• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large deformation analysis in geohazards and geotechnics

    2021-11-21 09:18:06ZhenyuYINGuestEditorinChiefYinfuJINXueZHANGGuestEditors

    Zhen-yu YIN, Guest Editor-in-Chief Yin-fu JIN, Xue ZHANG, Guest Editors

    Large deformation analysis in geohazards and geotechnics

    Zhen-yu YIN1, Guest Editor-in-Chief Yin-fu JIN1, Xue ZHANG2, Guest Editors

    Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool, L69 7ZX, UK E-mail: zhenyu.yin@polyu.edu.hk; yinfu.jin9019@gmail.com; xue.zhang2@liverpool.ac.uk

    For geohazards and geotechnics, numerous problems involve large deformation, such as the installation of foundations (Jin YFet al., 2018a), landslides (Jin YFet al., 2020b), debris ?ow (Daiet al., 2017), collapse of underground structures (Zhanget al., 2019), and the formation of sinkholes (Barandiarán Villegas, 2018). Bene?tting from the sustained development of computing power, numerical simulations have become useful analytical methods in geomechanics and related ?elds.

    Among those numerical methods, the finite element method (FEM) features prominently in engineering practice (Rao, 2017). For conventional FEM, however, excessive deformation may result in mesh distortion with numerical inaccuracy, even to the point of making calculation impossible. To solve this issue and enable application to large deformation analysis, different numerical approaches have been successfully developed. These approaches can be generally classified into three categories: discontinuous, continuous, and coupled continuous– discontinuous (Zhang, 2014). One of the most popular discontinuous approaches is discrete element method (DEM) (Cundall and Strack, 1979; Calvetti, 2008). Practical applications of this kind of method are limited by their high computational cost, although their robustness and potential have been demonstrated in academic exercises. Continuous approaches can be sub-divided into three groups: (1) mesh-based methods, such as the arbitrary Lagrangian–Eulerian (ALE) (Belytschkoet al., 2013) and the remeshing and interpolation technique with small strain (RITSS) (Hu and Randolph, 1998); (2) mesh-free particle methods, such as the smoothed particle hydrodynamics (SPH) method (Lucy, 1977), element-free Galerkin (EFG) method (Belytschkoet al., 1994), and reproducing kernel particle method (RKPM) (Chenet al., 1996); (3) mesh-based particle methods, such as the material point method (MPM) (Harlow, 1964) and particle finite element method (PFEM) (O?ateet al., 2004; Zhanget al., 2013) and its variants-strain smoothed PFEM (Zhang et al., 2018; Yuan et al., 2019; Jin YF et al., 2020a, 2020b, 2021a, 2021b; Guo and Yang, 2021; Meng et al., 2021). The coupled Eulerian–Lagrangian (CEL) is another mesh-based method (Qiuet al., 2011; Hamannet al., 2015), similar to MPM, and requires a background mesh. The third category of methods used for large deformation analysis, the coupled continuous–discontinuous approach, includes finite difference method (FDM)-DEM (Yinet al., 2020), PFEM-DEM (Guoet al., 2021), and MPM-DEM (Liang and Zhao, 2019). Significant developments have been made in this field, which has attracted more attention in recent years due to consideration of the physics of geomaterials.

    This special issue contains original research articles on the application of numerical methods to large deformation analysis of geohazards and geotechnics. Focal points of the issue include innovative uses of: (1) mesh-based methods, (2) mesh-free particle methods, (3) mesh-based particle methods, (4) discontinuous numerical methods, and finally (5) practical applications of the above techniques, e.g. case studies and benchmarking exercises.

    We invited prestigious scientists in the field to share their expertise and perspectives. The collected articles cover the various topics mentioned, and are briefly introduced as follows.

    Shan et al. (2021) implemented a damping layer and dashpot absorbing boundary conditions (ABCs) into the MPM with slight adjustments. The feasibility of the ABCs was assessed through benchmark problems of 1D compression, submarine landslides impacting mudmat, and dynamic penetration of a pipeline. Velocity fluctuations induced by elastic wave propagation and the impact force fluctuations on structures were investigated at specific observation points. Based on accurate derivations of wave equations, the dashpot ABC was found to be more feasible than the damping layer ABC for free surfaces with a complex kinematic field. The impact forces predicted by the MPM with ABCs were verified by comparison with those estimated using a computational fluid dynamics approach.

    Jin Z et al. (2021) proposed a novel numerical approach to study soil collapse involving large deformation. The approach combined a recently developed critical state-based sand model SIMSAND for describing complex sand mechanical behaviors (Jin YF et al., 2016, 2018a, 2018b, 2019), and the SPH method for dealing with large deformation. To demonstrate the high efficiency and accuracy of the proposed approach, a series of column collapses using DEM and considering the influence of particle shapes (i.e. spherical shape (SS), tetrahedral shape (TS), and elongated shape (ES)) were adopted as benchmarks and simulated by the proposed method. Compared with the results of DEM simulations and reference solutions derived by published collapse experiments, the runout distance and final height of specimens with different particle shapes simulated by SPH-SIMSAND were well characterized and incurred a lower computational cost. Comparisons showed that the novel SPH-SIMSAND approach is highly efficient and accurate for simulating collapse, and can be a useful numerical analytical tool for real scale engineering problems.

