熊佰煉,高 揚,彭 韜,顏 雄
喀斯特坡地淺層巖溶裂隙土壤團聚體穩(wěn)定性與養(yǎng)分垂向變化特征*
熊佰煉1,高 揚2,彭 韜3,顏 雄1
(1. 遵義師范學(xué)院資源與環(huán)境學(xué)院,貴州遵義 563006;2. 中國科學(xué)院地理科學(xué)與資源研究所,生態(tài)網(wǎng)絡(luò)觀測與模擬重點實驗室,北京 100101;3. 中國科學(xué)院普定喀斯特生態(tài)系統(tǒng)觀測研究站,中國生態(tài)系統(tǒng)研究網(wǎng)絡(luò),貴州普定 562100)
淺層巖溶裂隙(SKF)為植物提供生長空間、水分和養(yǎng)分,是石漠化地區(qū)的重要生境類型。以矩形和漏斗形SKF剖面為研究對象,采用干、濕篩分法和Le Bissonnais法,分析了不同土層土壤團聚體穩(wěn)定性特征和破壞機理,測定了團聚體中土壤有機質(zhì)(SOM)、堿解氮(AHN)和有效磷(AP)的含量。結(jié)果表明:SKF剖面粒徑>0.25 mm的團聚體均超過90%,PAD值范圍為0.01%~4.75%。干、濕篩作用下,MWD值變化范圍分別為4.63~7.69 mm和1.33~4.24 mm,團聚體分形維數(shù)D范圍分別為1.57~2.18和1.55~2.15。SKF土壤團聚體的穩(wěn)定性隨剖面深度加深而降低,矩形SKF土壤團聚體的穩(wěn)定性要強于漏斗形SKF,快速濕潤產(chǎn)生的消散作用是造成團聚體破碎的主要機制。團聚體破壞率(PAD)、團聚體分形維數(shù)(D)和平均重量直徑(MWD)這三類指標均表明,SKF土壤團聚體水穩(wěn)定性、通透性均較好。SKF剖面30 cm以下土層,團聚體SOM、AHN和AP含量相較0~20 cm土層大幅下降,含量范圍分別為(13.27±0.94)~(37.53±3.47)g·kg–1、(71.58±3.27)~(198.54±22.63)mg·kg–1和(0.15±0.03)~(0.38±0.10)mg·kg–1,土壤AP十分貧乏。SKF形態(tài)會影響SOM含量隨土層深度的變化,矩形SKF 30 cm以下土層含量隨深度加深而降低,而漏斗形SKF則沒有顯著性差異。隨土層深度加深,矩形和漏斗形SKF剖面AP含量的變化趨勢一致,AHN含量的變化趨勢則與SKF形態(tài)之間沒有明顯關(guān)聯(lián)。SOM、AHN和AP含量越高,SKF剖面團聚體水穩(wěn)定性越強。
喀斯特坡地;淺層巖溶裂隙;剖面;團聚體;土壤養(yǎng)分
我國西南喀斯特地區(qū)溫熱多雨,坡地水土經(jīng)巖溶裂隙與地下管道大量漏失,石漠化問題嚴重。植被恢復(fù)是有效抑制石漠化發(fā)展的重要措施。然而,喀斯特地區(qū)土壤普遍淺薄,石漠化坡地地表土壤更是稀缺,植物難以從中獲得充足的水分、養(yǎng)分和根系生長需要的空間。這導(dǎo)致移植植物成活率低、生長緩慢、生物量小,難以起到有效控制石漠化發(fā)展的作用[1-2]。土壤養(yǎng)分儲存與供給能力不足已成為石漠化坡地植被與生態(tài)恢復(fù)的關(guān)鍵限制因子之一[3]。
西南喀斯特地區(qū)表層巖溶帶平均裂隙率可達5.3%左右[4-5],淺層巖溶裂隙(SKF,shallow karst fissure)聚集由地表徑流沖蝕帶入的土壤,其面積可占到典型巖溶山地剖面的5.3%~8.9%[6-7]。SKF及填充于其中的土壤能為植物生長提供生長空間、水分和養(yǎng)分,是石漠化地區(qū)生態(tài)恢復(fù)必須依賴的寶貴自然資源和重要生境類型[8-9]。SKF是喀斯特地區(qū)特殊地表-地下“二元三維”系統(tǒng)的重要組成部分和坡地水土流失的重要通道。填充于其中的土壤在存留環(huán)境、養(yǎng)分侵蝕淋溶過程和理化性質(zhì)方面相較于非SKF土壤已發(fā)生較大變化[4,6-7]。