左世元 范戎飛
摘要:準(zhǔn)確及時的信道估計(jì)對實(shí)現(xiàn)高鐵應(yīng)用場景中的高吞吐量毫米波通信具有重要作用。然而,由于列車高速移動,信道條件變化迅速,頻繁測量將帶來巨大開銷。針對上述問題,利用列車與基站間信道到達(dá)角(AoA)與離開角(AoD)經(jīng)常性連續(xù)變化、偶發(fā)性驟變的特征,設(shè)計(jì)AoA與AoD連續(xù)變化跟蹤與驟變檢測算法。在信道AoA與AoD變化符合預(yù)期時,基于角度先驗(yàn)信息測量部分信道參數(shù);在AoA與AoD發(fā)生驟變時,第一時間報(bào)警并通知系統(tǒng)重新測量信道整體參數(shù)。設(shè)計(jì)的收發(fā)機(jī)波束成形算法可提升AoA與AoD變化跟蹤與驟變檢測的性能。提出的混合方案可有效降低高速移動條件下的毫米波信道估計(jì)信令開銷。高速移動對無線信道帶來的快衰落影響,并且系統(tǒng)誤比特率性能也得到了明顯改善。
關(guān)鍵詞:高鐵;毫米波通信;信道估計(jì)
Abstract: Accurate and timely channel estimation plays an important role in realizing highthroughput millimeter wave communication in high-speed railway application scenarios. However, due to the high-speed movement of trains, the channel conditions change rapidly, and frequent measurements will bring huge overhead. Aiming at the above problems, based on the characteristics of frequent continuous changes and occasional sudden changes in the channel of the angle of arrival (AoA) and the angle of departure (AoD) between the train and the base station, the AoA and AoD continuous changes tracking and sudden changes detection algorithms are designed. When the AoA and AoD changes are in line with expectations, some parameters of the channel are measured based on the angle prior information, and when the AoA and AoD change suddenly, they will be alerted and notified to remeasure the overall channel parameters. The transceiver beamforming algorithm is designed to improve the performance of the tracking of AoA and AoD continuous changes and the detection of sudden changes. Through the hybrid scheme, the overhead of millimeter wave channel estimation signaling can be effectively reduced under high-speed mobile conditions.
Keywords: high-speed railway; millimeter wave; channel estimation
高鐵是目前中短距離出行的重要交通工具,全程時間短,運(yùn)送能力大,受氣候影響小。在高鐵上架載毫米波通信收發(fā)機(jī)與地面基站建立連接,可發(fā)揮大吞吐量的技術(shù)優(yōu)勢,為高鐵乘客提供高速率無線接入,滿足乘客5G時代的通信需求[1-2]。毫米波頻段具有高衰減特征,需要精確的信道狀態(tài)信息(CSI),以生成指向性強(qiáng)波束并實(shí)現(xiàn)高吞吐量通信。
毫米波的CSI由收發(fā)機(jī)間角度信息和每條傳播路徑的信道系數(shù)構(gòu)成,其中,角度信息包括收發(fā)端有限條傳播路徑的離開角(AoD)和到達(dá)角(AoA)。信道估計(jì)是指收端通過發(fā)端多次發(fā)射的導(dǎo)頻信號解算CSI。傳統(tǒng)方法單次測量角度信息和信道系數(shù),包括多階段扇區(qū)窮舉搜索AoA和AoD[3],或利用路徑數(shù)的稀疏性,使用相對較少信令和正交匹配跟蹤(OMP)等稀疏信號處理的方法來恢復(fù)信道信息[4-5]。然而,上述方法仍然需要較多導(dǎo)頻序列以完成單次測量,在列車高速移動時更需要頻繁更新CSI。這將造成較大開銷,降低通信效率。
列車與當(dāng)前地面基站之間的AoD和AoA呈現(xiàn)連續(xù)性變化。當(dāng)這種變化持續(xù)到下一個地面基站出現(xiàn)時,信道角度信息將發(fā)生驟變?;诓ㄊ櫟乃惴╗6]雖然可以對AoA和AoD的連續(xù)變化進(jìn)行跟蹤,但是當(dāng)信道角度信息發(fā)生驟變時,該算法將失效。對此,本文設(shè)計(jì)了AoA和AoD的跟蹤預(yù)測算法,并實(shí)時判斷是否會出現(xiàn)新基站。當(dāng)判斷結(jié)果顯示未出現(xiàn)新基站連接時,可根據(jù)AoA和AoD的預(yù)測值縮減其搜索空間,簡化信道估計(jì);當(dāng)出現(xiàn)新基站連接時,將報(bào)警通知系統(tǒng)采用傳統(tǒng)方法[5]來重新測量角度信息和信道系數(shù)。為加強(qiáng)AoA和AoD的跟蹤預(yù)測能力和角度信息驟變檢測能力,本文還設(shè)計(jì)了收發(fā)端波束成型算法。整體而言,本文在信道估計(jì)過程中降低了測角開銷,提升了通信效率。
1.2角度時變模型
毫米波信道中的傳播路徑變化(對應(yīng)角度信息變化)主要有兩種:(1)列車與當(dāng)前基站間傳播路徑的變化;(2)列車駛離當(dāng)前基站與下一基站建立連接所產(chǎn)生的路徑突變。這里我們先考慮第1種變化因素,此時AoA和AoD連續(xù)變化,并假設(shè)已經(jīng)完成對信道角度信息的預(yù)估計(jì)。
2問題構(gòu)建與算法設(shè)計(jì)
本節(jié)基于系統(tǒng)模型,首先提出高速移動條件下的信道估計(jì)解決思路,然后針對每個環(huán)節(jié),構(gòu)建具體的數(shù)學(xué)問題并給出相應(yīng)的算法設(shè)計(jì)。問題解決流程如圖1所示。
2.1問題構(gòu)建
2.1.1基站切換檢測問題
