• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of malaria cases in the southeastern Iran using climatic variables: An 18-year SARIMA time series analysis

    2021-11-19 05:29:02HamidRezaTohidinikHosseinKeshavarzMehdiMohebaliMandanaSanjarGholamrezaHassanpour

    Hamid Reza Tohidinik, Hossein Keshavarz, Mehdi Mohebali, Mandana Sanjar, Gholamreza Hassanpour

    1HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran

    2Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran

    3Department of Medical Parasitology & Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

    ABSTRACT

    KEYWORDS: Malaria; Time series; SARIMA; Forecasting;Climate; Iran

    Significance

    The SARIMA model was applied to predict the number of malaria cases and to check the effect of climate on the disease incidence. The occurrence of malaria in a given month was mostly related to the number of cases occurring in the prior 1 and 12 months. The number of rainy days with an 8-month lag and temperature with a 3-month lag can improve the predictive power of the model.

    1. Introduction

    Malaria is a serious vector-borne disease in the world, particularly in the tropical and subtropical regions[1]. It is caused by protozoan parasites of the genus Plasmodium, which are transmitted across humans by infected female Anopheles mosquitoes[2]. The disease is the fifth cause of disability-adjusted life years in children younger than 10 years in 2019[3]and remained an important cause of mortality and morbidity in many parts of the world where can have negative effects on the health and socioeconomic status of the population[4,5].According to the World malaria report 2018, there were 219 million cases of malaria globally in 2017 and 435000 malaria deaths. The majority of these cases (92%) were in the African Region, followed by the South-East Region with 5% of the cases and the Eastern Mediterranean Region with 2%[1].

    Iran is one of the malaria-endemic countries in the world. In spite of successful implementation of malaria control measures that led to a significant reduction in the incidence of the disease over the last decade[6,7], it has remained a major public health concern in Iran. It can be explained by drug resistance[8,9]and the extremely genetic polymorphic nature of Plasmodium spp.[10-12]. More than 90% of malaria cases occur in the southern and southeastern regions that share borders with Pakistan and Afghanistan[13]. Sistan and Baluchistan province is an endemic area of malaria in Iran with an appropriate climate for breeding various malaria vectors[7]. The province is susceptible to malaria epidemics due to several factors including climate diversity[14].

    Temperature, precipitation, and humidity are important meteorological factors associated with the population dynamics of malaria vectors which could affect the disease spread[15,16].

    Early detection, prevention, and containment of malaria epidemics is one of the four principal components of the WHO’s global malaria control strategy[17]. Therefore, developing predictive models is an essential part of malaria surveillance that enables policymakers and public health staff to predict future incidence of the disease and act proactively[18]. Seasonal Integrated Moving Average (SARIMA)model[19]is widely used to predict different infectious diseases including malaria[20-23]. Some statistical models have been adopted for malaria in some regions of Iran[14-16,18-26], but to the best of our knowledge, no study had applied SARIMA time series to predict malaria incidence in Sistan and Baluchistan province. Therefore, the objective of this study was to provide a SARIMA time series model for the prediction of malaria incidence in the southeast of Iran, and to check if the inclusion of climatic variables enhances the predictive power of the model.

    2. Subjects and methods

    2.1. Ethical approval

    The study protocol was approved by ethical committee of Tehran University of Medical Sciences with registration number IR.TUMS.SPH.REC-13970270.

    2.2. Study area

    Sistan and Baluchistan province, in the southeast of Iran (28.5°N, 60.5° E, Figure 1), is the second largest province of Iran with an area of 180726 km2 and a population of 2.8 million. The climate is relatively hot and dry in most areas but has high humidity in the southern coastal regions. Mean temperature ranges from 17 ℃ in winter to 32 ℃ in summer, and mean annual precipitation of 58 mm range from 0.8 mm per month in summer to 12.3 mm in winter months.

    Figure 1. Geographical location of the study area in the southeast of Iran.

    2.3. Data collection

    We used the monthly number of confirmed cases of malaria from April 2001 to March 2019 that was provided by the Centers for Surveillance of Communicable Diseases in Zahedan, Iranshahr and Zabol Universities of Medical Sciences. We retrieved the monthly meteorological data for the same period from Meteorological Bureau of Sistan and Baluchistan province. We gathered monthly average temperature (℃), average minimum temperature (℃), average maximum temperature (℃), average wind speed, average number of rainy days, accumulated rainfall (millimeters), average relative humidity (%), and average sunny hours. We considered data from April 2001 to March 2018 as training data to fit the model, and kept the number of new malaria cases during April 2018-March 2019 as the validation data.