    Zheng et al. (2021) adopted the CEL modelling technique to investigate the influence of a failed tunnel (FT) on an adjacent tunnel, termed an “influenced tunnel” (IT). The safety of the IT was analyzed in detail under different circumstances, such as different failure positions of the FT, different failure degrees of the FT, and different spatial relationships between the two tunnels. The simulation results indicated that the most adverse case may occur when the two tunnels are arranged as offsets, and when the IT is the upper tunnel. Under these circumstances, significant shear deformation may occur in the IT because it is located at the shear band of the FT.

    Qu et al. (2021) investigated the effects of the cross-correlation between cohesion and the friction angle on the probability of slope failure and post- failure behavior (e.g. run-out distance, influence distance, and influence zone) using a random MPM. The study showed that the mesh size, strength reduction shape factor parameter, and residual strength all play critical roles in the calculated post-failure behavior of a slope. A stochastic Monte Carlo simulation was used to study the effects of cross-correlation between cohesion and the friction angle on the probability of slope failure, and its run-out distance, influence distance, influence zone, and sliding volume. The study showed that the MPM has great advantages compared with the FEM in handling large deformations.

    Yuan et al. (2021) presented a quasi-static implicit generalized interpolation material point method (iGIMP) with B-bar approach for large deformation geotechnical problems. The iGIMP algorithm is an extension of the implicit material point method (iMPM). A global stiffness matrix was formed explicitly and the Newton-Raphson iterative method was used to solve the equilibrium equations. The generalized interpolation function was assigned to eliminate the inherent cell crossing noise within conventional MPM. For the first time, the B-bar approach was used to overcome volumetric locking in the standard GIMP method for near-incompressible non-linear geomechanics. The proposed iGIMP was tested and compared with iMPM and analytical solutions via a 1D column compression problem. Results highlighted the superiority of the iGIMP approach in reducing stress oscillations, thereby improving computational accuracy. Then, elasto-plastic slope stabilities and rigid footing problems were considered, to further illustrate the ability of the proposed method to overcome volumetric locking due to incompressibility. Results showed that the proposed iGIMP with B-bar approach can be used to simulate geotechnical problems with large deformations.

    Zhang et al. (2021) explored the failure mode of the interface layer under uniform corrosion, and the influence of different factors on the corrosion expansion cracking and shedding mode of a concrete cover. This was achieved by establishing a three-phase meso-scale model of concrete based on secondary development of ABAQUS, simulating the mechanical behavior of the interface transition zone (ITZ) using a cohesive element, and establishing a rust expansion cracking model for single and multiple rebars. The results showed that: (1) Under uniform rust expansion, concrete cracks are distributed in a cross pattern with a slightly shorter lower limb. (2) When the corrosion rate is low, the ITZ is not damaged; with an increase in the corrosion rate, the proportion of elements with tensile damage in the ITZ first increases and then decreases. (3) In the case of a single rebar, the larger the cover thickness, the higher the corrosion rate corresponding to ITZ failure, and the arrangement of the rebar has little influence on the ITZ failure mode. (4) In the case of multiple rebars, the concrete cover cracks when the rebar spacing is small, and wedge-shaped spalling occurs when the spacing is large.

    We believe that this special issue provided a valuable platform for researchers and engineers to present and discuss recent developments in large deformation analysis in geotechnical engineering. The interdisciplinary connections between advanced numerical methods and geotechnics were well highlighted and expressed by the selected publications. We sincerely hope the new and advanced methods shared in this special issue will improve the understanding of approaches and strategies related to large deformation analysis, and promote the application of new methods in the field of geotechnical engineering. We expect the selected articles will promote discussion among scientific researchers, and inspire and inform readers of this journal.

    Contributors

    Zhen-yu YIN conceived and edited the draft of manuscript. Yin-fu JIN conducted the literature review and wrote the first draft of the manuscript. Xue ZHANG edited the draft of manuscript.

    Conflict of interest

    Zhen-yu YIN, Yin-fu JIN, and Xue ZHANG declare that they have no conflict of interest.

    Belytschko T, Lu YY, Gu L, 1994. Element-free Galerkin methods., 37(2):229-256. https://doi.org/10.1002/nme.1620370205

    Belytschko T, Liu WK, Moran B, et al., 2013. Nonlinear Finite Elements for Continua and Structures. John Wiley & Sons, Hoboken, USA.

    Calvetti F, 2008. Discrete modelling of granular materials and geotechnical problems., 12(7-8):951-965. https://doi.org/10.1080/19648189.2008.9693055

    Chen JS, Pan CH, Wu CT, et al., 1996. Reproducing kernel particle methods for large deformation analysis of non-linear structures., 139(1-4):195-227. https://doi.org/10.1016/S0045-7825(96)01083-3

    Cundall PA, Strack OD, 1979. A discrete numerical model for granular assemblies., 29:47-65.

