• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single Wavelength Near-Eye Display Glasses

    2021-11-30 09:50:30,,,
    關(guān)鍵詞:系統(tǒng)

    , , ,

    (School of Optoelectronic Engineering,Xi’an Technological University,Xi’an 710021,China)

    Abstract: In order to make the monochrome augmented reality optical system smaller in size,easier to wear,and have a larger field of view and clearer and brighter imaging,the design of an optical system and the evaluation of its display effect are completed based on the principles of double grating and planar waveguide.The models of eyepiece optical system,coupling optical system,planar waveguide system and coupling out system are optimized and built based on Zimax software.Taking the real image transmission as the goal,the simulation results are verified experimentally.Experiment shows that when the single wavelength is 532 nm and the yield distance is 8 mm,the system structure is correct and reasonable,which can realize a 20° field of view and 10 mm large exit pupil display,with the image similarity being 34.8.

    Key words: near-eye display;optical design;diffraction grating;diffractive optical waveguide

    0 Introduction

    Augmented Reality (A-R) display plays a vital role in the military industry,industrial manufacturing,medical equipment and daily life.According to relevant experts’ evaluation,AR glasses will replace the most popular mobile phones and become the next generation of new collaborative computing[1].the near eye perspective display is the main component of AR equipment.It can overlay virtual images into the surrounding landscape,enabling observers to receive information from AR devices while still immersing themselves in the real world.

    The existing methods for near eye perspective display include free form optical prism,projection system,holographic grating etc[2].The optical waveguide display is light and compact,and has the advantages of structure,which significantly improves the portability and mobility of the device.In order to realize full color grating imaging,a new challenge is proposed.Waveguide technology is widely considered to be one of the most promising methods to realize the combination of augmented reality (AR)/hybrid reality devices with the minimum overall size.However,these still face a number of technical challenges,such as higher optical efficiency,wider field of view,lighter and smaller size.Compared with the traditional optical system,waveguide technology can reduce the size and weight of the system to the greatest extent and the energy loss.The traditional optical system is difficult to design,and will produce a variety of aberrations,and its volume and weight cannot meet the requirement[3-5].The size and weight of the AR display system can be greatly reduced by using diffractive optical waveguide instead of traditional optical elements.Moreover,the total reflection of light beam in the optical waveguide can realize the expansion of pupil,which makes the observation range of binocular field of view wider and improves the imaging quality.Diffraction grating is almost pure refractive index modulation,which can greatly improve the coupling efficiency of the system[6-8].

    According to the relative theory,if the grating period is the same,the dispersion problem of monochromatic light can be eliminated.The idea of using a diffractive waveguide was first patented in 1987,but it did not receive much attention at that time[9].In 2001,it was patented as a near eye display application.With the continuous improvement of optical design and precision manufacturing methods,diffractive waveguides have been successfully used in military operations[10].

    Due to the immature development of domestic display technology and the foreign monopoly of related technology,only a part of it can be verified by experiments[11-13].In order to meet the requirements of AR display miniaturization and lightweight development,a new design scheme based on diffractive optical waveguide is proposed.The main contents are as follows:firstly,the principle of AR optical system is introduced.Secondly,the related technology and principle of diffractive optical waveguide display are analyzed.Finally,the display system of diffractive optical waveguide with green light source is designed,simulated and experimentally verified.

    1 Analysis of design requirement

    According to the requirements of the project specification,the optical system is calculated and designed and then simulated by ZEMAX.The main contents are as follows:① design of near eye display system:ZEMAX is used to design the optical system of near eye optical display,including the eyepiece optical system,human eye model,coupling optical system,planar waveguide system and coupling exit optical system;② processing and assembly of optical components:completing the processing and assembly of main optical components;③ experiments verification:the technical indicators of the near eye display system are tested.The technical indexes of the project are as follows:

    (a)The binocular diagonal field of view is greater than 20°;

    (b) The exit pupil diameterDis 8 mm,and the exit pupil distance is 15 mm;

    (c) The holographic waveguide thickness is less than 3 mm.

    1.1 Analysis of the principle

    The diffractive optical waveguide display system to be designed is shown in Fig.1,which is mainly composed of a micro display,an eyepiece system,a waveguide and inlet and outlet diffraction gratings.The in and out diffraction gratings are composed of reflective diffraction gratings.The working principle of the diffraction light waveguide display system is:the image source on the computer display screen is projected in a micro display,and then the beam is expanded and collimated by the eyepiece system,and the parallel light is irradiated on the diffraction grating at the coupling end through the waveguide[14-16].Due to the diffraction effect of the diffraction grating,the propagation direction of the parallel light is changed,and the light in the waveguide is limited under the condition of meeting the total reflection condition.It propagates forward in the waveguide direction.When the parallel light propagates to the diffraction grating at the coupling end,the total reflection condition is destroyed,and the light is diffracted again,and the parallel light comes out of the waveguide,entering the human eye for imaging.

