• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    巖石鉆孔爆炸致裂研究

    2021-12-03 08:49:30郭曉鈞文鶴鳴
    高壓物理學(xué)報(bào) 2021年6期
    關(guān)鍵詞:實(shí)驗(yàn)室大學(xué)

    郭曉鈞,文鶴鳴

    (1. 南昌航空大學(xué)土木建筑學(xué)院,江西 南昌 330063;2. 中國(guó)科學(xué)技術(shù)大學(xué)中國(guó)科學(xué)院材料力學(xué)行為和設(shè)計(jì)重點(diǎn)實(shí)驗(yàn)室,安徽 合肥 230027)

    It is very important for mining and civil construction to predict the morphology distribution of cracks induced by blasting. Hence, many researchers have paid their attention to dynamic fracture behavior of rocks due to drilling and blasting operations[1-3]. A number of experiments and numerical simulations have been conducted to investigate the blasting-induced fractures in the near borehole zone as well as in the far field[4-5]. In order to gain high fidelity in simulating the complex responses of rocks subjected to blasting loading, a realistic constitutive model is required. In the last 20 years, various macro-scale material models have been proposed, from relatively simple ones to more sophisticated, and their capabilities in describing actual nonlinear behavior of material under different loading conditions have been evaluated[6].

    During blasting operation, chemical reactions of explosive in borehole occur rapidly, and instantaneously a shock/stress wave applies to borehole wall. Initially, a crushed zone around the borehole is developed by the shock/stress wave. Then, a radial shock/stress wave propagates away from borehole, and its magnitude decreases.Once the radial shock/stress drops below the local dynamic compressive strength, no shear damage occurs. At the same time, a tensile tangential stress with enough strength can be developed behind the radial compressive stress wave, which results in an extension of the existing flaws or a creation of new radial cracks. If there is a nearby free boundary, the incident compressive stress wave changes to a tensile stress wave upon reflection, and reflects back into the rock. In this case, if the dynamic tensile strength of rock is exceeded, spall cracks appear close to the free boundary.

    The purpose of this paper is to conduct a numerical study on borehole blasting-induced fractures in rocks.First, a dynamic constitutive model for rocks based on the previous work of concrete[7]is briefly described, and the values of various parameters in the model for granite are estimated. The model is then employed to simulate the borehole blasting-induced fractures in granitic rocks. Comparisons between the numerical results and the experimental observations are made, and a discussion is given.

    1 Dynamic Constitutive Model for Rocks

    A number of models for concrete-like materials, such as TCK model[8], HJC model[9], RHT model[10], K&C model[11], have been developed. The sophisticated numerical models are increasingly used as they are capable of describing the material behavior under high strain rate loading. However, these models have been found to have some serious flaws, and cannot predict the experimentally observed crack patterns or exhibit improper behavior under certain loading conditions[7,12-15].

    In the following, a dynamic constitutive model for rocks is briefly described according to equation of state(EOS) and strength model, based on the previous work on concrete[7].

    1.1 EOS

    A typical form of EOS is the so-calledp-α relation, which is proved to be capable of representing brittle material’s response behavior at high pressures, and it allows for a reasonably detailed description of the compaction behavior at low pressure ranges as well, as shown schematically in Fig.1.pcrushcorresponds to the pore collapse pressure beyond which plastic compaction occurs, andplockis the pressure when porosity α reaches 1,fttis the tensile strength,ρ0is the initial density, ρs0refers to the density of the initial solid.

    Fig. 1 Schematic diagram of EOS[7]

    The EOS for compression (p≥0) is given by

    wherepdenotes pressure,K1,K2,K3are constants, and μˉ is defined by

    wherenis the compaction exponent.

    When material withstands hydro-static tension, the EOS for tension (p<0) is given by

    1.2 Strength Model

    The strength model takes into account various effects, such as pressure hardening, damage softening, third stress invariant (Lode angle) and strain rate. The strength surfaceY, shown schematically in Fig.2, can be written as[7]

    Fig. 2 Schematic diagram of the residual strength surface for rock in total stress space

    wherepis the hydro-static pressure, parametersBandNare constants,R(θ,e) is a function of the Lode angle θ and the tensile-to-compressive meridian ratioe,fc′is the static uni-axial compressive strength, the compressive strengthfccand the tensile strengthfttare defined by

    whereftis the static uni-axial tensile strength.