    Dai ZL, Huang Y, Cheng HL, et al., 2017. SPH model for fluid–structure interaction and its application to debris flow impact estimation., 14(3):917-928. https://doi.org/10.1007/s10346-016-0777-4

    Guo N, Yang ZX, 2021. NSPFEM2D: a lightweight 2D node-based smoothed particle finite element method code for modeling large deformation., 140:104484. https://doi.org/10.1016/j.compgeo.2021.104484

    Guo N, Yang ZX, Yuan WH, et al., 2021. A coupled SPFEM/DEM approach for multiscale modeling of large-deformation geomechanical problems., 45(6):648-667. https://doi.org/10.1002/nag.3175

    Hamann T, Qiu G, Grabe J, 2015. Application of a coupled Eulerian–Lagrangian approach on pile installation problems under partially drained conditions., 63:279-290. https://doi.org/10.1016/j.compgeo.2014.10.006

    Harlow FH, 1964. The particle-in-cell computing method for fluid dynamics., 3: 319-343.

    Hu Y, Randolph MF, 1998. A practical numerical approach for large deformation problems in soil., 22(5):327-350. https://doi.org/10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X

    Jin YF, Yin ZY, Shen SL, et al., 2016. Selection of sand models and identification of parameters using an enhanced genetic algorithm., 40(8): 1219-1240. https://doi.org/10.1002/nag.2487

    Jin YF, Yin ZY, Wu ZX, et al., 2018a. Identifying parameters of easily crushable sand and application to offshore pile driving., 154:416-429. https://doi.org/10.1016/j.oceaneng.2018.01.023

    Jin YF, Yin ZY, Wu ZX, et al., 2018b. Numerical modeling of pile penetration in silica sands considering the effect of grain breakage., 144:15-29. https://doi.org/10.1016/j.finel.2018.02.003

    Jin YF, Yin ZY, Zhou WH, et al., 2019. Identifying parameters of advanced soil models using an enhanced transitional Markov chain Monte Carlo method., 14(6):1925-1947. https://doi.org/10.1007/s11440-019-00847-1

    Jin YF, Yuan WH, Yin ZY, et al., 2020a. An edge-based strain smoothing particle finite element method for large deformation problems in geotechnical engineering., 44(7):923-941. https://doi.org/10.1002/nag.3016

    Jin YF, Yin ZY, Yuan WH, 2020b. Simulating retrogressive slope failure using two different smoothed particle finite element methods: a comparative study., 279:105870. https://doi.org/10.1016/j.enggeo.2020.105870

    Jin YF, Yin ZY, Li J, et al., 2021a. A novel implicit coupled hydro-mechanical SPFEM approach for modelling of delayed failure of cut slope in soft sensitive clay., 140:104474. https://doi.org/10.1016/j.compgeo.2021.104474

    Jin YF, Yin ZY, Zhou XW, et al., 2021b. A stable node-based smoothed PFEM for solving geotechnical large deformation 2D problems., 387:114179. https://doi.org/10.1016/j.cma.2021.114179

    Jin Z, Lu Z, Yang Y, 2021. Numerical analysis of column collapse by smoothed particle hydrodynamics with an advanced critical state-based model., 22(11):882-893. https://doi.org/10.1631/jzus.A2000598

    Liang WJ, Zhao JD, 2019. Multiscale modeling of large deformation in geomechanics., 43(5):1080-1114. https://doi.org/10.1002/nag.2921

    Lucy LB, 1977. A numerical approach to the testing of the fission hypothesis., 82:1013-1024. https://doi.org/10.1086/112164

    Meng JJ, Zhang X, Utili S, et al., 2021. A nodal-integration based particle finite element method (N-PFEM) to model cliff recession., 381:107666. https://doi.org/10.1016/j.geomorph.2021.107666

    O?ate E, Idelsohn SR, Del Pin F, et al., 2004. The particle finite element method—an overview., 1(2):267-307. https://doi.org/10.1142/S0219876204000204

    Qiu G, Henke S, Grabe J, 2011. Application of a coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations., 38(1):30-39. https://doi.org/10.1016/j.compgeo.2010.09.002

    Qu CX, Wang G, Feng KW, et al., 2021. Large deformation analysis of slope failure using material point method with cross-correlated random fields., 22(11):856-869. https://doi.org/10.1631/jzus.A2100196

    Rao SS, 2017. The Finite Element Method in Engineering, 6th Edition. Butterworth-Heinemann, Oxford, UK. https://doi.org/10.1016/C2016-0-01493-6

    Shan ZG, Liao ZX, Dong YK, et al., 2021. Implementation of absorbing boundary conditions in dynamic simulation of the material point method., 22(11): 870-881. https://doi.org/10.1631/jzus.A2000399

    Barandiarán Villegas LB, 2018. Sinkhole Development over Karstic Substratum. An MPM Approach. Universitat Politècnica de Catalunya, Barcelona, Spain.