    The optical structure of the AR system is simple,and the optical element of the intermediate image transmission is just a simple eyepiece system,which can magnify and collimate the light.It does not need a very complex lens group and relay image transmission system.It greatly reduces the size and weight of the system,realizing miniaturization and portability,which meet the requirements of mass production and market application.Because the out coupling diffraction grating and the in coupling diffraction grating replace the traditional lens group,not only the transmission distance of the image and the aberration of the system are reduced,but also the pupil dilation in the horizontal and vertical directions is implemented,and the size and weight of the system are reduced,which is conducive to the simple design of the whole system.

    1.2 Image source

    One of the core components of the AR display is the image source.The definition and color composition of the image source directly determine the performance of the display.In order to ensure that the image source has enough definition,no stray light and high recognition,high-resolution micro display is mostly adopted.This display is light and small,which can reduce the overall weight and size of the system,and ensure that the clarity of the image source has no impact on the imaging of the system.There are many kinds of AR displays due to the different choices of display as the image source.At present,LED,LCD and LCOS are the main image sources of HMD[17].After considering comprehensive experiment,and the display parameters,the micro-LCD was selected and basic parameters are shown in Tab.1.

    1.3 Optic system

    The optical system is composed of an eyepiece collimation system,an optical waveguide and a diffraction grating.The collimated light projects into the coupling grating,and propagates in the optical waveguide and then is fully reflected out of the coupling grating,and finally enters into the human eye for imaging.The optical system is shown in Fig.2.

    1.3.1Opticalcharacteristicsoftheeyepiece

    The eyepiece of the visual optical system is the instrument by which the human eye can receive the image source.The observed object is usually located at the object plane of the eyepiece,and the outgoing light is parallel light.After being magnified and collimated by the eyepiece system,it is imaged at infinity.During observation,the eye should coincide with the exit pupil of the eyepiece,and the position of the pupil is generally 8 mm.Therefore,the magnification of the eyepiece is 250/(f2′ ),wheref2′ is the focal length of the eyepiece.The Kenier system is shown in Fig.3.

    Fig.3 Kenier system

    Basic characteristic parameters of the eyepiece are as follows.According to the requirements of the AR system,the calculation parameters are as follows:exit pupil distancep=15 mm,eyepiece tube length=10 mm,eyepiece focal lengthf2′=16 mm.PMMA and zf3 materials are to be used for gluing,L_1and the lens are also made of PMMA material,n=1.5.Through calculation,f1′=24.3 mm andR1=17 mm can be obtained.The specific calculation is carried out in the eyepiece system and human eye image calculation part,and the preliminary simulation is carried out in ZEMAX to determine whether the system meets the overall system requirements.

    1.3.2Reversaldesignoftheeyepiecesystem

    According to the actual functional requirements of AR glasses,it is necessary to reverse the design of the eyepiece system,that is,reverse the designed system.The optical path designed by ZEMAX simulation is shown in Fig.4.

    Fig.4 Kenier system simulation

    1.4 Design of the diffractive optical waveguide

    1.4.1Principleofthediffractiveopticalwaveguide

    The schematic diagram of the diffraction waveguide is shown in Fig.5.

    Fig.5 Diffractive waveguide

    The image source is output through beam expansion and collimation of the kenel eyepiece device and then is coupled into the waveguide by gratimg,and next propagates in the waveguide under the condition of total reflection.The light is modulated by the coupling diffraction grating after multiple total reflection in the waveguide,and the image is coupled out of the waveguide to enter into the human eye for imaging[18].

    1.4.2Designofdiffractiveopticalwaveguide

    The length of diffraction grating is determined according to the size of the eyepiece exit pupil.In ZEMAX,the diffraction grating is simulated under the condition of non-sequential parallel light.If the setting parameters are satisfied,the light can be totally reflected in the optical waveguide.

    The visual field angle we need must be greater than 20°.According to the formula:

    d(sinφ+sinθ)=mλ.

    (1)

    The angle is required to be greater than 41.8°.Based on the calculation formula for full reflection:

    sinθc=n2/n1.