    Dm_tis the compression dynamic increase factor due to strain rate effect only, and can be expressed as[7,16]

    whereDtis the tension dynamic increase factor determined by

    whereFm,Wx,WyandSare experimental constants, ε˙ is the strain rate, and ε˙0is the reference strain rate, usually taken ε=1.0 s?1.

    ηcis the damage function for compression, which can be expressed as

    wherelandrare constants[7], λmis the value of shear damage ( λ) when strength reaches its maximum value under compression. η(λ) is defined as

    ηtis the damage function for tension which can be written as

    2 Numerical Simulations

    Granite is selected for investigating the dynamic fractures which result from borehole blast loading.

    2.1 Evaluation of Various Parameters in the Model

    Table 1 lists the values of the various parameters used in the dynamic constitutive model for granite. As to how to determine the values of the various parameters in the model, more details are presented in [7, 15-17].

    Table 1 Values of various parameters for granite[7,15-17]

    Fig.3 shows the comparison of the strength surface between Eq.(6) (withB=2.59,N=0.66) and the triaxial test data for granite[17]. It can be seen from Fig.3 that a good agreement is obtained. Similarly, Fig.4 shows the tensile strengths/dynamic increase factor obtained by Eq.(10) and the test results of various rocks at different strain rates[18-23]. It is clear from Fig.4 that a good agreement is achieved.

    Fig. 3 Comparison of the strength surface between Eq.(6) (with B=2.59, N=0.66) and the triaxial test data for granite[17]

    Fig. 4 Tension dynamic increase factor obtained by Eq.(10) and the test results of various rocks at different strain rates[18?23]

    2.2 Numerical Results

    In the following, numerical simulations are carried out for the response of the granite targets subjected to borehole blasting loading. The dynamic fracture behavior of two kinds of granite samples are studied, namely,cylindrical sample as reported in the literature and square sample as examined in our own laboratory.

    2.2.1 Cylindrical Rock Sample

    In consideration of the sizes of the cylindrical granite samples prepared for laboratory-scale blasting experiments by Dehghan Banadaki and Mohanty[17](with a diameter of 144 mm, a height of 150 mm and a borehole diameter of 6.45 mm), a circular plane strain model with an outer diameter of 144 mm is made in our simulation, as shown in Fig.5, being a scaled close-up view of the borehole region. Multi-material Euler solver is used for modeling PETN explosive, polyethylene and air. Lagrangian descriptions are used for modeling the copper tube and granite.

    The material model and the properties of PETN explosive, polyethylene, air and copper tube used in the simulation are given in Ref.[17]. The values of various parameters in the constitutive model for granite are listed in Table 1.

    Fig.6 shows the comparison of the peak pressures between our simulation results of the present model, the numerical results[17], and the experimental results by Dehghan Banadaki and Mohanty[24]. It can be seen from Fig.6 that a good agreement is obtained.

    In order to characterize the damping behavior of stress in granite, the peak pressurepin granite is expressed in an exponential form as

    wherep0is the peak pressure on the borehole wall,d0is the initial radius of the borehole,dis the distance from the center point of the borehole, γ is an index. It is evident from Fig.6 that Eq.(15) with γ=1.6 correlates well with the experimental results.

    Fig. 5 Close-up view of the borehole region showing the material positions and the meshes

    Fig. 6 Relation between the peak pressure and the distance from the borehole wall in granite

    Fig.7 shows the comparison between the crack patterns predicted numerically based on the present model and the one observed experimentally in the cylindrical granite sample[17]. It is clear that a relatively good agreement on the crack pattern is obtained. It is also clear that the stress waves produce three distinct crack regions in the cylindrical granite sample: densely populated smaller cracks around the borehole, a few large radial cracks propagating towards the outer boundary, and circumferential cracks close to the sample boundary which are due to the reflected tension stress.

