播放国产精品三级| 最新美女视频免费是黄的| 亚洲全国av大片| 窝窝影院91人妻| 久久精品亚洲熟妇少妇任你| 亚洲最大成人中文| 亚洲色图综合在线观看| 国产麻豆成人av免费视频| 麻豆国产av国片精品| 国产av又大| av福利片在线| 精品久久蜜臀av无| 国产av一区在线观看免费| 亚洲情色 制服丝袜| 丝袜美足系列| 国产亚洲av嫩草精品影院| 老鸭窝网址在线观看| 欧美乱妇无乱码| 日本vs欧美在线观看视频| 成人亚洲精品av一区二区| 欧美久久黑人一区二区| 脱女人内裤的视频| 韩国av一区二区三区四区| 又黄又爽又免费观看的视频| 少妇粗大呻吟视频| 最好的美女福利视频网| 欧美在线黄色| 国产成年人精品一区二区| 欧美日韩乱码在线| 国产精华一区二区三区| 国产精品秋霞免费鲁丝片| 精品欧美一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| 久久国产精品人妻蜜桃| 在线国产一区二区在线| 老熟妇乱子伦视频在线观看| 侵犯人妻中文字幕一二三四区| 久久精品91蜜桃| 免费看a级黄色片| 他把我摸到了高潮在线观看| 成人免费观看视频高清| 久久久久久久久久久久大奶| 制服诱惑二区| 在线av久久热| √禁漫天堂资源中文www| 国产高清videossex| 真人做人爱边吃奶动态| 曰老女人黄片| 999久久久国产精品视频| 97人妻天天添夜夜摸| 999久久久国产精品视频| 久热这里只有精品99| 久久久国产精品麻豆| 两个人视频免费观看高清| 国产av精品麻豆| 亚洲五月婷婷丁香| 国产97色在线日韩免费| 天堂影院成人在线观看| 亚洲av成人一区二区三| 91在线观看av| 亚洲人成网站在线播放欧美日韩| 人人妻人人澡欧美一区二区 | 给我免费播放毛片高清在线观看| 免费在线观看黄色视频的| 三级毛片av免费| 欧美另类亚洲清纯唯美| 欧美最黄视频在线播放免费| 一本大道久久a久久精品| 久久久久久免费高清国产稀缺| 国产成人系列免费观看| 宅男免费午夜| av在线天堂中文字幕| 人成视频在线观看免费观看| 女警被强在线播放| av天堂久久9| 欧美日韩瑟瑟在线播放| 成人国产一区最新在线观看| 1024香蕉在线观看| 天天添夜夜摸| a级毛片在线看网站| 亚洲人成伊人成综合网2020| 中文字幕最新亚洲高清| 国产伦一二天堂av在线观看| 亚洲成人免费电影在线观看| 国产三级在线视频| 精品乱码久久久久久99久播| 亚洲人成77777在线视频| 两性夫妻黄色片| 久久精品国产99精品国产亚洲性色 | 非洲黑人性xxxx精品又粗又长| 可以免费在线观看a视频的电影网站| 精品一区二区三区av网在线观看| 曰老女人黄片| 女人高潮潮喷娇喘18禁视频| 亚洲av美国av| 黄频高清免费视频| 久久香蕉激情| 国产精品 欧美亚洲| 香蕉久久夜色| 制服诱惑二区| 久久久国产欧美日韩av| 欧美国产精品va在线观看不卡| 欧美黑人欧美精品刺激| 又黄又爽又免费观看的视频| 国产1区2区3区精品| 无限看片的www在线观看| 12—13女人毛片做爰片一| 在线观看免费视频网站a站| 国产精品自产拍在线观看55亚洲| 高清毛片免费观看视频网站| 亚洲欧美精品综合久久99| 精品久久久久久久人妻蜜臀av | 黑人巨大精品欧美一区二区蜜桃| 精品国产美女av久久久久小说| 制服丝袜大香蕉在线| 国产麻豆成人av免费视频| 国产精品1区2区在线观看.| 美国免费a级毛片| 成人av一区二区三区在线看| 两个人免费观看高清视频| 亚洲无线在线观看| 青草久久国产| 久久草成人影院| 看黄色毛片网站| 亚洲精品国产区一区二| 一a级毛片在线观看| 国产一区二区三区综合在线观看| 国产精品久久久久久人妻精品电影| tocl精华| 精品久久久久久成人av| 久久久久久久久中文| 国产亚洲av高清不卡| 亚洲国产精品sss在线观看| 亚洲av成人av| 日本 欧美在线| 欧美日韩亚洲国产一区二区在线观看| 啦啦啦观看免费观看视频高清 | 成人亚洲精品一区在线观看| 久久久国产成人免费| 