    2.4. Statistical analysis

    We described number of malaria cases in different months/seasons as median (Q1, Q3). Spearman correlation coefficient was used to assess the correlation between number of malaria cases and meteorological variables. To find the best model fitted to our data and to predict the number of malaria cases, we applied SARIMA(p, d, q) (P, D, Q)s model using Box-Jenkins approach in which p is non-seasonal autoregressive (AR) order, d is the number of nonseasonal differencing passes, q is non-seasonal moving average(MA) order, and P, D, Q are corresponding seasonal orders. In this model, s is the seasonal period of the data (12 months in this study).To fit the model, we first used disease trend plot and Box-Cox test to check the stationarity in the variance. Because of non-stationarity in the variance (θ=0), we used natural log transformed (Ln) of the number of malaria cases in the model. Second, Dicky-Fuller test was used to evaluate stationarity in the means of series. As the test showed stationarity in means (P=0.07), we did not apply any nonseasonal differencing pass on data (d=0) but to adjust seasonality of malaria cases and meteorological variables, first order seasonally differencing was applied to the model (D=1).

    Third, we plotted autocorrelation function (ACF) and partial autocorrelation function (PACF) plots on stationary data to identify possible values of MA (q, Q) and AR (p, P) components,respectively. Fourth, we applied likelihood ratio test to estimate parameters of SARIMA model. We checked the goodness-of-fit of each model, by plotting ACF and PACF plots for residuals to check their normality, and using Ljung-box (Q) test for residuals to check whether they are white noise with mean of 0 and constant variance.

    In the next step, we incorporated meteorological variables into the final SARIMA model to check their ability to improve the predictive power. To do so, we first removed autocorrelation within each individual series via pre-whitening procedure in which SARIMA model was applied on each series of meteorological variables to remove their seasonal trend. Then, the cross-correlation between residuals of models was computed and climatic variables significantly correlated with the number of malaria cases were checked as potential covariates in multiple SARIMA model.Variance inflation factor >5 was considered as collinearity between climatic variables. To find the best fitted model, we compared R,the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) in different SARIMA models, where the highest Rand lowest AIC and BIC showed better fitness in the models.

    We finally predicted 12-month number of malaria cases during April 2018-March 2019 for selected SARIMA models and compared observed and out-of-sample predicted values. The root mean square error (RMSE) was computed for both training and validation data as an index for validity of predictions in the models. Smaller values of this index show better predictive power of the model. The root mean square error equals to:

    with Yas the observed values, ?t as the predicted values at time t, and N as the number of observations. We used STATA 12 (Stata Corp, College Station, TX, USA) for all statistical analyses and considered a two-sided P<0.05 as statistically significant.

    3. Results

    3.1. Malaria cases

    From April 2001 to March 2019, a total of 85378 malaria cases including 60589 indigenous and 24789 imported cases were reported from Sistan and Baluchistan province. During this period,Plasmodium vivax and Plasmodium falciparum were the most common types of Plasmodium in the area (Appendix Figure 1). In addition to seasonal pattern, the disease showed a rising trend since 2001 until 2009 with a peak in 2003, but it showed a downward trend from 2009 onward (Appendix Figure 2).

    Figure 2. Boxplot of the number of malaria cases in different months from 2001 to 2018 in Sistan and Baluchistan province, Iran.

    The monthly distribution showed that the highest number of malaria cases occurred in October with 684 (139, 887) [median (Q1, Q3)]cases followed by September with median 648 (117, 912) [median(Q1, Q3)]cases, and the lowest number happened in February with median 25 (8, 35) [median (Q1, Q3)]cases per month. Transmission of malaria is possible in all seasons of the year, but most cases have occurred in summer and then in autumn, respectively (Figure 2).

    3.2. The impact of climate on malaria

    Spearman correlation coefficients show that number of malaria cases was directly associated with average temperature, maximum and minimum temperature, wind speed and sunny hours (P<0.01). It was also inversely associated with accumulated rainfall, rainy days and relative humidity (P<0.01) (Appendix Table 1).

    Table 1. Comparison of five candidate univariable SARIMA models, with different values of p, P, q, and Q, for the number of malaria cases in the southeast of Iran (April 2001-March 2018).

    Figure 3A and 3B present the ACF and PACF plots using data from 2001 to 2018. ACF suggested q≤2 and Q≤1 while PACF revealed that p≤1 and P≤2.

    Figure 3. Autocorrelation (A) and partial autocorrelation (B) functions based on the seasonally differenced, in-transformed number of malaria cases from 2001 to 2018 in Sistan and Baluchistan province, Iran; Autocorrelation suggests q≤2, Q≤1, and partial autocorrelation suggests p≤1 and P≤2.