    Fig. 7 Comparison of the crack patterns between the numerical prediction and the experiment of the cylindrical granite sample[17]

    In order to make an assessment of the contributions of both the compression/shear stress and the tensile stress to the crack patterns, Fig.8 shows the numerically predicted crack pattern which results from the tension stress only. Fom Fig.8 and Fig.7(a), it is apparent that there are virtually few changes in crack patterns, both having the large radial and circumferential cracks caused by the same tensile stress,however, the smaller cracks around the borehole in Fig.8 are much less than those in Fig.7(a). In another word, crack patterns are mainly caused by tensile stress, and smaller cracks around borehole are created largely by compression/shear stress.

    Fig. 8 Numerically predicted crack pattern resulting from tension stress only

    2.2.2 Square Granite Sample

    The laboratory-scale single-hole blasting tests are also carried out in order to validate further the accuracy and the reliability of the present model. Two square granite samples with a side length of 400 mm and a height of 100 mm are employed in the experiments. The borehole diameter is 4 mm and a series of concentric rings is drawn on the top surface of the samples (see Fig.9), so that the damage regions induced by detonation can be assessed visually.

    Fig. 9 Square granite sample

    Fig. 10 Cross-section of the cylindrical RDX enclosed by an aluminum sheath

    A cylindrical RDX explosive enclosed by an aluminum sheath (see Fig.10) is tightly installed in the borehole of the No.1 sample, while an unwrapped RDX explosive is inserted into the borehole of the No.2 sample. The density of the RDX is 1 700 kg/m3, and the material model and properties of the RDX explosive and the aluminum sheath used in the experiments are given in ref.[25]. The values of the various parameters in the constitutive model for granite are listed in Table 1.

    Fig.11 and Fig.12 show the comparisons of the crack patterns between the numerical predictions from the present model and the ones observed experimentally in the square granite samples. It can be seen from Fig.11 and Fig.12 that good agreements are obtained. It should be mentioned here that No.1 sample receives less damage due to less RDX explosive used in the test, and that No.2 sample is broken up into four major pieces due to more RDX explosive employed in the experiment. Severe damages and small cracks are induced in the vicinity of the boreholes of both samples, as can be seen clearly from Fig.11(b) and Fig.12(b).

    Fig. 11 Comparison of the crack patterns between the numerical prediction and the experiment with the square granite No.1 sample

    Fig. 12 Comparison of the crack patterns between the numerical prediction and the experiment with the square granite No.2 sample

    3 Conclusions

    A numerical study on the borehole blasting-induced fractures in rocks is conducted in this paper, using a dynamic constitutive model developed previously for concrete. Two kinds of granite rocks are simulated numerically, one in the cylindrical form and the other in the square form. The numerical results are compared with the corresponding experiments. Main conclusions can be drawn as follows.

    (1) The crack patterns predicted numerically from the present model are found to be in good agreement with the experimental observations, both in cylindrical and square granite samples subjected to borehole blasting loading.

    (2) The peak pressures predicted numerically based on the present model are found to be in good agreement with the test data.

    (3) Crack pattern observed experimentally in the rock sample is mainly caused by the tensile stress, while the smaller cracks in the vicinity of the borehole are created largely by compression/shear stress.

    (4) The consistency between the numerical results and the experimental observations demonstrates the accuracy and reliability of the present model. Thus the model can be used in the numerical simulations of the response and the failure of rocks under blasting loading.