正在播放国产对白刺激| 又黄又爽又免费观看的视频| 精品人妻1区二区| 亚洲精品美女久久av网站| 这个男人来自地球电影免费观看| 欧美成人免费av一区二区三区| 色播在线永久视频| 亚洲成人久久性| 亚洲男人天堂网一区| 亚洲欧美一区二区三区黑人| 热99re8久久精品国产| 欧美一级a爱片免费观看看 | 精品欧美国产一区二区三| 欧美国产日韩亚洲一区| 99国产精品一区二区三区| 国产野战对白在线观看| 亚洲狠狠婷婷综合久久图片| 国产色视频综合| 精品久久久久久久久久免费视频| 午夜激情av网站| 国产不卡一卡二| 99国产综合亚洲精品| 亚洲欧美激情综合另类| 成人精品一区二区免费| 午夜精品国产一区二区电影| 亚洲精品国产精品久久久不卡| 午夜精品久久久久久毛片777| 亚洲在线自拍视频| 国产精品亚洲一级av第二区| 久久亚洲精品不卡| 亚洲精品中文字幕一二三四区| 久9热在线精品视频| 国产日韩一区二区三区精品不卡| 一级a爱视频在线免费观看| 久久久国产欧美日韩av| 大陆偷拍与自拍| 欧美日韩福利视频一区二区| 淫妇啪啪啪对白视频| 久久久久久免费高清国产稀缺| 国产免费av片在线观看野外av| 国产精品久久视频播放| svipshipincom国产片| 欧美激情久久久久久爽电影 | 欧美黄色淫秽网站| 黑人欧美特级aaaaaa片| 中文亚洲av片在线观看爽| 久久精品国产亚洲av香蕉五月| 一级片免费观看大全| 欧美国产日韩亚洲一区| 黄色成人免费大全| 午夜福利一区二区在线看| 1024视频免费在线观看| 丰满人妻熟妇乱又伦精品不卡| 午夜激情av网站| 精品国产一区二区三区四区第35| 黄频高清免费视频| 国产亚洲欧美精品永久| 又黄又爽又免费观看的视频| 亚洲片人在线观看| a在线观看视频网站| 两个人看的免费小视频| 亚洲精品在线美女| 午夜福利,免费看| 国产高清激情床上av| 国内毛片毛片毛片毛片毛片| 久久久久国产一级毛片高清牌| 成年版毛片免费区| 国产精品香港三级国产av潘金莲| 两个人视频免费观看高清| 日韩欧美在线二视频| 非洲黑人性xxxx精品又粗又长| 男男h啪啪无遮挡| 麻豆久久精品国产亚洲av| videosex国产| 人人妻人人澡人人看| 亚洲午夜理论影院| 男女午夜视频在线观看| 黄色视频,在线免费观看| 国产单亲对白刺激| 亚洲欧美精品综合一区二区三区| 一a级毛片在线观看| 欧美成人性av电影在线观看| 国产激情久久老熟女| 国产精品98久久久久久宅男小说| 国产精品,欧美在线| 一区在线观看完整版| 91精品国产国语对白视频| 国产成人欧美| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久国内视频| 两人在一起打扑克的视频| 亚洲一区二区三区不卡视频| 中文字幕人成人乱码亚洲影| 一级,二级,三级黄色视频| 久久影院123| 午夜福利高清视频| 久久久久久大精品| 国内精品久久久久久久电影| 欧美性长视频在线观看| 久热这里只有精品99| 男人的好看免费观看在线视频 | av在线天堂中文字幕| 欧美中文日本在线观看视频| 久久精品亚洲熟妇少妇任你| 精品人妻在线不人妻| 久久天躁狠狠躁夜夜2o2o| 我的亚洲天堂| 91字幕亚洲| 亚洲精品中文字幕一二三四区| 国产激情久久老熟女| 在线观看www视频免费| 亚洲中文av在线| 十分钟在线观看高清视频www| 亚洲一区中文字幕在线| 少妇被粗大的猛进出69影院| 国产色视频综合| 国产1区2区3区精品| 女人高潮潮喷娇喘18禁视频| 亚洲欧美一区二区三区黑人| 亚洲精品国产一区二区精华液| 精品不卡国产一区二区三区| 亚洲熟妇中文字幕五十中出| 69精品国产乱码久久久| 波多野结衣巨乳人妻| 女人高潮潮喷娇喘18禁视频| 亚洲av熟女| 久久人人爽av亚洲精品天堂| 97碰自拍视频| 高清黄色对白视频在线免费看| 国产av一区在线观看免费| 悠悠久久av| 极品教师在线免费播放| 熟女少妇亚洲综合色aaa.