    Various SARIMA models were assessed and the best-fitted univariate model was SARIMA (1,0,0)(1,1,1)(AIC=307.4,BIC=323.7, training RMSE=0.520, validation RMSE=0.484). Some selected SARIMA models are depicted in Table 1.

    Coefficients and statistics of the parameters of SARIMA (1,0,0)(1,1,1)have been presented in Table 2 where first-order nonseasonal and seasonal AR coefficients, and the first-order seasonal MA coefficient are significant (P<0.001).

    Table 2. Coefficients and parameters of the SARIMA (1,0,0)(1,1,1)12 model to predict the number of malaria cases in the southeast of Iran (April 2001-March 2018).

    The components of the best fitted SARIMA models for meteorological variables in pre-whitening phase are shown in Appendix Table 2.

    After cross-correlation analysis, we found average temperature with a 3-month lag and inverse number of rainy days with an 8-month lag as the best predictors that can relatively improve the predictive performance of the univariate model. Table 3 revealed a non-significant reverse relation between mean temperature with a 3-month lag and the number of malaria cases, and a significant direct association between inverse number of rainy days with an 8-month lag and the occurrence of the disease. For identifying the best model for prediction, we compared the univariate model with multivariable models and SARIMA (1,0,0)(1,1,1)including mean temperature with a 3-month lag, which had lower RMSE (0.414), was selected as the final multiple model. The distribution of residuals of the model was normal (Appendix Figure 3) and Ljung-Box test confirmed that residuals are white noise with zero mean and constant variance(P=0.54).

    Table 3. Characteristics of different multivariable SARIMA models including meteorological variables to predict the incidence of malaria in the southeast of Iran (April 2001 to March 2018).

    The comparison between the predicted and observed monthly number of malaria cases of both univariate and multiple models are presented in Table 4. Figure 4 shows the observed numbers and predicted values for malaria cases from 2010 to 2018 and out-of-sample predictions in 2019 applying SARIMA (1,0,0)(1,1,1)+temperature with the 3-month-lag model. Finally, as illustrated in Appendix Figure 4, we predicted the number of malaria cases for the next Iranian year (April 2019-March 2020) in Sistan and Baluchistan province. We predicted that totally, about 174 cases of malaria would occur in this province during April 2019 to March 2020. Among them, about eight cases would occur in first three months of 2020.

    Table 4. Predicted numbers of malaria cases during April 2018-March 2019 in the southeast of Iran, calculated from two different SARIMA (p,d,q)(P,D,Q)12 models.

    Figure 4. (A) observed and predicted number of malaria cases from 2010 to 2019, (B) out-of-sample predictions for April 2018-March 2019 in the southeast of Iran, applying SARIMA(1,0,0)(1,1,1)12+temperature with 3-month lag.

    4. Discussion

    The results of this study showed that malaria in Sistan and Baluchistan province had a significant decreasing trend during 2001 to 2019, which could be due to improving preventive interventions such as the distribution of insecticide-treated mosquito nets and indoor and outdoor spraying[27], early detection tools, especially the use of rapid diagnostic tests, effective vector control, and proper implementation of modern malaria control programs[7].

    Our study showed that the number of autochthonous malaria cases in Sistan and Baluchistan province starts to increase from May and reaches its peak in September and October, and then declines and reaches its lowest level in February. The main malaria vectors in Sistan and Baluchistan province are primarily Anopheles (An.)culicifacies and An. stephensi[28]. An. culicifacies has two main activity peaks in Sistan and Baluchistan province; the main peak occurs in June and the second in October[29,30]. It takes two weeks for Anopheles mosquitoes to complete their life cycle[31]. Incubation period of Plasmodium parasite may last 8-22 days in the mosquito’s body[32]and 12-14 days in the human host[33]. It seems that during the first peak, Anopheles mosquitoes have ample time to generate a large population of infectious vectors, leading to an increase in the number of malaria cases in the following months.

    This study also indicated that the occurrence of the disease was possible in all seasons of the year, but the least transmission occurred in winter. It confirms that the main vectors of malaria in this area are active almost all year long, and are able to transmit the disease[29,31-33].In this study, SARIMA (1,0,0)(1,1,1)model as univariate and SARIMA (1,0,0)(1,1,1)including mean temperature with a 3-month lag as multivariable model were selected for the prediction of the number of malaria cases in Sistan and Baluchistan province while the latter had predictions closer to the observed number of malaria cases. It seems that the model could provide an acceptable prediction in Sistan and Baluchistan province.