土壤團聚體是土壤結(jié)構(gòu)的基本單元和養(yǎng)分貯存庫,其穩(wěn)定性大小是評價土壤抗蝕性和土壤肥力的主要指標之一[10-11]。表征團聚體的穩(wěn)定性和其養(yǎng)分狀況是研究喀斯特地區(qū)地球化學(xué)過程以及生態(tài)系統(tǒng)服務(wù)功能的基礎(chǔ)任務(wù)之一。隨著對巖溶裂隙小生境土壤生態(tài)服務(wù)功能認識的加深,學(xué)者開展了對其性質(zhì)和肥力的初步探索。研究發(fā)現(xiàn),隨土層深度增加,SKF土壤砂粒減少,粗粉粒、黏粒含量增加[6-7],有機質(zhì)、總氮和總磷隨著土層深度增加而降低[7,12-13]。但是,有關(guān)SKF剖面土壤團聚體的組成、穩(wěn)定性以及團聚體養(yǎng)分含量的垂向變化規(guī)律尚不清楚,SKF形態(tài)對團聚體穩(wěn)定性及養(yǎng)分含量影響的相關(guān)研究未見報道。因此,本研究在喀斯特石漠化坡地采集兩種典型形態(tài)的SKF,分析其剖面土壤團聚體組成、穩(wěn)定性、破壞機制,以及團聚體中土壤有機質(zhì)(SOM)、堿解氮(AHN)和有效磷(AP)含量的垂向變化特征,分析團聚體穩(wěn)定性與養(yǎng)分含量的相關(guān)關(guān)系。研究結(jié)果將加深對SFK剖面土壤團聚體性質(zhì)的認識,為石漠化治理過程中采取合理的耕作方法和土壤改良措施提供一定的理論依據(jù)。
采樣點位于貴州省普定縣后寨河流域(26°1705.30″N,105°3921.44″E),海拔1 100~1 400 m,亞熱帶季風濕潤氣候,年平均氣溫15.1 ℃,多年平均降雨量為1 314.6 mm。研究區(qū)域碳酸鹽巖廣為分布,表層巖溶帶發(fā)育強烈,石漠化面積超過35%,難利用的石山、裸巖占流域面積的10%左右,在南方喀斯特地區(qū)極具典型性和研究價值。
以新近道路建設(shè)和住房建設(shè)開挖邊坡斷面出露的矩形和漏斗形SKF剖面為研究對象(表1和圖1)。自下而上挖取0~20 cm、30~50 cm、50~70 cm、70~90 cm、90~110 cm層土壤,裝入硬質(zhì)塑料盒中。為減少0~20 cm表層土對下層土壤性質(zhì)的影響,將20~30 cm土層作為緩沖層,不采集土壤樣品。土壤樣品在實驗室內(nèi)自然風干,撿出石塊、落葉和根等雜物,備用。
(1)干篩分析[14]:取風干土樣1 kg,用孔徑5、3、2、1、0.5和0.25 mm的土壤篩篩分,稱重。(2)濕篩分析[15]:將干篩獲得的各級團聚體按其百分含量配制成50 g左右的待篩分土樣,移入1 L量筒中,用水潤濕并浸泡至水飽和狀態(tài)后,沿量筒壁灌滿水,封住筒口后顛倒至量筒中土樣完全沉降,重復(fù)10次。將孔徑為5、3、2、1、0.5和0.25 mm的土壤篩由上至下依次綁定成篩組,浸入水中。倒轉(zhuǎn)沉降筒將土壤轉(zhuǎn)至水中的土壤篩上,取出量簡,將篩組在水中上、下提動篩分10次,取出5、3、2 mm的土壤篩,將剩下土壤再上下提動篩分5次,轉(zhuǎn)移各級水穩(wěn)性團聚體至鋁盒,烘干稱重。(3)不同破碎機制下團聚體穩(wěn)定性分析:選取干篩獲得的3~5 mm團聚體,40℃的烘24 h,參照Le Bissonnais方法[16]進行快速濕潤(FW)、濕潤震蕩(WS)和緩慢濕潤(SW)三種破碎處理,將團聚體移至孔徑為50 μm篩上,浸入95%酒精中,2 cm振幅上下振蕩20次。取出土壤篩至40℃烘箱烘20 min,將土粒移入鋁盒,40℃下烘12 h后稱重,再用一組孔徑為3、2、1、0.5、0.25、0.1和0.05 mm的套篩篩分,稱重。土壤團聚體粒徑分布與穩(wěn)定性定參數(shù)及計算公式如表2所示。
表2 土壤團聚體粒徑分布與穩(wěn)定性參數(shù)及計算公式
MWDWS分別表示快速濕潤、緩慢濕潤和濕潤振蕩處理方式下的平均重量直徑。