| 午夜两性在线视频| 午夜福利免费观看在线| 非洲黑人性xxxx精品又粗又长| 欧美精品啪啪一区二区三区| 在线永久观看黄色视频| 大香蕉久久成人网| 99久久99久久久精品蜜桃| 久热这里只有精品99| 国产精品乱码一区二三区的特点 | 97超级碰碰碰精品色视频在线观看| 精品久久久精品久久久| 日韩精品免费视频一区二区三区| 这个男人来自地球电影免费观看| 久久久久久久久免费视频了| 亚洲全国av大片| 免费女性裸体啪啪无遮挡网站| 欧美大码av| 亚洲专区中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 日韩欧美在线二视频| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久久久99蜜臀| 99久久国产精品久久久| 亚洲国产日韩欧美精品在线观看 | 亚洲色图综合在线观看| 18禁观看日本| 中文字幕另类日韩欧美亚洲嫩草| 国产av一区在线观看免费| ponron亚洲| 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产色婷婷电影| 老司机靠b影院| 男女之事视频高清在线观看| 久久久久久久久免费视频了| 国产亚洲精品第一综合不卡| 中亚洲国语对白在线视频| 日日爽夜夜爽网站| 久久国产精品男人的天堂亚洲| 波多野结衣一区麻豆| 咕卡用的链子| 在线永久观看黄色视频| bbb黄色大片| 岛国在线观看网站| 欧美老熟妇乱子伦牲交| 老司机午夜十八禁免费视频| 老司机在亚洲福利影院| av有码第一页| 午夜久久久在线观看| 18禁观看日本| 日日干狠狠操夜夜爽| 亚洲情色 制服丝袜| 99国产极品粉嫩在线观看| 午夜福利在线观看吧| 一级毛片精品| 天天躁狠狠躁夜夜躁狠狠躁| 欧美乱妇无乱码| 又黄又爽又免费观看的视频| 日韩三级视频一区二区三区| 精品欧美一区二区三区在线| 欧美日韩黄片免| 黄频高清免费视频| 成人三级黄色视频| 少妇裸体淫交视频免费看高清 | 一级a爱片免费观看的视频| 波多野结衣一区麻豆| 精品福利观看| 国产精品爽爽va在线观看网站 | 日韩一卡2卡3卡4卡2021年| 亚洲熟女毛片儿| 波多野结衣一区麻豆| 欧美国产日韩亚洲一区| 亚洲国产精品sss在线观看| 欧美人与性动交α欧美精品济南到| 一级a爱视频在线免费观看| 午夜亚洲福利在线播放| 看黄色毛片网站| 亚洲精品美女久久久久99蜜臀| 国产人伦9x9x在线观看| 99re在线观看精品视频| 国产成人一区二区三区免费视频网站| 免费在线观看视频国产中文字幕亚洲| 精品国产乱码久久久久久男人| 免费在线观看视频国产中文字幕亚洲| 亚洲五月天丁香| 亚洲中文字幕日韩| 亚洲人成电影免费在线| 天天躁夜夜躁狠狠躁躁| 少妇的丰满在线观看| 一区福利在线观看| 黄片播放在线免费| 成人亚洲精品一区在线观看| 欧美性长视频在线观看| 亚洲精品久久国产高清桃花| 欧美亚洲日本最大视频资源| 午夜老司机福利片| 波多野结衣av一区二区av| 欧美日韩亚洲国产一区二区在线观看| 久久中文看片网| 亚洲色图综合在线观看| 老汉色av国产亚洲站长工具| 99国产精品99久久久久| 午夜亚洲福利在线播放| 又紧又爽又黄一区二区| 精品熟女少妇八av免费久了| 人人妻人人澡欧美一区二区 | 亚洲视频免费观看视频| 可以在线观看毛片的网站| 成在线人永久免费视频| 国产乱人伦免费视频| 国产亚洲av嫩草精品影院| 少妇粗大呻吟视频| 黄色片一级片一级黄色片| 男女午夜视频在线观看| 多毛熟女@视频| 男女床上黄色一级片免费看| 亚洲av成人一区二区三| 免费人成视频x8x8入口观看| 国产99白浆流出| 国产极品粉嫩免费观看在线| 免费少妇av软件| 天堂影院成人在线观看| av有码第一页| 久久久久国产精品人妻aⅴ院| 日韩高清综合在线| 成人国产一区最新在线观看| 欧美日韩亚洲国产一区二区在线观看| 午夜福利,免费看| 男男h啪啪无遮挡| а√天堂www在线а√下载| 国产精品98久久久久久宅男小说| 69精品国产乱码久久久| 亚洲国产精品999在线| www.