    Ostovar et al. in Hormozgan province, southern Iran[23], Breit et al. in Sri Lanka[34]and Abeku et al. in Ethiopia[35]used ARIMA model for predicting malaria cases. Ebhuoma et al. in Kwazula-Natal, South Africa, suggested the SARIMA (0,1,1)(0,1,1)as the best model for predicting malaria[36]. Wangdi et al. in Bhutan[31]and Kumar et al. in New Delhi[16]selected ARIMA (2,1,1)(0,1,1)and ARIMA (0,1,1) (0,1,0)to forecast malaria, respectively.

    In our study, mean temperature with a 3-month lag showed a reverse relationship with the number of malaria cases. The optimum temperature for Anopheles mosquitoes is 20 ℃ to 30 ℃. At these temperatures, the Anopheles can live long enough to acquire and transmit the parasite[37]. Increasing the temperature to above 30 ℃has negative effects on the mosquitoes' growth and reduces the propagation rate of Plasmodium in the vector's body[38], leading to reduced ability of mosquitoes to transmit the disease, which decreases the number of malaria cases consequently.

    In the study of Ostovar et al. in Hormozgan province, the temperature with a 2-month lag had a negative relationship with malaria cases[23], while Mohammadkhani et al. in Sistan and Baluchistan province[26]and Haghdoost et al. in Kahnooj in the southeast of Iran[39]reported that the temperature with a 1-month lag was directly related to malaria cases. This delay is reported as one month in China[38,40]and Bhutan[31], and two months in Tibet[41].

    Applying a relatively long period of time and including a variety of climatic variables in the prediction model of the disease were among the strengths of the present study. On the other hand, we were unable to include some factors such as socio-economic factors, population movement, immunity status, sanitation condition, implementation of malaria control programs and ecological factors in the model which could be considered in future studies about this disease.

    Malaria showed a decreasing trend in the southeast of Iran as one of the traditional endemic areas of the disease in the region. SARIMA time series model including climatic variables was able to forecast the number of malaria cases with relatively good accuracy in this region.

    Conflict of interest statement

    The authors declare that they have no conflict of interest.

    Acknowledgement

    This study was financially supported by the Tehran University of Medical Sciences (project No: 97-03-160-40156).

    Authors’ contributions

    H.R.T., H.K. and Gh.H. developed the theoretical formalism,H.R.T., and M.S. performed the analytic calculations. All authors contributed to the final version of the manuscript. Gh.H. supervised the project.