SOM用重鉻酸鉀容量法(外加熱法)測定,AHN采用堿解擴散法測定,AP采用NaHCO3浸提—鉬銻抗比色法測定。
采用SPSS 19.0 對實驗數(shù)據(jù)進行單因素方差分析(one-way ANOVA)、Pearson 相關(guān)性分析和顯著性分析,OriginPro 8.5.1進行內(nèi)插值、數(shù)據(jù)歸一化和繪圖。
干、濕篩法分別得到抗機械力分散的力穩(wěn)定性團聚體和抗水力分散的水穩(wěn)定性團聚體[18]。從圖2可知,干篩作用下,SKF剖面各土層土壤均以>5 mm團聚體為主,并呈現(xiàn)出團聚體粒徑越大含量越高的趨勢。濕篩作用下,SKF各土層>5 mm團聚體含量相較于干篩大幅下降,隨著土層加深小粒徑團聚體含量增加。干篩不同土層團聚體粒徑分布沒有明顯的規(guī)律性,而濕篩則大體呈現(xiàn)出隨著土層加深大粒徑團聚體百分含量減少的趨勢。
從表3可知,干、濕篩法處理下SKF土壤中粒徑>0.25 mm的團聚體超過90%。各土層>0.25%相差不大且隨土層加深沒有明顯的規(guī)律性,濕篩法>0.25%略小于干篩法。>0.25 mm 的團聚體被稱為土壤團粒結(jié)構(gòu)體,是土壤中最好的結(jié)構(gòu)體,其數(shù)量大小與土壤的穩(wěn)定性狀況呈正相關(guān)關(guān)系[19]。PAD可以較好地反映出>0.25 mm土壤團聚體在水力振蕩作用下被破壞的程度。該值越大,表明團聚體破碎的越劇烈,土壤結(jié)構(gòu)越不穩(wěn)定,也表明土壤退化程度增加[20]。4個SKF各土層PAD范圍為0.01%~4.75%,PAD隨土層加深未表現(xiàn)出明顯的規(guī)律性。MWD是反映土壤團聚體大小分布狀況的常用指標,其值越低表示團聚體穩(wěn)定性越低[21]。從表3可知,干篩和濕篩MWD值變化范圍分別為4.63~7.69 mm和1.33~4.24 mm,濕篩MWD明顯小于干篩,MWD隨土層加深未表現(xiàn)出明顯的規(guī)律性。根據(jù)Le Bissonnais[16]的研究,MWD為1.3~2.0 mm時團聚體穩(wěn)定,大于2.0 mm時團聚體非常穩(wěn)定。因而,干篩作用下,SKF土壤團聚體極穩(wěn)定,濕篩作用下SKF土壤團聚體穩(wěn)定。土壤團聚體分形維數(shù)D越小,土壤相對越松散,土壤結(jié)構(gòu)、通透性與穩(wěn)定性越好。分形維數(shù)D>2.88屬質(zhì)地黏重、通透能力弱的土壤[17]。從表3可知,4個SKF干篩和濕篩團聚體分形維數(shù)D范圍分別為1.57~2.18和1.55~2.15,兩者之間沒有顯著性差異。從土層來看,土壤團聚體分形維數(shù)D隨土層加深未表現(xiàn)出明顯的規(guī)律性。
SKF剖面團聚體在不同破碎機制下形成的粒級質(zhì)量分布如圖3所示。從中可知,不同土層團聚體對濕潤處理的響應(yīng)不同。FW處理下,4個SKF剖面0~20 cm土層以粒徑>3 mm的團聚體為主,30 cm以下土層以粒徑0.5~2 mm的團聚體為主。隨著土層的加深,小粒徑團聚體所占比重相應(yīng)增加,F(xiàn)W處理對團聚體的破壞作用逐漸加強。SW處理和WS處理也表現(xiàn)出相同的規(guī)律。對比發(fā)現(xiàn),矩形和漏斗形SKF團聚體對同一濕潤處理的響應(yīng)有一定的差別。FW處理下,1號矩形SKF的0~90 cm土層和2號矩形SKF的0~110 cm土層粒徑>3 mm的團聚體質(zhì)量百分含量變化范圍分別為80.64%~13.82%和89.21%~4.94%,3號和4號漏斗形SKF的值則分別為59.88%~9.95%和78.29%~3.30%。統(tǒng)計分析表明,F(xiàn)W處理下矩形SKF剖面中粒徑>3 mm的團聚體占比要顯著大于漏斗形SKF(<0.05),團聚體破碎化程度也相對更小。WS處理下也表現(xiàn)出相同的規(guī)律。SW處理矩形和漏斗形SKF土壤團聚體的破碎化程度則沒有顯著性差異。這說明,在FW和WS處理下,漏斗形SKF團聚體的水穩(wěn)性較矩形SKF的差。