    (2)

    The refractive index of our material is calculated to be more than 1.5.So we can choose the glass plate of PMMA material as wave guide.The size of image source is 8.45 mm,which determines that the minimum wave guide thickness is 3 mm.And the length and width of the wave guide are determined to be 100 mm and 50 mm,respectively,by the position of the coupling grating.

    1.4.3Analysisofopticalaberration

    According to the aberration analysis of the system shown in Fig.4,it is found that the outer axial beam of the optical system does not converge to a point,indicating that there is a difference between the systems.Using THES TOMA,the evaluation function operator number provided by ZEMAX is used to optimize the difference,and the best optical system is found through ZEMAX’s local optimization and global optimization.The system parameters of sequence data and non-sequence after optimization are shown in Tab.2~3 respectively.

    The designed system is analyzed,as shown in Fig.6~7.

    Fig.6 shows an image simulation after system optimization.It can be seen that the imaging effect have met the basic imaging requirements.Fig.7 shows the system’s point column diagram and distortion.The maximum radius of the square root dispersion spot is 2.198 μm and the maximum distortion becomes 3.73%,meeting the imaging requirements.

    Tab.2 Sequence data of system parameters表2 序列模式的系統(tǒng)參數(shù)

    Tab.3 Non-sequence data of system parameters表3 非序列模式的系統(tǒng)參數(shù)

    Fig.6 Image simulation

    Fig.7 Point charts and distortions

    2 Experimental verification

    In order to verify whether the correct optical path and image can be obtained through the design,an experiment is carried out in this part.

    2.1 Composition of the optical system

    The existing system designed is used to verify whether the diffractive waveguide plays a turning role in the optical path.As shown in Fig.8,the main structure is composed of a light source,diffraction grating,planar waveguide and an imaging plate.The light source is 532 nm green laser.The diffraction grating is 20×20 mm in size,3 mm in thickness,250 nm in blaze wavelength and 190~850 nm in working wavelength.It is an optical glass base with dense and equidistant parallel lines,coated with aluminum reflection film,which can couple imaging light into waveguide through diffraction effect.The white board is used to receive the imaging light.Figure 8 shows that vertically incident light can be diffracted out of the coupling grating,and the diffraction angle also meets the total reflection condition,and then the light can transmit in a shape of letter W in the optical waveguide[19].Through Fig.8(b),we can clearly find that the vertical incident light can have total reflection in the waveguide,and the output diffraction grating modulation light at the output coupling end of the waveguide can receive the outgoing light on the imaging plane,which proves the rationality and scientificity of the optical path of the augmented reality optical system designed in this paper.

    Fig.8 Full-reflection simulation

    2.2 Building the imaging system

    The experimental system is shown in Fig.9.Firstly,the three primary colors of the logo of Xi’an Technological University are extracted by Matlab,as shown in Fig.10(a),and the image source becomes monochromatic image source,as shown in Fig.10(b).The extracted monochromatic image source is connected with a micro display to output the image source.The output image source can be obtained by collimating the light through a collimating lens where the micro display was placed at the object focus of the lens. Then,adjust the grating into the coupling in to the center of the eyepiece so that the light is totally reflected inside the waveguide,and finally place the phone at the coupling out of the grating for image acceptance[20].

    The imaging plane firstly is found out through the human eye observation,and then the mobile phone camera is used to shoot it,as shown in Fig.10(c).It shows that the loss of light energy is large and the coupling efficiency of diffraction grating is low,leading to the degradation of imaging quality.The experimental conditions are relatively simple,and cannot meet the requirements for fine-tuning.And the resolution of the receiver mobile phone cannot meet the requirements of high-resolution.

    Fig.9 Experimental system

    Fig.10 Image simulation

    3 Error analysis

    Many bubbles and glue particles are found in the glued surface of grating and waveguide with an optical microscope,as shown in Fig.11(a).Our project will change the refractive index of the bonding surface,so that the light cannot be emitted,resulting in the loss of light,and low image quality.The prepared glue is evenly distributed on the grating surface by the glue homogenizer,and then vacuumized by the coating machine.In the process of setting up the experimental device,manual operation is adopted,which may cause irreversible damage to precision optical devices.Dust,temperature,humidity and light in the air will affect negatively the efficiency and imaging quality of grating for light coupling.The aluminum film on the surface of the grating will be scratched during the gluing process of diffraction grating,as shown in Fig.11(b),and the more times of gluing,the greater the damage.The relay system uses a lens to collimate the light,so that the light is perpendicular to the surface of the diffraction grating.Secondly,there are some errors in the process of data acquisition by using a mobile camera.Through MATLAB software using the structural similarity(SSIM)function to process the image similarity,we can find that the similarity of two images is only 37.8%,showing that the image quality is very poor.