    Yin ZY, Wang P, Zhang FS, 2020. Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method., 100:103394. https://doi.org/10.1016/j.tust.2020.103394

    Yuan WH, Wang B, Zhang W, et al., 2019. Development of an explicit smoothed particle finite element method for geotechnical applications., 106: 42-51. https://doi.org/10.1016/j.compgeo.2018.10.010

    Yuan WH, Wang HC, Liu K, et al., 2021. Analysis of large deformation geotechnical problems using implicit generalized interpolation material point method., 22(11):909-923. https://doi.org/10.1631/jzus.A2100219

    Zhang W, Yuan WH, Dai BB, 2018. Smoothed particle finite-element method for large-deformation problems in geomechanics., 18(4): 04018010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001079

    Zhang X, 2014. Particle Finite Element Method in Geomechanics. PhD Thesis, The University of Newcastle, Australia.

    Zhang X, Krabbenhoft K, Pedroso DM, et al., 2013. Particle finite element analysis of large deformation and granular flow problems., 54:133-142. https://doi.org/10.1016/j.compgeo.2013.07.001

    Zhang ZQ, Li YL, Zhu XY, et al., 2021. Meso-scale corrosion expansion cracking of ribbed reinforced concrete based on a 3D random aggregate model., 22(11):924-940.https://doi.org/10.1631/jzus.A2100304

    Zhang ZY, Jin XG, Luo W, 2019. Numerical study on the collapse behaviors of shallow tunnel faces under open-face excavation condition using mesh-free method., 145(11):04019085. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001661

    Zheng G, Zhu R, Sun JB, et al., 2021. Numerical study on failure propagation between two closely spaced tunnels., 22(11):894-908.https://doi.org/10.1631/jzus.A2000502

    Dr. Zhen-yu YIN has been an Editorial Board Member ofsince 2019.

    Dr. Zhen-yu YIN has been an Associate Professor of Geotechnical Engineering at The Hong Kong Polytechnic University (China) since 2018. Dr. YIN received his BEng in Civil Engineering from Zhejiang University (China) in 1997, followed by a 5-year engineering consultancy at the Zhejiang Jiahua Architecture Design Institute (China). Then, he obtained his MSc and PhD in Geotechnical Engineering at Ecole Centrale de Nantes (France) in 2003 and 2006, respectively. Dr. YIN worked at Helsinki University of Technology (Finland), the University of Strathclyde (UK), University of Massachusetts (USA), Shanghai Jiao Tong University (China), Tongji University (China), and Ecole Centrale de Nantes before moving to Hong Kong. Dr. YIN has published over 220 articles in peer reviewed international journals with an-index of Web of Science of 43.

    Dr. Yin-fu JIN,

    Postdoctoral fellow

    Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

    E-mail: yinfu.jin9019@gmail.com

    Dr. Xue ZHANG,

    PhD Lecturer

    Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool, UK

    E-mail: xue.zhang2@liverpool.ac.uk

    https://doi.org/10.1631/jzus.A21LDGG1

    *Project supported by the Research Impact Fund (RIF) Project of Hong Kong Special Administrative Region Government of China (No. R5037-18)