表3 干、濕篩處理下SKF剖面土壤團聚體分布與穩(wěn)定性參數(shù)
從圖4a可以看出,隨著土層的加深,各處理MWD均呈現(xiàn)出減少趨勢。這表明,SKF土壤團聚體的穩(wěn)定性隨深度垂直降低。不同處理條件下土壤團聚體MWD的大小為FW RSI反映了快速濕潤時土壤孔隙中空氣受壓產(chǎn)生的消散作用(slaking)下團聚體的穩(wěn)定性,RMI反映了雨滴打擊、耕作、根系穿透等外應(yīng)力作用下的團聚體穩(wěn)定性。RSI和RMI值越高代表團聚體穩(wěn)定性越低[21]。由圖4b可知,RSI和RMI范圍分別為6.34~81.68和0.80~52.36,SKF各土層的RSI均高于相應(yīng)的RMI。這說明,徑流通過SKF時快速濕潤產(chǎn)生的消散作用對團聚體的破壞作用大于雨滴打擊、耕作和根系穿透等外應(yīng)用力對團聚體產(chǎn)生的機械破壞作用。從土層來看,各SKF團聚體RSI大致呈現(xiàn)出隨著土層加深而增加的趨勢,深層土壤團聚體更易受消散作用的破壞。從裂隙類型來看,矩形SKF土壤RSI和RMI值均顯著小于漏斗形SKF團聚體的相應(yīng)值(<0.05)。這說明,漏斗形SKF更易受消散作用和機械破碎作用的破壞,穩(wěn)定性要低于前者。 圖5a為SKF剖面土壤團聚體SOM含量的變化情況。從中可知,各SKF剖面0~20 cm土層SOM含量明顯高于其他土層。其中,1號和2號SKF剖面0~20 cm土層SOM含量分別為38.34±6.53 g·kg–1和90.91±10.02 g·kg–1,30 cm以下的含量范圍分別為(13.58±1.25)~(21.33±3.36)g·kg–1和(13.27±0.94)~(37.53±3.47)g·kg–1。3號和4號SKF剖面0~20 cm土層SOM含量分別為58.81±9.84和46.90± 6.05 g·kg–1,30 cm以下的含量范圍分別為(22.19± 2.51)~(28.83±2.45)g·kg–1和17.61±1.52)~(22.83± 2.11)g·kg–1。進一步分析表明,1、2號矩形SKF 30 cm以下土層SOM含量隨土層加深而顯著降低(<0.05),而3、4號漏斗形SKF則沒有顯著性差異(>0.05)。圖5d為SKF剖面30 cm以下不同粒徑土壤團聚體SOM含量的變化情況。單因素方差分析表明,1~3號SKF剖面30 cm以下土層不同粒徑團聚體SOM含量沒有顯著性差異,只有4號SKF >5 mm團聚體SOM含量顯著大于0.25~3 mm。因而,粒徑不是影響SKF剖面30 cm以下土層團聚體SOM含量的重要因素。而對于0~20 cm土層,1號SKF的SOM含量呈現(xiàn)出隨著團聚體粒徑的減小而顯著增加的趨勢(<0.05),2~4號1~5 mm粒徑團聚體SOM含量顯著大于其他粒徑(<0.05)。 圖5b為SKF剖面土壤團聚體AHN含量變化情況。從中可知,0~20 cm土層AHN含量明顯高于其他土層。1號和2號SKF剖面,0~20 cm土層AHN含量分別為212.92±23.66 mg·kg–1和373.93± 38.27 mg·kg–1;30 cm以下含量范圍分別為(85.79± 13.39)~(129.21±9.71)mg·kg–1和(89.31±13.19)~(198.54±22.63)mg·kg–1,AHN含量隨著深度增加均顯著降低(<0.05)。3號和4號SKF剖面,0~20 cm土層AHN含量分別為279.18±33.66 mg·kg–1和208.09±24.10 mg·kg–1,30 cm以下的含量范圍分別為(100.67±14.17)~(150.78±16.56)mg·kg–1和(71.58± 3.27)~(146.85±34.55)mg·kg–1。