    丁香欧美五月| 成人av一区二区三区在线看| 国产精品野战在线观看| 久久久久性生活片| 日韩欧美免费精品| 国产高清视频在线观看网站| 亚洲综合色惰| 亚洲美女视频黄频| 免费无遮挡裸体视频| 国产v大片淫在线免费观看| a级毛片a级免费在线| 日韩中字成人| 黄色日韩在线| 久久精品国产亚洲av涩爱 | 国产高清激情床上av| 亚洲 欧美 日韩 在线 免费| 国产精品电影一区二区三区| 国产在视频线在精品| 久9热在线精品视频| 毛片一级片免费看久久久久 | 日本熟妇午夜| 性欧美人与动物交配| 18美女黄网站色大片免费观看| 国产一区二区激情短视频| 久久精品国产自在天天线| 亚洲精品在线美女| 国产探花极品一区二区| av在线老鸭窝| 欧洲精品卡2卡3卡4卡5卡区| 午夜激情欧美在线| 亚洲av免费高清在线观看| 日韩av在线大香蕉| 午夜福利免费观看在线| 色吧在线观看| 在线观看一区二区三区| 精品久久久久久,| 日韩欧美 国产精品| 亚洲国产高清在线一区二区三| 色5月婷婷丁香| 怎么达到女性高潮| 国产精品永久免费网站| 首页视频小说图片口味搜索| 国产精品嫩草影院av在线观看 | 天天一区二区日本电影三级| 国产成人啪精品午夜网站| 99在线视频只有这里精品首页| 69人妻影院| 色吧在线观看| 五月伊人婷婷丁香| 久久久久亚洲av毛片大全| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩国产亚洲二区| 婷婷丁香在线五月| 熟女人妻精品中文字幕| 免费观看人在逋| 丰满人妻一区二区三区视频av| 亚洲成人中文字幕在线播放| 日韩免费av在线播放| 又紧又爽又黄一区二区| www.www免费av| 久久中文看片网| 深夜a级毛片| 免费在线观看影片大全网站| 亚洲av二区三区四区| 国产伦一二天堂av在线观看| 国产精品一区二区免费欧美| 中文字幕精品亚洲无线码一区| 禁无遮挡网站| 欧美黑人巨大hd| 国产精品自产拍在线观看55亚洲| 精品午夜福利在线看| 18禁黄网站禁片免费观看直播| 国内少妇人妻偷人精品xxx网站| 亚洲专区国产一区二区| 变态另类成人亚洲欧美熟女| 日日摸夜夜添夜夜添av毛片 | 午夜免费激情av| 日本免费a在线| 欧美一区二区国产精品久久精品| 亚洲精品一区av在线观看| 中文亚洲av片在线观看爽| 91九色精品人成在线观看| 脱女人内裤的视频| 欧美另类亚洲清纯唯美| 中文字幕精品亚洲无线码一区| 夜夜爽天天搞| 在线观看美女被高潮喷水网站 | 国内毛片毛片毛片毛片毛片| 波多野结衣高清作品| 国产精品一及| 国产精品av视频在线免费观看| 亚洲片人在线观看| 日韩人妻高清精品专区| 亚洲专区国产一区二区| 91在线观看av| 国产探花在线观看一区二区| 高潮久久久久久久久久久不卡| 国产aⅴ精品一区二区三区波| 蜜桃久久精品国产亚洲av| 亚洲人成伊人成综合网2020| a在线观看视频网站| 制服丝袜大香蕉在线| 九色成人免费人妻av| 国产精品一区二区三区四区久久| av欧美777| 亚洲自拍偷在线| 亚洲真实伦在线观看| 好男人电影高清在线观看| 亚洲国产高清在线一区二区三| 在线观看免费视频日本深夜| 国语自产精品视频在线第100页| 亚洲一区二区三区不卡视频| 欧美乱色亚洲激情| 小蜜桃在线观看免费完整版高清| 中文字幕高清在线视频| 久久久精品大字幕| av在线老鸭窝| 级片在线观看| 天堂网av新在线| 久久久久精品国产欧美久久久| 精品人妻一区二区三区麻豆 | 久久久久精品国产欧美久久久| 亚洲男人的天堂狠狠| 美女高潮的动态| 成年免费大片在线观看| 国产成人av教育| 成年免费大片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利成人在线免费观看| 97超级碰碰碰精品色视频在线观看| 亚洲人成电影免费在线| 欧美色视频一区免费| 免费观看的影片在线观看| 一夜夜www| 精品免费久久久久久久清纯| 天美传媒精品一区二区| 色精品久久人妻99蜜桃| 欧美黑人巨大hd| 国产精品久久视频播放| 亚洲精品影视一区二区三区av| 中国美女看黄片| 久久午夜福利片| 性插视频无遮挡在线免费观看| 性色avwww在线观看| 在现免费观看毛片| 99热6这里只有精品| 国产人妻一区二区三区在| 在线看三级毛片| 久久草成人影院| 乱码一卡2卡4卡精品| 18禁裸乳无遮挡免费网站照片| 国产伦人伦偷精品视频| 日日干狠狠操夜夜爽| 嫩草影院新地址| 啪啪无遮挡十八禁网站| 日韩av在线大香蕉| 99在线视频只有这里精品首页| 国产日本99.