    ? Zhejiang University Press 2021

    99riav亚洲国产免费| 乱人视频在线观看| 色播亚洲综合网| 久久精品国产亚洲网站| 天堂网av新在线| 亚洲经典国产精华液单| 亚洲精品在线观看二区| 噜噜噜噜噜久久久久久91| 国产成人影院久久av| 中出人妻视频一区二区| 亚洲精华国产精华液的使用体验 | 日本色播在线视频| 色综合婷婷激情| 日韩欧美国产在线观看| 成人av在线播放网站| 亚洲精品久久国产高清桃花| 97热精品久久久久久| 中国美女看黄片| 久久久久久久精品吃奶| 亚洲av五月六月丁香网| 麻豆精品久久久久久蜜桃| 最近最新免费中文字幕在线| 偷拍熟女少妇极品色| 天美传媒精品一区二区| 嫁个100分男人电影在线观看| 欧美日韩中文字幕国产精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品乱码一区二三区的特点| 悠悠久久av| 国产精品,欧美在线| 天天躁日日操中文字幕| 国产v大片淫在线免费观看| 国产亚洲精品综合一区在线观看| 一区二区三区高清视频在线| 人人妻人人澡欧美一区二区| 男女那种视频在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲精华国产精华精| 欧美一区二区亚洲| 国国产精品蜜臀av免费| 久久精品国产亚洲av涩爱 | 久99久视频精品免费| 一级黄片播放器| 两人在一起打扑克的视频| 精品99又大又爽又粗少妇毛片 | 国产成年人精品一区二区| 成年女人永久免费观看视频| 91在线精品国自产拍蜜月| 国产亚洲av嫩草精品影院| 亚洲人成伊人成综合网2020| 蜜桃久久精品国产亚洲av| 国产探花在线观看一区二区| 国产精品乱码一区二三区的特点| 91久久精品电影网| 少妇人妻一区二区三区视频| 美女高潮喷水抽搐中文字幕| 丰满乱子伦码专区| 免费电影在线观看免费观看| 九九在线视频观看精品| 亚洲人成网站在线播放欧美日韩| 国产一区二区三区视频了| 久久久午夜欧美精品| 国产三级在线视频| 97人妻精品一区二区三区麻豆| 婷婷六月久久综合丁香| 国产男人的电影天堂91| 天堂√8在线中文| 中亚洲国语对白在线视频| 久久久国产成人精品二区| 亚洲美女搞黄在线观看 | 91av网一区二区| 在线观看美女被高潮喷水网站| 国产亚洲欧美98| 亚洲精华国产精华液的使用体验 | 免费在线观看影片大全网站| 欧美黑人欧美精品刺激| 久久国内精品自在自线图片| 国产精品一区二区免费欧美| 在线天堂最新版资源| 国产私拍福利视频在线观看| 最后的刺客免费高清国语| 日韩欧美国产在线观看| 夜夜看夜夜爽夜夜摸| 88av欧美| 最后的刺客免费高清国语| 国产中年淑女户外野战色| 日本欧美国产在线视频| 国产成人av教育| 夜夜夜夜夜久久久久| 国产精品永久免费网站| 大又大粗又爽又黄少妇毛片口| 国产成人a区在线观看| 精品人妻一区二区三区麻豆 | 性欧美人与动物交配| 亚洲av第一区精品v没综合| 我的女老师完整版在线观看| 18禁在线播放成人免费| 中亚洲国语对白在线视频| 一卡2卡三卡四卡精品乱码亚洲| 久久久久国产精品人妻aⅴ院| 亚洲成人中文字幕在线播放| 一区二区三区四区激情视频 | 欧美一区二区国产精品久久精品| 欧美性感艳星| 久久精品影院6| 我的老师免费观看完整版| 精品久久久久久久久久久久久| 国产淫片久久久久久久久| 精品久久久久久久久av| 一级a爱片免费观看的视频| 熟女电影av网| 久久精品91蜜桃| 不卡视频在线观看欧美| 天堂网av新在线| 人人妻人人澡欧美一区二区| 日本-黄色视频高清免费观看| 国产一区二区三区av在线 | 男女边吃奶边做爰视频| 一级黄片播放器| 亚洲欧美日韩东京热| 成人国产麻豆网| 一边摸一边抽搐一进一小说| 亚洲在线自拍视频| 久久精品人妻少妇| 制服丝袜大香蕉在线| 欧美日韩亚洲国产一区二区在线观看| 变态另类成人亚洲欧美熟女| 丰满的人妻完整版| 国产亚洲精品久久久com| 免费一级毛片在线播放高清视频| 波多野结衣高清无吗| 观看美女的网站| 别揉我奶头 嗯啊视频| 午夜福利在线观看免费完整高清在 | 在线观看66精品国产| 国产精品免费一区二区三区在线| 欧美色视频一区免费| 日韩一区二区视频免费看| 亚洲真实伦在线观看| 天美传媒精品一区二区| 色尼玛亚洲综合影院| 国产午夜福利久久久久久| 国产一区二区亚洲精品在线观看| 久久99热6这里只有精品| 亚洲国产精品合色在线| 