30 cm以下土層,3號除30~50 cm土層和50~70 cm土層外,其他各土層之間的含量差異顯著(<0.05);4號AHN含量隨著深度增加均顯著降低(<0.05)。圖5e為SKF剖面30 cm以下土層不同粒徑土壤團聚體AHN含量的變化情況。單因素方差分析表明,1~4號SKF剖面30 cm以下土層不同粒徑團聚體AHN含量沒有顯著性差異,粒徑對其沒有顯著影響。而對于0~20 cm土層,1號SKF的AHN含量呈現(xiàn)出隨著團聚體粒徑的減小而顯著增加的趨勢(<0.05),2~4號1~5 mm粒徑團聚體AHN含量顯著大于其他粒徑(<0.05)。 圖5c為SKF剖面土壤團聚體AP含量變化情況。從中可知,0~20 cm土層AP含量明顯高于其他土層,30 cm以下土層AP含量大幅下降。這與張倩等[22]對普定非SKF 0~90 cm土層的研究結(jié)果一致。1~4號SKF剖面0~20 cm土層各粒徑團聚體AP平均含量分別為6.55±4.51、1.98±0.96、8.13±6.45和6.51±2.46 mg·kg–1。1~4號SKF 30 cm以下土層AP平均含量范圍分別為(0.23±0.08)~(0.38± 0.10)mg·kg–1、(0.15±0.03)~(30.22±0.08)mg·kg–1、(0.26± 0.10)~(0.36±0.13)mg·kg–1和(0.26±0.08)~(0.38± 0.10)mg·kg–1。同一SKF中,30 cm以下土層AP含量隨土層加深變化無顯著性差異(>0.05)。圖5f為SKF剖面30 cm以下土層不同粒徑土壤團聚體AP含量的變化情況。從中可知,30 cm以下土層AP含量隨團聚體粒徑大小的變化沒有表現(xiàn)出明顯的規(guī)律性。而對于0~20 cm土層,1~4號0.25~0.5 mm和<0.25 mm粒徑團聚體速效磷的含量較其他粒徑團聚體含量高。 Yan等[23]將RSI×RMI的值定義為團聚體穩(wěn)定性特征參數(shù)(As),用其來綜合表征土壤團聚體穩(wěn)定性和對徑流沖蝕下消散和剪切破壞的敏感性。As值越大,團聚體的穩(wěn)定性越差,土壤抗蝕性越弱[23-24]。為更直觀展示SKF土壤團聚體穩(wěn)定性、養(yǎng)分含量隨SKF剖面深度的變化情況,采用內(nèi)插值法獲得連續(xù)土層As值和歸一化的養(yǎng)分含量(圖6)。從中可知,隨著SKF剖面加深,As值增大,團聚體穩(wěn)定性降低。1號和2號SKF剖面As值的范圍為0.001 3~ 0.051 2和0.003 1~0.090 9,3號和4號的范圍為0.001 3~0.127 2和0.002 4~0.336 7。矩形、漏斗形SKF表層10~20 cm土層As值相差不大,而漏斗形SKF 80 cm和100 cm處的As較矩形SKF相應(yīng)值高出一個數(shù)量級。這說明,漏斗形SKF土壤團聚體的穩(wěn)定性和抗蝕性隨剖面深度加深而大幅降低,而矩形SKF的這種降低程度則相對要小得多,20 cm以下土層漏斗形SKF剖面團聚體的穩(wěn)定性和抗蝕性要低于矩形SKF。 從圖6可知,隨土層深度加深,同一形態(tài)SKF剖面SOM含量變化趨勢基本一致。1號和2號矩形SKF中40 cm處SOM含量約為10 cm處含量的30%,3號和4號漏斗形SKF則約為20%。40 cm以上土層矩形SKF剖面SOM含量隨深度的變化幅度小于漏斗形SKF,40 cm以下則相反。綜上可得出,SKF形態(tài)會影響SOM含量隨土層深度的變化。從圖6可知,不同SKF剖面AHN含量隨深度的變化趨勢差異明顯。1號SKF剖面AHN含量隨深度的變化趨勢與SOM幾乎一致,2號AHN含量變化趨勢除在40 cm處無明顯轉(zhuǎn)折外也與SOM類似。3號SKF剖面AHN含量在40 cm以上土層與SOM變化趨勢一致,40 cm以下區(qū)別較大。4號AHN含量隨土層深度加深呈線性下降趨勢。