免费观看| 精品久久久久久成人av| 中文字幕久久专区| 亚洲午夜理论影院| 黄色配什么色好看| 亚洲精品在线美女| 国产男靠女视频免费网站| 丁香欧美五月| 美女黄网站色视频| 琪琪午夜伦伦电影理论片6080| 我要搜黄色片| 国产亚洲精品久久久com| 国产精品美女特级片免费视频播放器| 男人和女人高潮做爰伦理| 国产欧美日韩一区二区精品| 麻豆av噜噜一区二区三区| 午夜久久久久精精品| 搡老熟女国产l中国老女人| 内射极品少妇av片p| 三级男女做爰猛烈吃奶摸视频| 久久精品人妻少妇| 精品久久久久久久久亚洲 | 91av网一区二区| 久久久久久久久大av| 国产精品一区二区三区四区久久| 深爱激情五月婷婷| 久久久久九九精品影院| 一级作爱视频免费观看| bbb黄色大片| 国产在视频线在精品| 国产亚洲精品综合一区在线观看| 丁香六月欧美| 欧美日本视频| 757午夜福利合集在线观看| 亚洲精品在线美女| 亚洲 国产 在线| 欧美bdsm另类| 99热只有精品国产| 制服丝袜大香蕉在线| www.www免费av| 午夜激情欧美在线| 九色国产91popny在线| 在线播放无遮挡| 熟女电影av网| 午夜福利在线在线| 18禁黄网站禁片免费观看直播| 色吧在线观看| 免费观看人在逋| 成年人黄色毛片网站| 久久草成人影院| 久久久精品大字幕| 人妻制服诱惑在线中文字幕| 三级男女做爰猛烈吃奶摸视频| 99国产极品粉嫩在线观看| 他把我摸到了高潮在线观看| 国产精品日韩av在线免费观看| 欧美黑人巨大hd| 国产精品美女特级片免费视频播放器| 国产精品亚洲av一区麻豆| 99热这里只有是精品50| 在线十欧美十亚洲十日本专区| 91久久精品电影网| 最新中文字幕久久久久| 九色成人免费人妻av| 欧美xxxx黑人xx丫x性爽| 国内精品久久久久久久电影| 亚洲精品乱码久久久v下载方式| 免费av观看视频| .国产精品久久| 最好的美女福利视频网| 亚洲精品色激情综合| 欧美性猛交╳xxx乱大交人| 禁无遮挡网站| 国产69精品久久久久777片| 亚洲国产精品久久男人天堂| 亚洲人成网站高清观看| 国产精品野战在线观看| 少妇高潮的动态图| 亚洲精品亚洲一区二区| 久久国产乱子免费精品| 国产黄a三级三级三级人| 观看美女的网站| 日韩欧美精品免费久久 | 99久久精品一区二区三区| 91在线观看av| 国产精品一区二区三区四区免费观看 | 日日摸夜夜添夜夜添小说| 一卡2卡三卡四卡精品乱码亚洲| 午夜视频国产福利| 九九在线视频观看精品| 日韩精品青青久久久久久| 搡女人真爽免费视频火全软件 | 免费观看人在逋| 嫁个100分男人电影在线观看| 麻豆成人午夜福利视频| 97超级碰碰碰精品色视频在线观看| 怎么达到女性高潮| 麻豆一二三区av精品| 久久久久久久久久成人| 在线天堂最新版资源| 此物有八面人人有两片| 午夜a级毛片| 久久婷婷人人爽人人干人人爱| 亚洲真实伦在线观看| 亚洲人成伊人成综合网2020| 在线观看66精品国产| 91在线精品国自产拍蜜月| 欧美精品啪啪一区二区三区| 成人一区二区视频在线观看| 国产伦在线观看视频一区| 一进一出抽搐gif免费好疼| 国产免费av片在线观看野外av| 午夜亚洲福利在线播放| 三级毛片av免费| 精品人妻一区二区三区麻豆 | 神马国产精品三级电影在线观看| 亚洲美女视频黄频| 观看美女的网站| 97超级碰碰碰精品色视频在线观看| 国产成人a区在线观看| 亚洲国产精品合色在线| 99国产极品粉嫩在线观看| 亚洲,欧美精品.| 搡老妇女老女人老熟妇| 很黄的视频免费| 淫妇啪啪啪对白视频| 好看av亚洲va欧美ⅴa在| 成人高潮视频无遮挡免费网站| 成人高潮视频无遮挡免费网站| 悠悠久久av| 国产精品影院久久| 国产一区二区三区在线臀色熟女| 女生性感内裤真人,穿戴方法视频| 禁无遮挡网站| 99热这里只有是精品在线观看 | 日韩成人在线观看一区二区三区| 女生性感内裤真人,穿戴方法视频| 亚洲av熟女| 性欧美人与动物交配| 精品久久久久久成人av| 国产伦一二天堂av在线观看| 在线观看av片永久免费下载| 97超视频在线观看视频| 嫩草影院入口| 免费黄网站久久成人精品 | 色吧在线观看| 国产伦人伦偷精品视频| 午夜激情欧美在线| 