    Fig.11 Reason for unclear image

    The designed optical system is in accordance with the principle and the technical index of optical design.Through the analysis of the optical microscope and various instruments,we can see that there is big room to improve the construction of the system,which has a great impact on the image quality.

    4 Conclusion

    In this paper, the design and application of AR glasses systems with the diffractive waveguide structure was discussed and the technical route of double grating was adopted to design a non-sequential optical system,and then various technical indexes of the system in using ZEMAX were optimized.Under the laboratory conditions,an AR glasses experimental platform was built for imaging experiments.

    Through the analysis of the basic principle of diffractive optical waveguide system design,system optical path and exit pupil expansion principle,a AR optical system with a field angle of 40° and an exit pupil diameter of 8 mm was determined.

    Under laboratory conditions,an experimental verification platform was built to test the field angle,pupil dilation size and imaging clarity of NDG system.The results show that the field angle of the system is greater than 20°,that the pupil dilation size is better than 10mm,and that the imaging is clear,meetting the basic technical indexes of the design.

    猜你喜歡
    系統(tǒng)
    Smartflower POP 一體式光伏系統(tǒng)
    WJ-700無人機(jī)系統(tǒng)
    ZC系列無人機(jī)遙感系統(tǒng)
    北京測繪(2020年12期)2020-12-29 01:33:58
    基于PowerPC+FPGA顯示系統(tǒng)
    基于UG的發(fā)射箱自動化虛擬裝配系統(tǒng)開發(fā)
    半沸制皂系統(tǒng)(下)
    FAO系統(tǒng)特有功能分析及互聯(lián)互通探討
    連通與提升系統(tǒng)的最后一塊拼圖 Audiolab 傲立 M-DAC mini
    一德系統(tǒng) 德行天下
    PLC在多段調(diào)速系統(tǒng)中的應(yīng)用