綜上可得出,SKF形態(tài)與AHN含量隨土層深度的變化之間沒有明顯關(guān)聯(lián)。從圖6可知,4個SKF剖面中AP含量隨深度的變化趨勢具有一致性。AP含量在40 cm以上土層隨著深度增加而快速降低,40 cm處含量降低為10 cm處含量的2%左右,40 cm以下含量變化不大。綜上可得出,SKF形態(tài)對AP含量隨土層深度的變化沒有影響。 SKF是在基巖中形成的、與周圍環(huán)境有一定隔離度的微地形,土壤來源、賦存環(huán)境及受徑流的侵蝕作用較喀斯特地區(qū)非SKF有較大區(qū)別,使得其團聚體的穩(wěn)定性與非SKF土壤有所不同。多項研究中,喀斯特地區(qū)非SKF土壤團聚體PAD值的范圍為7.5%~68.10%[25-27],干、濕篩分形維數(shù)D范圍為2.67~2.92[14,26],均遠大于本研究的SKF剖面各土層土壤的相應(yīng)值。研究表明,貴州普定陳旗堡喀斯特地區(qū)非SKF土壤0~90 cm剖面水穩(wěn)性團聚體MWD值小于1.0[28],貴州關(guān)嶺縣喀斯特地區(qū)該值的均值為1.9[29],均小于本研究所得值。以上對比分析表明,與喀斯特地區(qū)的非SKF土壤相比,SKF剖面團聚體水穩(wěn)定更好,通透能力和抗蝕性可能要強于非SKF土壤。 消散作用(slaking)和非均勻膨脹作用(differential swelling)是引起團聚體破裂的重要機制[30]。干燥條件下,團聚體內(nèi)部的孔隙被土壤空氣占據(jù)。降雨或徑流沖刷時,水將團聚體快速包覆,外部水進入孔隙壓縮閉蓄于其中未能及時排出的空氣,巨大的壓力使團聚體消散破裂。土壤初始含水量高時,孔隙多被水占據(jù),閉蓄的空氣少,消散作用相應(yīng)減弱[16,31]。SKF匯集一定面積巖土界面徑流向下輸送,加上與周圍環(huán)境一定程度的隔離,使SKF填充土壤初始含水量大于非SKF土壤,孔隙閉蓄空氣體積少于非SKF土壤,消散作用相應(yīng)較弱[31]。研究發(fā)現(xiàn),土壤初始含水量對非均勻膨脹作用的影響與消散作用一致[16,31]。因而,非均勻膨脹作用對SKF土壤團聚體的破壞作用也較非SKF土壤小。此外,干-濕循環(huán)可導(dǎo)致團聚體的崩解,干-濕循環(huán)次數(shù)越多,水穩(wěn)性團聚體崩解率越高[32-33]。SKF土壤濕度大,干濕交替沒有非SKF土壤頻繁。這也是SKF土壤團聚體的穩(wěn)定性強于非SKF的原因之一。 黏粒含量對團聚穩(wěn)定性有重要影響[16]。研究發(fā)現(xiàn),SKF剖面土壤黏粒含量大于非SKF土壤,隨土層深度增加,黏粒含量增加[7]。黏粒比表面積大,吸附性強,易聚集成黏團。黏團和粉粒、砂粒在有機質(zhì)的膠結(jié)作用下形成穩(wěn)定性團聚體[34]。當有機質(zhì)含量低時,分散的黏粒將使土壤孔隙堵塞,降低土壤的通氣和透水性能。本研究中,SKF剖面SOM含量較普定非SKF剖面無明顯降低。在含量更高的黏粒作用下,造成SKF剖面團聚體的穩(wěn)定性較非SKF高。SKF土壤有機質(zhì)含量隨剖面加深而降低,膠結(jié)作用減小,雖然SKF下層剖面的黏粒含量更高,但團聚體的水穩(wěn)定性更小。Yan等[7]發(fā)現(xiàn),漏斗形SKF剖面土壤顆粒分型維數(shù)明顯高于其他形態(tài)SKF類型。這佐證了本研究得出的漏斗形的SKF團聚體水穩(wěn)性要較矩形SKF差的結(jié)論,但相關(guān)機理還有待進一步研究。 研究表明,普定喀斯特非SKF剖面0~90 cm土層SOM含量范圍為7.89~239.29 g·kg–1[22],貴州喀斯特石漠化地區(qū)非SKF土壤AHN含量范圍為64.0~508.0 mg·kg–1[35]。本研究中SKF剖面土壤SOM和AHN含量位于以上兩個濃度范圍之內(nèi)。