成人美女网站在线观看视频| 国产精品99久久久久久久久| 欧美日韩综合久久久久久 | 国产成人a区在线观看| 搞女人的毛片| 国产高清视频在线播放一区| 婷婷六月久久综合丁香| 69人妻影院| bbb黄色大片| 久久久久精品国产欧美久久久| 99久久精品一区二区三区| 看十八女毛片水多多多| 国产精品久久久久久亚洲av鲁大| 国产主播在线观看一区二区| 国产黄色小视频在线观看| 99在线视频只有这里精品首页| 欧美另类亚洲清纯唯美| 亚洲欧美日韩东京热| 国产三级在线视频| 国产av不卡久久| 青草久久国产| 婷婷丁香在线五月| 午夜视频国产福利| 亚洲精品在线美女| 国产高清激情床上av| 精品免费久久久久久久清纯| 亚洲欧美激情综合另类| 国内精品久久久久精免费| 波野结衣二区三区在线| 自拍偷自拍亚洲精品老妇| 久久人人爽人人爽人人片va | 免费在线观看成人毛片| 99精品在免费线老司机午夜| 色哟哟哟哟哟哟| 国产一区二区激情短视频| 国产亚洲av嫩草精品影院| 又爽又黄a免费视频| 国语自产精品视频在线第100页| 少妇人妻一区二区三区视频| 九九热线精品视视频播放| 亚洲人成电影免费在线| 国产色爽女视频免费观看| 人妻制服诱惑在线中文字幕| 日韩人妻高清精品专区| 亚洲国产欧洲综合997久久,| 十八禁人妻一区二区| 国产成人啪精品午夜网站| 国产探花极品一区二区| 日韩中字成人| 久久亚洲真实| 黄色丝袜av网址大全| 小说图片视频综合网站| 欧美午夜高清在线| 亚洲五月天丁香| 婷婷丁香在线五月| 日韩精品中文字幕看吧| 日韩中字成人| 丝袜美腿在线中文| 丰满人妻一区二区三区视频av| 亚洲av电影在线进入| 好男人在线观看高清免费视频| 国产单亲对白刺激| 欧美乱色亚洲激情| 国产午夜精品久久久久久一区二区三区 | 午夜福利在线在线| 97超视频在线观看视频| 一边摸一边抽搐一进一小说| 观看免费一级毛片| 婷婷精品国产亚洲av| 丰满的人妻完整版| 日韩高清综合在线| 男女那种视频在线观看| 人妻夜夜爽99麻豆av| 丰满人妻一区二区三区视频av| 俺也久久电影网| 99久久成人亚洲精品观看| 亚洲成人免费电影在线观看| 久久精品夜夜夜夜夜久久蜜豆| 高清毛片免费观看视频网站| 怎么达到女性高潮| 99久久久亚洲精品蜜臀av| a级毛片a级免费在线| 一级黄片播放器| 亚洲三级黄色毛片| 男人舔奶头视频| 国产精品三级大全| 无人区码免费观看不卡| 国产伦在线观看视频一区| 一a级毛片在线观看| 桃红色精品国产亚洲av| 成人欧美大片| 99国产极品粉嫩在线观看| 99久久无色码亚洲精品果冻| 成人一区二区视频在线观看| 亚洲国产精品999在线| 性色avwww在线观看| 高潮久久久久久久久久久不卡| 又粗又爽又猛毛片免费看| 在线观看美女被高潮喷水网站 | 看黄色毛片网站| 2021天堂中文幕一二区在线观| 91在线精品国自产拍蜜月| 亚洲精品456在线播放app | 高潮久久久久久久久久久不卡| 精品一区二区三区人妻视频| 国产一区二区激情短视频| 首页视频小说图片口味搜索| netflix在线观看网站| 亚洲精品成人久久久久久| 欧美xxxx黑人xx丫x性爽| 国产在视频线在精品| 午夜福利高清视频| 超碰av人人做人人爽久久| 国产成人欧美在线观看| 国产亚洲精品久久久久久毛片| 精品国产三级普通话版| 一区二区三区免费毛片| 怎么达到女性高潮| 嫩草影视91久久| 日韩av在线大香蕉| 国产综合懂色| 精品国产亚洲在线| 综合色av麻豆| 国产精品亚洲av一区麻豆| 两性午夜刺激爽爽歪歪视频在线观看| 精华霜和精华液先用哪个| 性插视频无遮挡在线免费观看| 久久久久久久亚洲中文字幕 | 桃红色精品国产亚洲av| 欧美潮喷喷水| 嫩草影视91久久| 国产精品精品国产色婷婷| 国产综合懂色| 亚洲美女黄片视频| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添av毛片 | 国产高清视频在线播放一区| 欧美一区二区亚洲| 日本在线视频免费播放| 精品国产亚洲在线| 国产精品一区二区三区四区久久| 美女 人体艺术 gogo| 国产精品乱码一区二三区的特点| 亚洲综合色惰| 成人性生交大片免费视频hd| 亚洲无线观看免费| 国产蜜桃级精品一区二区三区| 免费观看的影片在线观看| 久久久久久久久中文| 亚洲美女视频黄频| 51国产日韩欧美| 欧美激情国产日韩精品一区| 