當(dāng)高鐵運(yùn)行至兩個基站的交界處時,需進(jìn)行基站切換檢測。如果不需切換基站通信,且列車與當(dāng)前基站間的AoA與AoD處于連續(xù)變化中,可根據(jù)最近的角度信息預(yù)估當(dāng)前角度信息,簡化信道估計(jì)。如果需要切換到下一基站,AoA和AoD的歷史信息將不再具有參考價值,需要重新運(yùn)行傳統(tǒng)的信道估計(jì)方法,以完成角度信息和信道狀態(tài)信息的估計(jì)。
4結(jié)束語
本文主要研究了高速移動情況下的毫米波通信信道估計(jì)問題,基于信道路徑角度變化規(guī)律構(gòu)建了可跟蹤預(yù)測路徑角度連續(xù)變化、檢測路徑角度突變的信道估計(jì)體系,以達(dá)到節(jié)約信道估計(jì)導(dǎo)頻量的效果。本論文研究結(jié)果可為毫米波通信在高鐵等高速平臺上的應(yīng)用提供技術(shù)支持。
參考文獻(xiàn)
[1] NOH G, HUI B, KIM I. High speed train communications in 5G: design elements to mitigate the impact of very high mobility [J]. IEEE wireless communications, 2020, 27(6): 98-106. DOI:10.1109/MWC.001.2000034
[2] YUE G R, YU D Z, CHENG L, et al. Millimeterwave system for high-speed train communications between train and trackside: system design and channel measurements [J]. IEEE transactions on vehicular technology, 2019, 68(12): 11746-11761. DOI:10.1109/TVT.2019.2919625
[3] CHIU S E, RONQUILLO N, JAVIDI T. Active learning and CSI acquisition for mmWave initial alignment [J]. IEEE journal on selected areas in communications, 2019, 37(11): 2474-2489. DOI:10.1109/JSAC.2019.2933967
[4] LEE J, GIL G T, LEE Y H. Exploiting spatial sparsity for estimating channels of hybrid MIMO systems in millimeter wave communications [C]//2014 IEEE Global Communications Conference. Austin, TX, USA:IEEE, 2014: 3326-3331. DOI: 10.1109/ GLOCOM.2014.7037320
[5] KE M L, GAO Z, WU Y P, et al. Compressive sensing-based adaptive active user detection andchannelestimation:massiveaccess meets massive MIMO [J]. IEEE transactions on signal processing, 2020, 68: 764-779. DOI:10.1109/TSP.2020.2967175
[6] ALKHATEEB A, AYACH OEL, LEUS G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems [J]. IEEE journal of selected topics in signal processing, 2014,8(5):831-846.DOI: 10.1109/JSTSP.2014.2334278
[7] BAJWA W U, HAUPT J, SAYEED A M, et al. Compressed channel sensing: a new approach to estimating sparse multipath channels [J]. Proceedings of the IEEE, 2010, 98(6): 1058-1076. DOI:10.1109/JPROC.2010.2042415
[8] PAIVA A R L, FODOR G, FREITAS W C, et al. Kalman-filter-based tracking of millimeterwave channel parameters for V2X applications [C]//2019 IEEE Conference on Standards for Communications and Networking (CSCN). Granada,Spain:IEEE,2019:1-7.DOI: 10.1109/CSCN.2019.8931350
[9] JAIN A, SARVEPALLI P, BHASHYAM S, et al. Algorithms for change detection with sparse signals [J]. IEEE transactions on signal processing, 2020, 68: 1331-1345. DOI:10.1109/ TSP.2020.2973115
[10] GENG J, LAI L F. Quickest change-point detection over multiple data streams via sequential observations [C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Calgary, AB, Canada:IEEE, 2018: 4404-4408. DOI: 10.1109/ICASSP.2018.8461647
[11] RISTIC B, ARULAMPALAM S, GORDON N. Beyond the Kalman filter-particle filters for tracking applications [M]. London: Artech house, 2003
[12] KAY S M. Fundamentals of statistical signal processing [M]. London: Prentice Hall PTR, 1993
[13] PALOMAR D P, ELDAR Y C. Eldar (Eds.). Convex optimization in signal processing and communications [M]. Cambridge: Cambridge University Press, 2010
作者簡介
左世元,北京理工大學(xué)在讀碩士研究生;主要研究方向?yàn)楹撩撞〝?shù)字通信、聯(lián)邦學(xué)習(xí)等。
范戎飛(通信作者),北京理工大學(xué)網(wǎng)絡(luò)空間安全學(xué)院副教授、博士生導(dǎo)師;主要從事毫米波數(shù)字通信、邊緣計(jì)算、聯(lián)邦學(xué)習(xí)等研究;發(fā)表論文40余篇。