研究表明,普定喀斯特非SKF剖面0~90 cm土層AP含量范圍為2.26~40.88 mg·kg–1[22],本研究各SKF剖面0~20 cm土層AP含量在這個范圍之內(nèi),30 cm以下土層AP含量卻較該范圍的最小值小一個數(shù)量級。因而,SKF剖面30 cm以下土層AP的含量顯著小于非SKF剖面。其原因可能是淋溶作用是土壤生態(tài)系統(tǒng)磷輸出的重要途徑[36],SKF是連通喀斯特地表與地下的重要通道,強烈的淋溶作用導(dǎo)致30 cm以下土層AP大量流失。土壤中AP含量是影響植物生長的兩大主要因素之一[37],自然生態(tài)系統(tǒng)普遍受到磷素限制[38]。本研究中SKF剖面0~20 cm土層土壤AP含量處于較低水平,30 cm以下土層AP十分貧乏,加上喀斯特地區(qū)全磷不易轉(zhuǎn)化為速效磷[39],因而在農(nóng)業(yè)生產(chǎn)過程中要增加AP的供給。 表4 SKF剖面土壤養(yǎng)分含量和團聚體水穩(wěn)定性各參數(shù)之間的相關(guān)性 *:<0.05;**:< 0.01 SKF土壤團聚體的穩(wěn)定性隨剖面深度加深而降低,矩形SKF土壤團聚體的穩(wěn)定性要強于漏斗形SKF,快速濕潤產(chǎn)生的消散作用是引起SKF土壤團聚體破碎的主要機制。PAD、團聚體分形維數(shù)D和MWD這三類指標均表明,SKF土壤團聚體水穩(wěn)定性、通透性均較好。SKF剖面30 cm以下土層,團聚體SOM、AHN和AP含量較0~20 cm土層大幅下降,土壤AP貧乏,粒徑對團聚體中養(yǎng)分含量影響不大。SKF形態(tài)對SOM、AHN和AP含量隨剖面深度變化的影響不同。SKF形態(tài)會影響SOM含量隨土層深度的變化,矩形SKF 30 cm以下土層團聚體中SOM含量隨深度加深而降低,而漏斗形SKF則沒有顯著性差異。隨土層深度加深,矩形和漏斗形SKF剖面AP含量的變化趨勢一致,AHN含量的變化趨勢則與SKF形態(tài)之間沒有明顯關(guān)聯(lián)。SOM、AHN和AP含量越高,SKF土壤團聚體水穩(wěn)定性能力越強。 [1] Xiao K C,He T G,Chen H,et al. Impacts of vegetation restoration strategies on soil organic carbon and nitrogen dynamics in a Karst area,southwest China[J]. Ecological Engineering,2017,101:247—254. [2] Zhang W,Wang K L,Liu S J,et al. Soil nutrient accumulation and its affecting factors during vegetation succession in Karst peak-cluster depressions of South China[J]. Chinese Journal of Applied Ecology,2013,24(7):1801—1808. [張偉,王克林,劉淑娟,等. 喀斯特峰叢洼地植被演替過程中土壤養(yǎng)分的積累及影響因素[J]. 應(yīng)用生態(tài)學(xué)報,2013,24(7):1801—1808.] [3] Cao J H,Yuan D X,Tong L Q. Features of Karst ecosystem and integrating measure for rock desertification in Southwest China[J]. Pratacultural Science,2008,25(9):40—50. [曹建華,袁道先,童立強. 中國西南巖溶生態(tài)系統(tǒng)特征與石漠化綜合治理對策[J]. 