    国产精品精品国产色婷婷| 赤兔流量卡办理| 床上黄色一级片| 国产午夜精品论理片| 天堂av国产一区二区熟女人妻| 一级爰片在线观看| 18禁动态无遮挡网站| 黄色欧美视频在线观看| 免费观看av网站的网址| 亚洲国产av新网站| 高清欧美精品videossex| 国产91av在线免费观看| www.av在线官网国产| 汤姆久久久久久久影院中文字幕 | 亚洲精品久久午夜乱码| 禁无遮挡网站| 春色校园在线视频观看| 免费av不卡在线播放| 国内精品一区二区在线观看| 又黄又爽又刺激的免费视频.| 亚洲高清免费不卡视频| 在线免费十八禁| 啦啦啦啦在线视频资源| 午夜福利成人在线免费观看| 老女人水多毛片| 日本三级黄在线观看| 国产综合懂色| 丝瓜视频免费看黄片| 可以在线观看毛片的网站| 亚洲最大成人中文| 夫妻性生交免费视频一级片| 成人毛片a级毛片在线播放| 欧美xxⅹ黑人| 人人妻人人澡欧美一区二区| 久久99热这里只有精品18| 亚洲av福利一区| 国产高清国产精品国产三级 | 免费在线观看成人毛片| 成人鲁丝片一二三区免费| 欧美高清性xxxxhd video| 老女人水多毛片| 欧美日本视频| 小蜜桃在线观看免费完整版高清| 午夜精品一区二区三区免费看| 精品99又大又爽又粗少妇毛片| 九九爱精品视频在线观看| 成年av动漫网址| 少妇的逼水好多| 熟妇人妻久久中文字幕3abv| 欧美一级a爱片免费观看看| 欧美3d第一页| 国产中年淑女户外野战色| 欧美成人精品欧美一级黄| 熟妇人妻不卡中文字幕| 亚洲在线自拍视频| 午夜久久久久精精品| 国产精品蜜桃在线观看| 国产成人aa在线观看| 日韩av在线大香蕉| 亚洲欧洲日产国产| 免费看美女性在线毛片视频| 一级毛片电影观看| av在线天堂中文字幕| 丰满少妇做爰视频| 最后的刺客免费高清国语| 18禁在线播放成人免费| 亚洲av免费在线观看| 欧美精品国产亚洲| 亚洲精品乱久久久久久| 久久久成人免费电影| 国产一区亚洲一区在线观看| 欧美精品国产亚洲| 国产视频首页在线观看| 国精品久久久久久国模美| 国产精品久久视频播放| 国语对白做爰xxxⅹ性视频网站| 禁无遮挡网站| 亚洲av不卡在线观看| 水蜜桃什么品种好| videos熟女内射| 麻豆成人av视频| 国产女主播在线喷水免费视频网站 | 插阴视频在线观看视频| 国产精品一二三区在线看| 色播亚洲综合网| 久久6这里有精品| 久久久色成人| 成年免费大片在线观看| 国产日韩欧美在线精品| 国产成人一区二区在线| 97超碰精品成人国产| 亚洲欧美日韩东京热| 午夜福利在线观看免费完整高清在| 91av网一区二区| 国产精品精品国产色婷婷| 啦啦啦啦在线视频资源| 伊人久久精品亚洲午夜| 亚洲欧美成人综合另类久久久| 精品久久久久久久末码| 真实男女啪啪啪动态图| 日本黄大片高清| 久久久久久久久大av| 一级毛片电影观看| 免费黄色在线免费观看| 日日啪夜夜爽| 97热精品久久久久久| 欧美三级亚洲精品| 久久精品久久久久久噜噜老黄| 久久精品久久精品一区二区三区| 韩国av在线不卡| 亚洲精品乱码久久久v下载方式| 精品国内亚洲2022精品成人| 亚洲成色77777| 国产一区二区三区av在线| 噜噜噜噜噜久久久久久91| 精品一区二区三区视频在线| 男女那种视频在线观看| 看十八女毛片水多多多| 日韩人妻高清精品专区| 亚洲熟妇中文字幕五十中出| 久久97久久精品| 丰满少妇做爰视频| 午夜激情福利司机影院| 成人亚洲精品av一区二区| 国产成人a区在线观看| 日韩电影二区| 国产成人freesex在线| 国产爱豆传媒在线观看| 五月伊人婷婷丁香| 麻豆成人午夜福利视频| 日日摸夜夜添夜夜添av毛片| 亚洲怡红院男人天堂| 久久国内精品自在自线图片| 高清视频免费观看一区二区 | 亚洲一区高清亚洲精品| 99视频精品全部免费 在线| 亚洲熟妇中文字幕五十中出| 欧美成人精品欧美一级黄| 成人亚洲欧美一区二区av| 一级片'在线观看视频| 日韩一区二区三区影片| 久久久久久久久久久免费av| 亚洲国产欧美人成| 日本三级黄在线观看| 国产成人精品久久久久久| 一级毛片电影观看| 伊人久久国产一区二区| 国产精品一区二区性色av| 国产视频首页在线观看| 极品少妇高潮喷水抽搐| 国产亚洲5aaaaa淫片| 亚洲欧美日韩卡通动漫| 美女被艹到高潮喷水动态| 人人妻人人澡欧美一区二区| 免费观看的影片在线观看| 赤兔流量卡办理| 亚洲精品成人久久久久久| 亚洲综合精品二区| kizo精华| 国产精品国产三级国产av玫瑰| 国产成人aa在线观看| 成人高潮视频无遮挡免费网站| 美女国产视频在线观看| 99热这里只有是精品在线观看| 成年版毛片免费区| 搡老乐熟女国产| 一级二级三级毛片免费看| 三级国产精品片| 国产精品.