精华液| 99国产精品免费福利视频| 色播在线永久视频| 一级片免费观看大全| 久久婷婷成人综合色麻豆| aaaaa片日本免费| 精品一品国产午夜福利视频| 久久青草综合色| 香蕉丝袜av| 在线观看66精品国产| 国产欧美日韩一区二区精品| 亚洲欧美日韩无卡精品| 最新美女视频免费是黄的| 国产精品九九99| 欧美 亚洲 国产 日韩一| 亚洲精品久久国产高清桃花| www.自偷自拍.com| 法律面前人人平等表现在哪些方面| 99国产精品免费福利视频| 国产熟女xx| 一个人观看的视频www高清免费观看 | 国产91精品成人一区二区三区| 国产1区2区3区精品| 国产高清有码在线观看视频 | 国产成人av激情在线播放| 亚洲性夜色夜夜综合| 国产精品98久久久久久宅男小说| 久99久视频精品免费| 国产又爽黄色视频| 高潮久久久久久久久久久不卡| 久久中文字幕一级| 亚洲三区欧美一区| e午夜精品久久久久久久| 在线永久观看黄色视频| 一区二区三区国产精品乱码| 老鸭窝网址在线观看| 国产成人欧美| 自拍欧美九色日韩亚洲蝌蚪91| 88av欧美| 国产亚洲精品一区二区www| 久久久久国内视频| 精品人妻1区二区| www.熟女人妻精品国产| 亚洲中文av在线| 激情在线观看视频在线高清| 欧美日韩一级在线毛片| 日本欧美视频一区| 免费在线观看日本一区| 亚洲av熟女| 丝袜在线中文字幕| 精品日产1卡2卡| 亚洲成av片中文字幕在线观看| 成人永久免费在线观看视频| 青草久久国产| 国产在线观看jvid| 免费在线观看日本一区| 99国产精品一区二区蜜桃av| 亚洲成人久久性| 91麻豆av在线| 国产欧美日韩精品亚洲av| 欧美性长视频在线观看| 99在线视频只有这里精品首页| 免费少妇av软件| 欧美最黄视频在线播放免费| 久久久久久久精品吃奶| 午夜福利高清视频| 欧洲精品卡2卡3卡4卡5卡区| 成人亚洲精品一区在线观看| 一级黄色大片毛片| 两人在一起打扑克的视频| 宅男免费午夜| 又黄又粗又硬又大视频| 精品欧美国产一区二区三| 国产又爽黄色视频| 一级毛片精品| 中亚洲国语对白在线视频| 波多野结衣高清无吗| 欧美国产日韩亚洲一区| 成在线人永久免费视频| 动漫黄色视频在线观看| 91麻豆av在线| 国产一区二区激情短视频| 国产精品一区二区精品视频观看| x7x7x7水蜜桃| 国产精品,欧美在线| 无限看片的www在线观看| 精品欧美国产一区二区三| 精品国产一区二区三区四区第35| 免费一级毛片在线播放高清视频 | 老熟妇仑乱视频hdxx| 欧美中文综合在线视频| 精品久久久久久久毛片微露脸| 久久香蕉精品热| 性欧美人与动物交配| 长腿黑丝高跟| 国语自产精品视频在线第100页| 非洲黑人性xxxx精品又粗又长| 久久精品国产清高在天天线| 久久精品亚洲精品国产色婷小说| 好男人在线观看高清免费视频 | 老鸭窝网址在线观看| 乱人伦中国视频| 正在播放国产对白刺激| 少妇裸体淫交视频免费看高清 | 久久 成人 亚洲| av超薄肉色丝袜交足视频| 亚洲伊人色综图| 久久久久久久久免费视频了| 一个人免费在线观看的高清视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线观看吧| 欧美日韩瑟瑟在线播放| 曰老女人黄片| 大陆偷拍与自拍| 黑人操中国人逼视频| 精品久久久久久久毛片微露脸| 国产亚洲精品综合一区在线观看 | 亚洲国产欧美网| 亚洲欧美日韩无卡精品| 成人亚洲精品av一区二区| 亚洲视频免费观看视频| 精品第一国产精品| 国产成年人精品一区二区| 久久 成人 亚洲| 91av网站免费观看| 少妇 在线观看| 中文字幕人妻熟女乱码| 久久久久亚洲av毛片大全| 成人三级做爰电影| 日韩欧美三级三区| 亚洲中文日韩欧美视频| 欧美成人性av电影在线观看| 亚洲人成网站在线播放欧美日韩| 三级毛片av免费| 国产一区在线观看成人免费| 天堂影院成人在线观看| 国产精品日韩av在线免费观看 | 香蕉丝袜av| 777久久人妻少妇嫩草av网站| 青草久久国产| 免费看a级黄色片|