99热网站在线观看| 好男人在线观看高清免费视频| 小蜜桃在线观看免费完整版高清| 亚洲精品成人久久久久久| 高清毛片免费观看视频网站| a级一级毛片免费在线观看| 亚洲乱码一区二区免费版| 亚洲aⅴ乱码一区二区在线播放| 男人和女人高潮做爰伦理| 国产激情偷乱视频一区二区| 亚洲成人精品中文字幕电影| 嫩草影院入口| 天堂网av新在线| 亚洲精品一区av在线观看| 欧美激情在线99| 国产成人a区在线观看| 婷婷精品国产亚洲av在线| 欧美zozozo另类| av在线老鸭窝| 国产av在哪里看| 男女视频在线观看网站免费| 人妻丰满熟妇av一区二区三区| 午夜免费成人在线视频| 久久久久久久精品吃奶| 精品久久久噜噜| 亚洲精品一区av在线观看| 免费搜索国产男女视频| 精品久久久噜噜| 亚洲美女黄片视频| 久久久久国内视频| 小蜜桃在线观看免费完整版高清| eeuss影院久久| 99久久精品国产国产毛片| 窝窝影院91人妻| 国产 一区精品| 午夜老司机福利剧场| a级一级毛片免费在线观看| 欧美日韩精品成人综合77777| 亚洲最大成人手机在线| 欧美高清成人免费视频www| 国产主播在线观看一区二区| 国产精品嫩草影院av在线观看 | 国产国拍精品亚洲av在线观看| 欧美3d第一页| 久久香蕉精品热| 舔av片在线| 日本在线视频免费播放| 亚洲专区中文字幕在线| 久久久久久久精品吃奶| 国产探花在线观看一区二区| www日本黄色视频网| 久久九九热精品免费| 在线观看舔阴道视频| 国产精品久久久久久精品电影| 久99久视频精品免费| 国产精品一区二区三区四区免费观看 | 国产精品三级大全| 亚洲欧美精品综合久久99| 亚洲第一区二区三区不卡| av在线天堂中文字幕| 国产综合懂色| 午夜福利高清视频| 免费搜索国产男女视频| a级一级毛片免费在线观看| 成人国产麻豆网| 国产麻豆成人av免费视频| 黄色一级大片看看| 变态另类丝袜制服| 99久国产av精品| 两个人的视频大全免费| 欧美zozozo另类| 美女被艹到高潮喷水动态| 男人舔女人下体高潮全视频| 简卡轻食公司| 国产精品98久久久久久宅男小说| 亚洲精品456在线播放app | 久久久成人免费电影| 国产精华一区二区三区| 国产午夜精品论理片| 久久久成人免费电影| 很黄的视频免费| 在线观看免费视频日本深夜| 美女xxoo啪啪120秒动态图| 亚洲天堂国产精品一区在线| 村上凉子中文字幕在线| 桃红色精品国产亚洲av| 国产午夜精品论理片| 88av欧美| 久99久视频精品免费| 精品久久久久久久人妻蜜臀av| 夜夜看夜夜爽夜夜摸| 亚洲国产精品sss在线观看| 露出奶头的视频| 99热6这里只有精品| 免费人成视频x8x8入口观看| 成人国产一区最新在线观看| 神马国产精品三级电影在线观看| 亚州av有码| 午夜老司机福利剧场| 免费黄网站久久成人精品| 变态另类成人亚洲欧美熟女| 婷婷六月久久综合丁香| 俺也久久电影网| 午夜精品一区二区三区免费看| 亚洲成人久久性| 淫秽高清视频在线观看| 欧美3d第一页| 黄色日韩在线| 91麻豆精品激情在线观看国产| 久久久色成人| 99热精品在线国产| 神马国产精品三级电影在线观看| 国产伦人伦偷精品视频| 中文字幕免费在线视频6| 婷婷精品国产亚洲av| 久久久久久伊人网av| 最近在线观看免费完整版| 中文字幕av在线有码专区| 日本与韩国留学比较| 我要搜黄色片| 国产伦精品一区二区三区四那| 搡女人真爽免费视频火全软件 | 亚洲成人久久爱视频| 在线观看66精品国产| 免费观看人在逋| 国产伦精品一区二区三区四那| 日日撸夜夜添| 亚洲av不卡在线观看| 日韩人妻高清精品专区| 国产精品久久视频播放| 欧美精品啪啪一区二区三区| 久久久精品欧美日韩精品| 人妻丰满熟妇av一区二区三区| 久久婷婷人人爽人人干人人爱| 久久99热6这里只有精品| 国产高清视频在线播放一区| 亚洲va在线va天堂va国产| 国内精品一区二区在线观看| 欧美日韩中文字幕国产精品一区二区三区| av在线老鸭窝| 国产高清激情床上av| 97超级碰碰碰精品色视频在线观看| 亚洲第一区二区三区不卡| 欧美黑人巨大hd| 搡老熟女国产l中国老女人| 国产av不卡久久| 国产综合懂色| 国产高清激情床上av| 一级av片app| 男人舔奶头视频| 久久久色成人| 在线天堂最新版资源| 免费人成视频x8x8入口观看| 欧美人与善性xxx| 亚洲精品粉嫩美女一区| 男女那种视频在线观看| 久久婷婷人人爽人人干人人爱| 蜜桃亚洲精品一区二区三区| 