    猜你喜歡
    實(shí)驗(yàn)室大學(xué)
    “留白”是個(gè)大學(xué)問
    《大學(xué)》征稿簡(jiǎn)則
    大學(xué)(2021年2期)2021-06-11 01:13:48
    《大學(xué)》
    大學(xué)(2021年2期)2021-06-11 01:13:12
    48歲的她,跨越千里再讀大學(xué)
    海峽姐妹(2020年12期)2021-01-18 05:53:08
    大學(xué)求學(xué)的遺憾
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    電競(jìng)實(shí)驗(yàn)室
    99久久人妻综合| 午夜免费观看网址| 国产av精品麻豆| 黑丝袜美女国产一区| 在线观看午夜福利视频| 午夜成年电影在线免费观看| 老司机深夜福利视频在线观看| 日本黄色视频三级网站网址| 欧美激情 高清一区二区三区| 国产伦人伦偷精品视频| 两人在一起打扑克的视频| 免费一级毛片在线播放高清视频 | 999精品在线视频| 免费少妇av软件| 免费高清在线观看日韩| tocl精华| 日韩大尺度精品在线看网址 | 天天躁狠狠躁夜夜躁狠狠躁| 久久人妻熟女aⅴ| 又黄又粗又硬又大视频| 国产野战对白在线观看| 宅男免费午夜| 天天添夜夜摸| 精品久久久久久久毛片微露脸| 免费观看人在逋| 一级,二级,三级黄色视频| 啪啪无遮挡十八禁网站| 视频在线观看一区二区三区| а√天堂www在线а√下载| 欧美日韩亚洲综合一区二区三区_| 久久中文字幕一级| 人成视频在线观看免费观看| 中亚洲国语对白在线视频| 香蕉丝袜av| 国产精品 国内视频| 一级片免费观看大全| 一区二区三区精品91| 中文欧美无线码| 免费不卡黄色视频| 高清av免费在线| 伦理电影免费视频| 麻豆成人av在线观看| 一区二区日韩欧美中文字幕| 99riav亚洲国产免费| 国产精品 欧美亚洲| 老司机深夜福利视频在线观看| 亚洲 国产 在线| 国产精品日韩av在线免费观看 | 国产精品久久电影中文字幕| 一级黄色大片毛片| 欧美乱妇无乱码| e午夜精品久久久久久久| 热re99久久国产66热| 国产视频一区二区在线看| 久热这里只有精品99| 亚洲熟妇中文字幕五十中出 | 亚洲精品中文字幕在线视频| 天堂√8在线中文| 国产色视频综合| 两个人看的免费小视频| 三上悠亚av全集在线观看| 18禁国产床啪视频网站| 真人一进一出gif抽搐免费| 制服人妻中文乱码| 精品国产亚洲在线| 岛国视频午夜一区免费看| 国产精品偷伦视频观看了| 色尼玛亚洲综合影院| 国产乱人伦免费视频| 久热这里只有精品99| 日日干狠狠操夜夜爽| 中出人妻视频一区二区| 777久久人妻少妇嫩草av网站| 欧美av亚洲av综合av国产av| 电影成人av| svipshipincom国产片| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲久久久国产精品| 日韩高清综合在线| 一级毛片女人18水好多| 亚洲精品在线观看二区| 久久亚洲真实| 两个人看的免费小视频| 乱人伦中国视频| 亚洲精品粉嫩美女一区| 狂野欧美激情性xxxx| 免费日韩欧美在线观看| avwww免费| 69av精品久久久久久| www.