久久久| 国产欧美另类精品又又久久亚洲欧美| 99久国产av精品| 夫妻性生交免费视频一级片| 精品久久国产蜜桃| 女的被弄到高潮叫床怎么办| 国产乱人视频| 午夜福利在线观看吧| 国产激情偷乱视频一区二区| 3wmmmm亚洲av在线观看| 在现免费观看毛片| 人妻一区二区av| 久久99热这里只有精品18| 国产精品一区www在线观看| 国产探花极品一区二区| 精品久久国产蜜桃| av黄色大香蕉| 精华霜和精华液先用哪个| 午夜福利视频1000在线观看| 国产一区二区三区综合在线观看 | 欧美日韩精品成人综合77777| 午夜免费激情av| 亚洲精华国产精华液的使用体验| 爱豆传媒免费全集在线观看| 特大巨黑吊av在线直播| 午夜日本视频在线| 99久久精品国产国产毛片| 日韩在线高清观看一区二区三区| 黑人高潮一二区| 99热这里只有是精品在线观看| 最近中文字幕2019免费版| 一级毛片电影观看| 国产成人a区在线观看| 亚洲成人精品中文字幕电影| 能在线免费观看的黄片| 一级毛片黄色毛片免费观看视频| 国产黄片视频在线免费观看| 欧美变态另类bdsm刘玥| 亚洲伊人久久精品综合| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区在线观看99 | 男女那种视频在线观看| 男女下面进入的视频免费午夜| 国产老妇伦熟女老妇高清| 搞女人的毛片| 一级毛片电影观看| 国产免费又黄又爽又色| 亚洲欧美成人综合另类久久久| 欧美xxxx性猛交bbbb| 不卡视频在线观看欧美| 草草在线视频免费看| videossex国产| 又爽又黄a免费视频| 天堂中文最新版在线下载 | 成年版毛片免费区| 日韩中字成人| 国产精品女同一区二区软件| 三级国产精品片| 国产色婷婷99| 麻豆久久精品国产亚洲av| 综合色丁香网| 国产又色又爽无遮挡免| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 女的被弄到高潮叫床怎么办| 亚洲精品视频女| 18禁在线无遮挡免费观看视频| 国产成人午夜福利电影在线观看| 久久久国产一区二区| 欧美高清性xxxxhd video| 亚洲av中文av极速乱| 欧美成人a在线观看| 人人妻人人看人人澡| 色综合亚洲欧美另类图片| 青春草国产在线视频| 国产熟女欧美一区二区| 色播亚洲综合网| 国产成人午夜福利电影在线观看| 天堂√8在线中文| 丝瓜视频免费看黄片| 亚洲真实伦在线观看| 毛片女人毛片| 美女脱内裤让男人舔精品视频| 亚洲av一区综合| 免费人成在线观看视频色| 日本wwww免费看| 国产精品嫩草影院av在线观看| 日韩成人av中文字幕在线观看| 观看美女的网站| 青春草国产在线视频| 18+在线观看网站| 人妻夜夜爽99麻豆av| 我的女老师完整版在线观看| 午夜福利视频精品| 99久久人妻综合| 成年版毛片免费区| 国产成人91sexporn| 久久久色成人| 成人亚洲欧美一区二区av| 欧美一区二区亚洲| 国产成人午夜福利电影在线观看| 亚州av有码| 欧美日韩亚洲高清精品| 日韩一本色道免费dvd| 亚洲综合精品二区| 最近中文字幕2019免费版| 一级二级三级毛片免费看| 精品久久久噜噜| 男女下面进入的视频免费午夜| 人妻系列 视频| 身体一侧抽搐| 日本一二三区视频观看| 熟女电影av网| 国语对白做爰xxxⅹ性视频网站| 看免费成人av毛片| 国产综合精华液| 成人午夜精彩视频在线观看| 麻豆国产97在线/欧美| 欧美高清性xxxxhd video| 中文欧美无线码| 午夜精品在线福利| 午夜福利在线观看免费完整高清在| 国产成人a∨麻豆精品| 久久久久久久久久成人| 日韩av免费高清视频| 国产久久久一区二区三区| av播播在线观看一区| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| 日韩成人av中文字幕在线观看| 亚洲人成网站在线观看播放| 国产亚洲午夜精品一区二区久久 | 亚洲av成人精品一区久久| 男人舔女人下体高潮全视频| 91精品国产九色| 日日啪夜夜撸| 一级黄片播放器| 国产精品一区二区性色av| 欧美日韩国产mv在线观看视频 | 日韩视频在线欧美| 日韩三级伦理在线观看| 在线观看人妻少妇| 日韩欧美三级三区| 国产在线一区二区三区精| 美女主播在线视频| 晚上一个人看的免费电影| av在线观看视频网站免费| 亚洲欧美一区二区三区国产| 三级国产精品欧美在线观看| 一本一本综合久久| 亚洲av日韩在线播放| 久久久久久久午夜电影| 国产高清三级在线| 亚洲伊人久久精品综合| 中文字幕人妻熟人妻熟丝袜美| 亚洲av中文av极速乱| 国产黄色小视频在线观看| 国产精品一区www在线观看| 午夜老司机福利剧场| 干丝袜人妻中文字幕| .