国产午夜福利久久久久久| 一区福利在线观看| 成人性生交大片免费视频hd| 欧美精品啪啪一区二区三区| 一二三四社区在线视频社区8| 两人在一起打扑克的视频| 亚洲国产高清在线一区二区三| 观看美女的网站| av专区在线播放| 亚洲av.av天堂| 性欧美人与动物交配| av在线蜜桃| 久久天躁狠狠躁夜夜2o2o| 麻豆一二三区av精品| 精品一区二区免费观看| 亚洲人成伊人成综合网2020| 亚洲精品在线美女| 毛片一级片免费看久久久久 | 男人和女人高潮做爰伦理| 伊人久久精品亚洲午夜| 亚洲熟妇熟女久久| 蜜桃久久精品国产亚洲av| 精品人妻1区二区| 十八禁人妻一区二区| 国产精品乱码一区二三区的特点| 国产欧美日韩精品亚洲av| 国内久久婷婷六月综合欲色啪| 国产高潮美女av| 国内精品美女久久久久久| 一夜夜www| 精品久久久久久久人妻蜜臀av| 在线观看一区二区三区| 一进一出抽搐动态| 欧美日韩综合久久久久久 | 国产乱人视频| 国产精品女同一区二区软件 | 国产精品久久久久久久久免 | 国产精品,欧美在线| 欧美黄色淫秽网站| 亚洲中文字幕一区二区三区有码在线看| 国产伦人伦偷精品视频| 精品国内亚洲2022精品成人| 婷婷六月久久综合丁香| 色视频www国产| av在线蜜桃| 久久午夜福利片| 亚洲欧美日韩东京热| 我要看日韩黄色一级片| 淫妇啪啪啪对白视频| 少妇被粗大猛烈的视频| 很黄的视频免费| 精品一区二区三区视频在线观看免费| 久久6这里有精品| 亚洲午夜理论影院| 亚洲熟妇熟女久久| 国产又黄又爽又无遮挡在线| 成人三级黄色视频| 99热6这里只有精品| 91久久精品电影网| 18禁裸乳无遮挡免费网站照片| 激情在线观看视频在线高清| 黄色视频,在线免费观看| 可以在线观看毛片的网站| 久久中文看片网| 欧美另类亚洲清纯唯美| 精品久久久久久,| av女优亚洲男人天堂| 成年版毛片免费区| 亚洲av第一区精品v没综合| 在线观看舔阴道视频| 亚洲av电影在线进入| 亚洲三级黄色毛片| 欧美黄色片欧美黄色片| 国内久久婷婷六月综合欲色啪| 色在线成人网| 老司机午夜十八禁免费视频| 日韩免费av在线播放| 久9热在线精品视频| 成年女人看的毛片在线观看| 嫩草影院新地址| 99热这里只有是精品50| 深夜a级毛片| 日本撒尿小便嘘嘘汇集6| 伦理电影大哥的女人| 亚洲无线在线观看| 亚洲午夜理论影院| 亚洲性夜色夜夜综合| 欧美激情国产日韩精品一区| 亚洲av电影在线进入| 在线国产一区二区在线| 亚洲av成人av| 国内精品久久久久精免费| 国产精品,欧美在线| 午夜久久久久精精品| 国产高清激情床上av| 亚洲av电影不卡..在线观看| 亚洲欧美日韩无卡精品| 美女高潮的动态| 亚洲美女黄片视频| 女人被狂操c到高潮| 精品久久久久久,| 久久草成人影院| 3wmmmm亚洲av在线观看| 国产v大片淫在线免费观看| 精华霜和精华液先用哪个| 如何舔出高潮| 午夜a级毛片| 欧美极品一区二区三区四区| 精品国产三级普通话版| 亚洲男人的天堂狠狠| 国产精品av视频在线免费观看| 精品久久久久久成人av| www.色视频.com| 最近最新中文字幕大全电影3| 久久精品国产清高在天天线| 国产大屁股一区二区在线视频| 国产私拍福利视频在线观看| 久久久久精品国产欧美久久久| 国产精品一及| 99热这里只有是精品50| 波多野结衣高清作品| 日日夜夜操网爽| 亚洲熟妇熟女久久| 欧美潮喷喷水| 淫秽高清视频在线观看| 欧美日本视频| 日日干狠狠操夜夜爽| 网址你懂的国产日韩在线| 国模一区二区三区四区视频| 欧美区成人在线视频| 桃红色精品国产亚洲av| 亚洲国产高清在线一区二区三| 真人一进一出gif抽搐免费| 午夜福利高清视频| 免费在线观看亚洲国产| 亚洲成人精品中文字幕电影| 欧美成人免费av一区二区三区| 日本 av在线| 最近最新中文字幕大全电影3| 日本精品一区二区三区蜜桃| 日韩大尺度精品在线看网址| 国产精品日韩av在线免费观看| 9191精品国产免费久久| 一个人免费在线观看电影| 99久久九九国产精品国产免费| 中亚洲国语对白在线视频| 日韩中文字幕欧美一区二区| 久久午夜亚洲精品久久| 在线观看av片永久免费下载| 成年免费大片在线观看| 久久国产乱子免费精品| 国产精品永久免费网站| 男女床上黄色一级片免费看| 精品久久久久久久人妻蜜臀av| 99国产综合亚洲精品| 看十八女毛片水多多多| 亚洲欧美清纯卡通|