精华液| 变态另类成人亚洲欧美熟女 | 久久久久久久精品吃奶| 男人的好看免费观看在线视频 | 国产亚洲欧美精品永久| 色老头精品视频在线观看| 亚洲国产看品久久| 中亚洲国语对白在线视频| 高清在线国产一区| 麻豆久久精品国产亚洲av | 精品欧美一区二区三区在线| 欧美日韩精品网址| 精品乱码久久久久久99久播| av福利片在线| 久久青草综合色| 黑人巨大精品欧美一区二区mp4| 亚洲国产看品久久| 桃红色精品国产亚洲av| 日日夜夜操网爽| 三上悠亚av全集在线观看| 亚洲欧美日韩高清在线视频| 每晚都被弄得嗷嗷叫到高潮| 女生性感内裤真人,穿戴方法视频| 免费女性裸体啪啪无遮挡网站| 无人区码免费观看不卡| 国产免费男女视频| 午夜a级毛片| a在线观看视频网站| 91老司机精品| 色在线成人网| 精品福利永久在线观看| 久久久久久久久免费视频了| 亚洲 国产 在线| 免费观看人在逋| 国产精品久久电影中文字幕| 纯流量卡能插随身wifi吗| 国产蜜桃级精品一区二区三区| cao死你这个sao货| 淫妇啪啪啪对白视频| 欧美日韩亚洲高清精品| 亚洲精品中文字幕一二三四区| 精品久久蜜臀av无| 精品久久久久久久久久免费视频 | 午夜福利在线观看吧| 91国产中文字幕| 两人在一起打扑克的视频| 看片在线看免费视频| 9热在线视频观看99| 免费在线观看影片大全网站| 亚洲国产精品999在线| 91麻豆精品激情在线观看国产 | 免费在线观看日本一区| 日韩免费高清中文字幕av| 一边摸一边抽搐一进一出视频| 国产伦一二天堂av在线观看| 变态另类成人亚洲欧美熟女 | www.自偷自拍.com| 国产精品国产av在线观看| 欧美激情极品国产一区二区三区| 久久精品成人免费网站| 精品午夜福利视频在线观看一区| 一级毛片精品| 男女下面进入的视频免费午夜 | 日韩精品免费视频一区二区三区| 制服诱惑二区| 老司机深夜福利视频在线观看| 国产成人影院久久av| 国产一区二区三区在线臀色熟女 | 免费少妇av软件| www.www免费av| av国产精品久久久久影院| 女人被躁到高潮嗷嗷叫费观| 国内毛片毛片毛片毛片毛片| 国产av一区在线观看免费| 悠悠久久av| 久久中文字幕一级| 男女高潮啪啪啪动态图| 超碰97精品在线观看| 亚洲狠狠婷婷综合久久图片| 久久热在线av| 91成人精品电影| 久久久久久久精品吃奶| 91精品国产国语对白视频| 国产av在哪里看| 亚洲aⅴ乱码一区二区在线播放 | 99精国产麻豆久久婷婷| 亚洲一区高清亚洲精品| 国产无遮挡羞羞视频在线观看| 亚洲精品美女久久久久99蜜臀| 男人操女人黄网站| 久久国产亚洲av麻豆专区| 亚洲精品一区av在线观看| 极品教师在线免费播放| 黄色丝袜av网址大全| 99久久久亚洲精品蜜臀av| 久久人妻福利社区极品人妻图片| 欧美一级毛片孕妇| 天堂俺去俺来也www色官网| 亚洲熟妇熟女久久| 午夜久久久在线观看| 一区二区三区激情视频| 最近最新中文字幕大全免费视频| 99精品在免费线老司机午夜| 亚洲片人在线观看| 日本wwww免费看| 国产乱人伦免费视频| 男女午夜视频在线观看| 制服诱惑二区| 免费日韩欧美在线观看| a级片在线免费高清观看视频| 久久香蕉激情| 九色亚洲精品在线播放| 午夜福利在线免费观看网站| 制服人妻中文乱码| 欧美av亚洲av综合av国产av| 国产色视频综合| 欧美乱色亚洲激情| 久久久久久免费高清国产稀缺| 一边摸一边做爽爽视频免费| 国产精品自产拍在线观看55亚洲| 国产人伦9x9x在线观看| 国产精品影院久久| 91国产中文字幕| 亚洲欧美一区二区三区久久| 日本黄色日本黄色录像| 婷婷丁香在线五月| 大型黄色视频在线免费观看| 亚洲精华国产精华精| 中文字幕av电影在线播放| 国产亚洲精品第一综合不卡| a在线观看视频网站| 咕卡用的链子| 久久精品影院6| 色综合欧美亚洲国产小说| 黄色 视频免费看| 亚洲欧美一区二区三区黑人| netflix在线观看网站| 国产蜜桃级精品一区二区三区| 欧美日韩福利视频一区二区| 久久精品91蜜桃| 精品国产乱码久久久久久男人| √禁漫天堂资源中文www| 亚洲精品中文字幕在线视频| 夜夜爽天天搞| 欧美性长视频在线观看| 琪琪午夜伦伦电影理论片6080| 