又粗又爽又猛毛片免费看| 国产亚洲精品久久久com| av福利片在线观看| 久久久久久久精品吃奶| 搞女人的毛片| 噜噜噜噜噜久久久久久91| 免费人成在线观看视频色| 免费电影在线观看免费观看| 亚洲国产精品久久男人天堂| 日韩中字成人| xxxwww97欧美| 亚洲专区中文字幕在线| 国产淫片久久久久久久久| 精品福利观看| 欧美性猛交黑人性爽| 直男gayav资源| 成人国产一区最新在线观看| 国产精品一区二区三区四区久久| 无人区码免费观看不卡| 黄色一级大片看看| 亚洲内射少妇av| 麻豆精品久久久久久蜜桃| 欧美精品啪啪一区二区三区| 九九久久精品国产亚洲av麻豆| 最近在线观看免费完整版| 成人永久免费在线观看视频| 久久99热这里只有精品18| 国产淫片久久久久久久久| 国产午夜精品论理片| 国产伦精品一区二区三区视频9| 成人av在线播放网站| 久久精品国产亚洲av涩爱 | 欧美精品啪啪一区二区三区| 欧美黑人欧美精品刺激| 免费在线观看成人毛片| 亚洲av二区三区四区| 男女边吃奶边做爰视频| 欧美另类亚洲清纯唯美| 亚洲中文字幕一区二区三区有码在线看| 国产精品精品国产色婷婷| 欧美最黄视频在线播放免费| 十八禁网站免费在线| 国产精品一区二区免费欧美| 精品乱码久久久久久99久播| 中文字幕人妻熟人妻熟丝袜美| 久久精品夜夜夜夜夜久久蜜豆| 久久草成人影院| 日韩欧美精品v在线| 99热这里只有是精品在线观看| 神马国产精品三级电影在线观看| 美女 人体艺术 gogo| 老熟妇仑乱视频hdxx| 99在线视频只有这里精品首页| 国产亚洲精品久久久久久毛片| 最近最新免费中文字幕在线| 国产精品98久久久久久宅男小说| 夜夜爽天天搞| 网址你懂的国产日韩在线| 丝袜美腿在线中文| 免费无遮挡裸体视频| 丝袜美腿在线中文| 精品福利观看| 精品久久久久久久末码| 日本成人三级电影网站| 18禁裸乳无遮挡免费网站照片| 在线观看66精品国产| 国模一区二区三区四区视频| 九九在线视频观看精品| 日本一二三区视频观看| 成人特级黄色片久久久久久久| 春色校园在线视频观看| 中文亚洲av片在线观看爽| 午夜福利在线观看吧| .国产精品久久| 欧美成人一区二区免费高清观看| 免费不卡的大黄色大毛片视频在线观看 | 国产又黄又爽又无遮挡在线| 香蕉av资源在线| av黄色大香蕉| 亚洲一级一片aⅴ在线观看| 国产综合懂色| 国产精品人妻久久久影院| 又黄又爽又刺激的免费视频.| 美女高潮喷水抽搐中文字幕| 中文字幕人妻熟人妻熟丝袜美| 99久久中文字幕三级久久日本| 中文在线观看免费www的网站| 美女黄网站色视频| 国产在视频线在精品| 人人妻人人澡欧美一区二区| 精品国产三级普通话版| 99久久精品热视频| 午夜福利视频1000在线观看| 日日摸夜夜添夜夜添av毛片 | 99热6这里只有精品| 亚洲成人免费电影在线观看| 听说在线观看完整版免费高清| 精品人妻一区二区三区麻豆 | 久久香蕉精品热| 最近视频中文字幕2019在线8| 国内久久婷婷六月综合欲色啪| 亚洲真实伦在线观看| 国产精品嫩草影院av在线观看 | 99久久中文字幕三级久久日本| 干丝袜人妻中文字幕| av在线蜜桃| 一夜夜www| 赤兔流量卡办理| 亚洲熟妇中文字幕五十中出| 亚洲图色成人| 国产 一区精品| 国产麻豆成人av免费视频| 动漫黄色视频在线观看| 免费搜索国产男女视频| 亚洲,欧美,日韩| 精品久久国产蜜桃| 天堂影院成人在线观看| 亚洲精品456在线播放app | 欧美黑人欧美精品刺激| 国产精品伦人一区二区| 免费在线观看影片大全网站| 亚洲精品影视一区二区三区av| 精品乱码久久久久久99久播| 在线看三级毛片| 不卡一级毛片| 亚洲五月天丁香| 国产精品一区二区三区四区免费观看 | 久久久久久久久大av| 99热这里只有是精品50| 国产国拍精品亚洲av在线观看| 看黄色毛片网站| 欧美性感艳星| 亚洲精品一卡2卡三卡4卡5卡| 禁无遮挡网站| 日韩精品青青久久久久久| 性欧美人与动物交配| 久久精品久久久久久噜噜老黄 | 中文字幕熟女人妻在线| 成人国产综合亚洲| 久久九九热精品免费| 亚洲 国产 在线| 成人二区视频| 国产私拍福利视频在线观看| 午夜视频国产福利| 日本爱情动作片www.