国产精品久久| 亚洲第一区二区三区不卡| 国产精品久久久久久精品电影| videossex国产| 别揉我奶头 嗯啊视频| 插逼视频在线观看| 又粗又硬又长又爽又黄的视频| 人妻少妇偷人精品九色| 国产成人一区二区在线| 日本wwww免费看| 午夜爱爱视频在线播放| 成年版毛片免费区| 97在线视频观看| 免费看日本二区| 天天躁夜夜躁狠狠久久av| 午夜精品在线福利| 大话2 男鬼变身卡| 好男人视频免费观看在线| 大香蕉久久网| 欧美另类一区| 天堂av国产一区二区熟女人妻| 精品国产三级普通话版| 国产久久久一区二区三区| 精品人妻视频免费看| 免费在线观看成人毛片| 午夜日本视频在线| 99久国产av精品国产电影| av天堂中文字幕网| 婷婷色综合www| 成年版毛片免费区| 亚洲精品久久午夜乱码| 国产成人精品福利久久| 欧美性感艳星| 内射极品少妇av片p| 综合色av麻豆| 国产午夜精品一二区理论片| av在线天堂中文字幕| 黄色欧美视频在线观看| 亚洲自拍偷在线| 色视频www国产| 日韩人妻高清精品专区| 国产淫片久久久久久久久| 国产免费福利视频在线观看| 国产精品熟女久久久久浪| 不卡视频在线观看欧美| 国产精品久久久久久av不卡| 三级经典国产精品| 我要看日韩黄色一级片| 日本一本二区三区精品| 日本与韩国留学比较| 国产成人a∨麻豆精品| 极品少妇高潮喷水抽搐| 国产老妇女一区| 日日撸夜夜添| 少妇人妻精品综合一区二区| 一个人看视频在线观看www免费| 久久这里只有精品中国| 国产人妻一区二区三区在| 赤兔流量卡办理| 久久久久久久久久黄片| 亚洲三级黄色毛片| 久久人人爽人人爽人人片va| 日韩欧美一区视频在线观看 | 亚洲不卡免费看| 日产精品乱码卡一卡2卡三| 人妻少妇偷人精品九色| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 国产极品天堂在线| 三级国产精品片| 日韩精品青青久久久久久| 人妻系列 视频| av在线观看视频网站免费| 亚洲成人一二三区av| 国产 一区精品| 99久国产av精品| 男人舔女人下体高潮全视频| 亚洲国产精品国产精品| 黑人高潮一二区| 国产一区有黄有色的免费视频 | 尤物成人国产欧美一区二区三区| 国产成人91sexporn| 日韩欧美国产在线观看| 又粗又硬又长又爽又黄的视频| 精品国内亚洲2022精品成人| 国产精品爽爽va在线观看网站| 亚洲欧美成人精品一区二区| 欧美一区二区亚洲| 看十八女毛片水多多多| 美女内射精品一级片tv| 国内精品美女久久久久久| 日本欧美国产在线视频| 亚洲精品日韩在线中文字幕| a级毛色黄片| 精华霜和精华液先用哪个| 晚上一个人看的免费电影| 日本wwww免费看| 午夜久久久久精精品| 欧美精品国产亚洲| 久久久久久久久中文| 免费大片18禁| 看免费成人av毛片| 性插视频无遮挡在线免费观看| 夫妻性生交免费视频一级片| 好男人在线观看高清免费视频| 国产免费一级a男人的天堂| 少妇人妻精品综合一区二区| 日产精品乱码卡一卡2卡三| 啦啦啦啦在线视频资源| 亚洲国产av新网站| 久久久久久久亚洲中文字幕| 欧美另类一区| av专区在线播放| 久久久久精品久久久久真实原创| 亚洲欧美中文字幕日韩二区| 99热这里只有是精品在线观看| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 三级国产精品片| 国产免费一级a男人的天堂| 最近手机中文字幕大全| 大香蕉久久网| 免费观看性生交大片5| 小蜜桃在线观看免费完整版高清| 亚洲自偷自拍三级| 蜜桃亚洲精品一区二区三区| av在线观看视频网站免费| 国产一区二区亚洲精品在线观看| 久久精品国产亚洲av天美| 亚洲电影在线观看av| 亚洲精品乱久久久久久| av线在线观看网站| 亚洲精品视频女| 国产在视频线精品| 欧美日本视频| 免费观看a级毛片全部| 男女国产视频网站| 