精品欧美一区二区三区在线| 国产男靠女视频免费网站| 久久精品亚洲av国产电影网| 一二三四在线观看免费中文在| 国产精品二区激情视频| av网站在线播放免费| 老司机靠b影院| 国产成人精品无人区| 午夜免费鲁丝| 黄色女人牲交| 中文字幕色久视频| 久久久久亚洲av毛片大全| 一区二区三区精品91| 国产熟女xx| 久久中文看片网| 十分钟在线观看高清视频www| 亚洲五月色婷婷综合| 久久久久久大精品| 国产精品一区二区在线不卡| 欧美av亚洲av综合av国产av| aaaaa片日本免费| 亚洲精品在线美女| 一个人观看的视频www高清免费观看 | 久久久久国内视频| av国产精品久久久久影院| 国产精品野战在线观看 | 伦理电影免费视频| 国产精品野战在线观看 | 日本免费a在线| 国产成人欧美在线观看| 老司机亚洲免费影院| www.自偷自拍.com| 91成年电影在线观看| 亚洲欧美激情综合另类| 欧美日韩国产mv在线观看视频| 亚洲精品国产区一区二| 国产一区二区在线av高清观看| 如日韩欧美国产精品一区二区三区| 国产片内射在线| 亚洲 欧美 日韩 在线 免费| 国产一区二区激情短视频| 99久久综合精品五月天人人| 国产亚洲精品久久久久久毛片| 欧美黑人欧美精品刺激| 欧美色视频一区免费| 可以在线观看毛片的网站| 丰满饥渴人妻一区二区三| 亚洲精品美女久久av网站| 波多野结衣一区麻豆| 9191精品国产免费久久| 精品久久久久久,| 午夜亚洲福利在线播放| 91麻豆av在线| 国产视频一区二区在线看| 国产欧美日韩精品亚洲av| 亚洲人成电影免费在线| 亚洲国产欧美网| 久久人人精品亚洲av| 免费人成视频x8x8入口观看| xxx96com| 亚洲精品在线美女| 99riav亚洲国产免费| 一边摸一边抽搐一进一出视频| 亚洲av日韩精品久久久久久密| 国产高清videossex| 亚洲国产精品999在线| 午夜老司机福利片| 亚洲全国av大片| 一区二区三区精品91| 超碰成人久久| 18禁美女被吸乳视频| 在线观看免费高清a一片| 免费在线观看完整版高清| 好男人电影高清在线观看| 纯流量卡能插随身wifi吗| 天堂中文最新版在线下载| 人妻丰满熟妇av一区二区三区| 亚洲国产毛片av蜜桃av| 精品熟女少妇八av免费久了| 国产成人欧美| 国产熟女午夜一区二区三区| 欧美亚洲日本最大视频资源| a在线观看视频网站| 欧美精品亚洲一区二区| а√天堂www在线а√下载| 午夜91福利影院| 深夜精品福利| xxx96com| 国产精品一区二区三区四区久久 | 精品久久久久久久毛片微露脸| 国产精品一区二区免费欧美| 美女高潮喷水抽搐中文字幕| 久久人人爽av亚洲精品天堂| 1024香蕉在线观看| 久久午夜综合久久蜜桃| 久热这里只有精品99| 在线av久久热| 天天影视国产精品| 老司机午夜十八禁免费视频| 91字幕亚洲| 真人一进一出gif抽搐免费| 日韩中文字幕欧美一区二区| 18禁裸乳无遮挡免费网站照片 | 性少妇av在线| 亚洲中文字幕日韩| 91国产中文字幕| av免费在线观看网站| 男女下面插进去视频免费观看| 99国产精品99久久久久| 午夜福利免费观看在线| 亚洲av片天天在线观看| 一个人免费在线观看的高清视频| xxx96com| 亚洲精品美女久久av网站| 制服人妻中文乱码| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| 国产xxxxx性猛交| 亚洲成国产人片在线观看| 午夜影院日韩av| 桃色一区二区三区在线观看| 成人三级黄色视频| 国产亚洲欧美精品永久| 午夜福利欧美成人| 亚洲精品国产一区二区精华液| 精品人妻1区二区| 老司机午夜十八禁免费视频| 精品人妻1区二区| a在线观看视频网站| av电影中文网址| 