在线观看 | 国产精品,欧美在线| 欧美潮喷喷水| 免费大片18禁| 亚洲精品一卡2卡三卡4卡5卡| 成年人黄色毛片网站| 一进一出抽搐gif免费好疼| 精品无人区乱码1区二区| 18禁黄网站禁片免费观看直播| 亚洲国产精品久久男人天堂| 天堂√8在线中文| 尾随美女入室| videossex国产| 1000部很黄的大片| 干丝袜人妻中文字幕| 久久精品国产亚洲av香蕉五月| 亚洲在线观看片| 噜噜噜噜噜久久久久久91| 久久久久国产精品人妻aⅴ院| 高清毛片免费观看视频网站| 亚洲av中文av极速乱 | 亚洲精品色激情综合| 真人做人爱边吃奶动态| 亚洲欧美日韩卡通动漫| 不卡一级毛片| 久久久国产成人精品二区| 99久久精品热视频| av专区在线播放| 日韩欧美免费精品| 亚洲人成网站在线播放欧美日韩| 三级毛片av免费| 久久精品国产自在天天线| 最近最新中文字幕大全电影3| 国产黄a三级三级三级人| 在线观看舔阴道视频| 一个人观看的视频www高清免费观看| 午夜福利在线观看免费完整高清在 | 国产一区二区亚洲精品在线观看| 少妇熟女aⅴ在线视频| 嫁个100分男人电影在线观看| 日韩人妻高清精品专区| 中文字幕免费在线视频6| 国产高清视频在线观看网站| 日日摸夜夜添夜夜添av毛片 | 22中文网久久字幕| 欧美中文日本在线观看视频| 99久久中文字幕三级久久日本| 小蜜桃在线观看免费完整版高清| 啪啪无遮挡十八禁网站| 国产爱豆传媒在线观看| 老司机福利观看| 日本精品一区二区三区蜜桃| 久久久久久久久久成人| 中国美女看黄片| 久久热精品热| 内地一区二区视频在线| 亚洲精品粉嫩美女一区| 国产毛片a区久久久久| 男人和女人高潮做爰伦理| 色在线成人网| 男女那种视频在线观看| 亚洲av一区综合| 全区人妻精品视频| 亚洲欧美激情综合另类| 99热网站在线观看| 欧美日本视频| 午夜老司机福利剧场| 欧美又色又爽又黄视频| 又爽又黄a免费视频| 91久久精品国产一区二区三区| 亚洲av五月六月丁香网| 国产美女午夜福利| 草草在线视频免费看| 国产精品电影一区二区三区| 欧美在线一区亚洲| 99久久久亚洲精品蜜臀av| 极品教师在线视频| 变态另类丝袜制服| 老熟妇乱子伦视频在线观看| 精品人妻熟女av久视频| 一区福利在线观看| 午夜视频国产福利| 一区二区三区免费毛片| 欧美又色又爽又黄视频| 日韩欧美国产在线观看| 偷拍熟女少妇极品色| 国产亚洲精品久久久久久毛片| 国产日本99.免费观看| 九九久久精品国产亚洲av麻豆| 少妇的逼水好多| 一区二区三区免费毛片| av在线观看视频网站免费| 中文在线观看免费www的网站| 国产精品精品国产色婷婷| 在线天堂最新版资源| 欧美丝袜亚洲另类 | av专区在线播放| 一个人观看的视频www高清免费观看| 日本免费一区二区三区高清不卡| 欧美日韩亚洲国产一区二区在线观看| 有码 亚洲区| 18禁黄网站禁片免费观看直播| 日本一本二区三区精品| 日本爱情动作片www.在线观看 | 国国产精品蜜臀av免费| 亚洲精品一卡2卡三卡4卡5卡| 在线免费观看不下载黄p国产 | 国产伦精品一区二区三区四那| 久久亚洲真实| 人人妻,人人澡人人爽秒播| 又爽又黄a免费视频| 俄罗斯特黄特色一大片| 成年女人看的毛片在线观看| 蜜桃亚洲精品一区二区三区| 变态另类丝袜制服| 亚洲精品一卡2卡三卡4卡5卡| 99热6这里只有精品| 色吧在线观看| 搞女人的毛片| 成人性生交大片免费视频hd| 热99在线观看视频| 91在线观看av| 午夜精品在线福利| 少妇丰满av| 中文字幕av在线有码专区| 69人妻影院| 国产视频一区二区在线看| 男人和女人高潮做爰伦理| 人人妻人人看人人澡| 亚洲真实伦在线观看| 亚洲一区高清亚洲精品| 五月伊人婷婷丁香| 国内久久婷婷六月综合欲色啪| 午夜a级毛片| 国产又黄又爽又无遮挡在线| 国产亚洲91精品色在线| 久久久久久久久中文| 免费大片18禁| 国产精品98久久久久久宅男小说| 男插女下体视频免费在线播放| 成人毛片a级毛片在线播放| 免费在线观看成人毛片| 97人妻精品一区二区三区麻豆| 亚洲第一电影网av| 免费高清视频大片| 免费av观看视频| 91在线精品国自产拍蜜月| 在线观看免费视频日本深夜| 人妻少妇偷人精品九色| av中文乱码字幕在线| 免费黄网站久久成人精品| 亚洲精品色激情综合| 亚洲精华国产精华液的使用体验 | 免费无遮挡裸体视频| 给我免费播放毛片高清在线观看| 亚洲专区中文字幕在线| 性欧美人与动物交配| 国产精品,欧美在线| 久久久久国产精品人妻aⅴ院| 国内精品久久久久久久电影| 88av欧美| 国产精品98久久久久久宅男小说| 色视频www国产| 九色成人免费人妻av| 欧美最新免费一区二区三区| 一级av片app| 久久久久久大精品| 亚洲中文字幕日韩|