日韩欧美国产在线观看| 日产精品乱码卡一卡2卡三| 国产精品久久视频播放| 少妇高潮的动态图| 高清av免费在线| 青春草国产在线视频| 国产爱豆传媒在线观看| 国产成人a∨麻豆精品| 又爽又黄a免费视频| 两个人的视频大全免费| 久久韩国三级中文字幕| 啦啦啦韩国在线观看视频| 精华霜和精华液先用哪个| 一夜夜www| av黄色大香蕉| 人人妻人人澡欧美一区二区| videossex国产| 亚洲最大成人中文| 18禁在线播放成人免费| 国产伦理片在线播放av一区| 日本猛色少妇xxxxx猛交久久| 成人综合一区亚洲| 国产一区亚洲一区在线观看| 国产在线一区二区三区精| 久久精品国产自在天天线| 精品99又大又爽又粗少妇毛片| 中文欧美无线码| 亚洲精品中文字幕在线视频 | 国产高潮美女av| 国产麻豆成人av免费视频| 国产高潮美女av| 非洲黑人性xxxx精品又粗又长| 国产av码专区亚洲av| 亚洲aⅴ乱码一区二区在线播放| 免费大片黄手机在线观看| 久久99热这里只频精品6学生| 国产成人freesex在线| 美女xxoo啪啪120秒动态图| 欧美激情国产日韩精品一区| 国产高清国产精品国产三级 | 熟女人妻精品中文字幕| av.在线天堂| 亚洲四区av| 亚洲第一区二区三区不卡| 日本一二三区视频观看| 精品不卡国产一区二区三区| 性插视频无遮挡在线免费观看| 国产精品1区2区在线观看.| 一区二区三区四区激情视频| a级一级毛片免费在线观看| 日韩av免费高清视频| 久久久a久久爽久久v久久| 成人国产麻豆网| 欧美极品一区二区三区四区| 日韩欧美精品v在线| 麻豆乱淫一区二区| 蜜臀久久99精品久久宅男| 国产精品久久视频播放| 色综合色国产| 超碰av人人做人人爽久久| 欧美激情国产日韩精品一区| 亚洲欧洲日产国产| 日韩在线高清观看一区二区三区| 色哟哟·www| 午夜精品一区二区三区免费看| 国产av不卡久久| 日韩视频在线欧美| 亚洲18禁久久av| 欧美潮喷喷水| 一级片'在线观看视频| 久久久久久久久久久丰满| 国产不卡一卡二| 欧美成人精品欧美一级黄| 少妇被粗大猛烈的视频| 亚洲图色成人| 久久精品久久久久久噜噜老黄| 99热6这里只有精品| freevideosex欧美| 毛片女人毛片| 久久久亚洲精品成人影院| 国产人妻一区二区三区在| 日韩人妻高清精品专区| 一本一本综合久久| 国产精品久久久久久久电影| 18禁在线无遮挡免费观看视频| 国产成人freesex在线| 久久久精品欧美日韩精品| 最近最新中文字幕大全电影3| 婷婷色麻豆天堂久久| 99久久精品国产国产毛片| 一个人看的www免费观看视频| 淫秽高清视频在线观看| 天堂网av新在线| 国产精品人妻久久久影院| 真实男女啪啪啪动态图| 免费av毛片视频| 午夜久久久久精精品| 97超视频在线观看视频| 国产一区有黄有色的免费视频 | 日本欧美国产在线视频| 一区二区三区高清视频在线| av女优亚洲男人天堂| 午夜福利在线在线| 建设人人有责人人尽责人人享有的 | 毛片一级片免费看久久久久| av网站免费在线观看视频 | 免费看a级黄色片| 中文字幕亚洲精品专区| 国产亚洲91精品色在线| 女人久久www免费人成看片| 成年人午夜在线观看视频 | 国产精品美女特级片免费视频播放器| 看非洲黑人一级黄片| 成人综合一区亚洲| av卡一久久| 在线a可以看的网站| 97精品久久久久久久久久精品| 中文欧美无线码| 欧美 日韩 精品 国产| 婷婷色综合大香蕉| 嘟嘟电影网在线观看| 亚洲美女视频黄频| 免费观看精品视频网站| 欧美精品国产亚洲| 欧美极品一区二区三区四区| 久久久久精品久久久久真实原创| 久久精品国产鲁丝片午夜精品| 少妇被粗大猛烈的视频| 国产91av在线免费观看| 久久99热这里只有精品18| 亚洲人成网站在线播| 最新中文字幕久久久久| 十八禁国产超污无遮挡网站| xxx大片免费视频| 一级毛片aaaaaa免费看小| 久久久久久久久久黄片| 十八禁国产超污无遮挡网站| 亚洲一级一片aⅴ在线观看| 欧美97在线视频| 综合色av麻豆| 伦理电影大哥的女人| 国产片特级美女逼逼视频| 菩萨蛮人人尽说江南好唐韦庄| 成人美女网站在线观看视频| 精品久久久久久久久av| 欧美最新免费一区二区三区| 国产老妇伦熟女老妇高清| 国产不卡一卡二| 免费黄频网站在线观看国产| 国产欧美另类精品又又久久亚洲欧美| 十八禁国产超污无遮挡网站|