久久人人97超碰香蕉20202| 超碰97精品在线观看| 国产熟女午夜一区二区三区| 久久天躁狠狠躁夜夜2o2o| 一级毛片女人18水好多| 色在线成人网| 欧美精品一区二区免费开放| 国产人伦9x9x在线观看| 婷婷精品国产亚洲av在线| 一区二区三区精品91| 韩国av一区二区三区四区| 一二三四社区在线视频社区8| 久久性视频一级片| 日韩欧美免费精品| 精品日产1卡2卡| 亚洲 欧美 日韩 在线 免费| 视频区欧美日本亚洲| 操美女的视频在线观看| 777久久人妻少妇嫩草av网站| a级片在线免费高清观看视频| 久久这里只有精品19| 我的亚洲天堂| 国产高清国产精品国产三级| 国产精品乱码一区二三区的特点 | 久久精品国产综合久久久| 啦啦啦免费观看视频1| 日韩有码中文字幕| 精品福利观看| www日本在线高清视频| 午夜两性在线视频| 美女高潮喷水抽搐中文字幕| 久久久国产成人免费| 中文字幕精品免费在线观看视频| 国产精品香港三级国产av潘金莲| 欧美成狂野欧美在线观看| 欧美中文日本在线观看视频| 精品欧美一区二区三区在线| 亚洲国产欧美日韩在线播放| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三区四区五区乱码| 757午夜福利合集在线观看| 亚洲久久久国产精品| 大码成人一级视频| 超碰97精品在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产高清国产精品国产三级| 亚洲精品中文字幕在线视频| 亚洲精品中文字幕一二三四区| 成人18禁高潮啪啪吃奶动态图| 欧美日韩国产mv在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 两性夫妻黄色片| 亚洲专区国产一区二区| 欧美日韩视频精品一区| 国产无遮挡羞羞视频在线观看| 一边摸一边抽搐一进一小说| 欧美精品亚洲一区二区| 亚洲国产精品一区二区三区在线| 美女国产高潮福利片在线看| 国产精品久久视频播放| 日本黄色视频三级网站网址| 欧美日韩福利视频一区二区| 国产三级在线视频| 午夜成年电影在线免费观看| 国产精品一区二区三区四区久久 | 久久国产精品男人的天堂亚洲| 一边摸一边抽搐一进一小说| 亚洲aⅴ乱码一区二区在线播放 | 老鸭窝网址在线观看| 成人18禁高潮啪啪吃奶动态图| 免费看a级黄色片| 成人手机av| 免费在线观看视频国产中文字幕亚洲| 欧美午夜高清在线| 亚洲第一欧美日韩一区二区三区| 亚洲熟女毛片儿| 黄频高清免费视频| 日日摸夜夜添夜夜添小说| 国产精品久久久人人做人人爽| 国产精品秋霞免费鲁丝片| 国产精品一区二区精品视频观看| 久久精品影院6| 最新美女视频免费是黄的| 美女 人体艺术 gogo| 国产深夜福利视频在线观看| 大香蕉久久成人网| 午夜激情av网站| 性色av乱码一区二区三区2| 免费日韩欧美在线观看| 黑丝袜美女国产一区| 久久 成人 亚洲| 成人免费观看视频高清| 国产精品野战在线观看 | 国产伦一二天堂av在线观看| 国产精品 国内视频| 日韩精品中文字幕看吧| www.www免费av| 成人av一区二区三区在线看| 女人精品久久久久毛片| 99久久人妻综合| 国产区一区二久久| 久热这里只有精品99| av网站在线播放免费| 亚洲成人国产一区在线观看| 99国产精品99久久久久| 最近最新中文字幕大全免费视频| 老司机亚洲免费影院| 精品免费久久久久久久清纯| 亚洲三区欧美一区| 午夜老司机福利片| 国产不卡一卡二| 久久人人爽av亚洲精品天堂| 在线天堂中文资源库| 国产成人精品久久二区二区免费| av有码第一页| 亚洲av成人一区二区三| 欧美精品一区二区免费开放| 欧美激情久久久久久爽电影 | www.www免费av| 一二三四在线观看免费中文在| 成人亚洲精品一区在线观看| 国产97色在线日韩免费| 一区二区三区激情视频| 精品福利永久在线观看| 精品国产国语对白av| 成人三级黄色视频| 免费不卡黄色视频| 久久欧美精品欧美久久欧美| bbb黄色大片| 午夜两性在线视频| 国产成人精品久久二区二区91| 精品一区二区三区av网在线观看| 国产在线观看jvid| 欧美中文日本在线观看视频| 久久国产乱子伦精品免费另类| 黄色片一级片一级黄色片| 91字幕亚洲| 国产成人一区二区三区免费视频网站| 女同久久另类99精品国产91| 中国美女看黄片| 九色亚洲精品在线播放| 日日干狠狠操夜夜爽| 美女国产高潮福利片在线看| 欧美激情高清一区二区三区| 国产亚洲精品一区二区www| 黄色视频,在线免费观看| 亚洲专区字幕在线| 亚洲五月婷婷丁香| 日韩精品青青久久久久久| 午夜久久久在线观看| 日本精品一区二区三区蜜桃| 国产精品久久久久成人av| 18美女黄网站色大片免费观看| 黄色 视频免费看| 99久久国产精品久久久| 在线视频色国产色| 国产在线精品亚洲第一网站| 欧美日韩乱码在线| 国产一区二区三区视频了| 国产单亲对白刺激| 欧美黑人欧美精品刺激| 9191精品国产免费久久| 香蕉丝袜av| 国产激情欧美一区二区| 又黄又粗又硬又大视频| 美女高潮到喷水免费观看| 人人澡人人妻人| avwww免费| 大码成人一级视频| 神马国产精品三级电影在线观看 | 亚洲av电影在线进入| 一级毛片女人18水好多| 在线天堂中文资源库| 美女福利国产在线| av有码第一页| av国产精品久久久久影院| 日韩精品免费视频一区二区三区| 99热只有精品国产| 国产国语露脸激情在线看| 欧美精品亚洲一区二区| 黄频高清免费视频| 老熟妇乱子伦视频在线观看| 国产伦人伦偷精品视频| 欧美 亚洲 国产 日韩一| 国产精品九九99| 免费一级毛片在线播放高清视频 | 国产蜜桃级精品一区二区三区| 夫妻午夜视频| 宅男免费午夜| 制服人妻中文乱码| 午夜免费观看网址| 黄色怎么调成土黄色| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区免费欧美| 黄色视频不卡| 91在线观看av| 日日干狠狠操夜夜爽| 久热爱精品视频在线9| 国产精品成人在线| 亚洲精品国产区一区二| bbb黄色大片| 无遮挡黄片免费观看| 免费久久久久久久精品成人欧美视频| 国产精品香港三级国产av潘金莲| 午夜久久久在线观看| 国产免费av片在线观看野外av| 丰满人妻熟妇乱又伦精品不卡| 欧美黑人欧美精品刺激| 搡老熟女国产l中国老女人| 久久久久久久久久久久大奶| 久久国产精品影院| 国产精品偷伦视频观看了| 久久欧美精品欧美久久欧美| 久久国产精品人妻蜜桃| 日本a在线网址| 精品电影一区二区在线| 国产高清国产精品国产三级| 极品教师在线免费播放| 欧美亚洲日本最大视频资源| 99久久综合精品五月天人人| 女性生殖器流出的白浆| 一二三四在线观看免费中文在| 精品国产一区二区久久| 国产精品国产av在线观看| 国产亚洲精品综合一区在线观看 | 免费在线观看影片大全网站| 欧洲精品卡2卡3卡4卡5卡区| 99国产综合亚洲精品| 黑人巨大精品欧美一区二区mp4| aaaaa片日本免费| www.999成人在线观看| 97人妻天天添夜夜摸| 国产麻豆69| 欧美黄色片欧美黄色片| a级毛片黄视频| 日本一区二区免费在线视频| 国产91精品成人一区二区三区| 亚洲一区二区三区不卡视频| 麻豆国产av国片精品| 少妇被粗大的猛进出69影院| 高清欧美精品videossex| 99热国产这里只有精品6| 国产又爽黄色视频| 亚洲色图综合在线观看| 老鸭窝网址在线观看| 色在线成人网| 日日摸夜夜添夜夜添小说| 超色免费av| 搡老岳熟女国产| 亚洲av片天天在线观看|