草業(yè)科學(xué),2008,25(9):40—50.] [4] Dai Q H,Yan Y J. Research progress of Karst rocky desertification and soil erosion in southwest China[J]. Journal of Soil and Water Conservation,2018,32(2):1—10. [戴全厚,嚴友進. 西南喀斯特石漠化與水土流失研究進展[J]. 水土保持學(xué)報,2018,32(2):1—10.] [5] Zhang Z C,Chen X,Cheng Q B,et al. Hydrogeology of epikarst in Karst mountains-A case study of the Chenqi catchment[J]. Earth and Environment,2011,39(1):19—25. [張志才,陳喜,程勤波,等. 喀斯特山體表層巖溶帶水文地質(zhì)特征分析——以陳旗小流域為例[J]. 地球與環(huán)境,2011,39(1):19—25.] [6] Lei L,Wei X H,Xu X Z,et al. Vertical distribution of migration channels and grain-size change features of soil in Karst mountainous areas of northern Guangdong[J]. Geographical Research,2013,32(12):2204—2214. [雷俐,魏興琥,徐喜珍,等. 粵北巖溶山地土壤垂直滲漏與粒度變化特征[J]. 地理研究,2013,32(12):2204—2214.] [7] Yan Y J,Dai Q H,Jin L,et al. Geometric morphology and soil properties of shallow Karst fissures in an area of Karst rocky desertification in SW China[J]. Catena,2019,174:48—58. [8] Rong L,Wang S J,Yu G S,et al. Stable isotope analysis of water sources of four woody species in the libo Karst forest[J]. Scientia Silvae Sinicae,2012,48(7):14—22. [容麗,王世杰,俞國松,等. 荔波喀斯特森林4種木本植物水分來源的穩(wěn)定同位素分析[J]. 林業(yè)科學(xué),2012,48(7):14—22.] [9] Wang J X,Zou B P,Liu Y,et al. Erosion-creep-collapse mechanism of underground soil loss for the Karst rocky desertification in Chenqi village,Puding County,Guizhou,China[J]. Environmental Earth Sciences,2014,72(8):2751—2764. [10] Mikha M M,Rice C W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen[J]. Soil Science Society of America Journal,2004,68(3):809—816. [11] Barthès B,Roose E. Aggregate stability as an indicator of soil susceptibility to runoff and erosion,validation at several levels[J]. Catena,2002,47(2):133—149. [12] Chen H,Li D J,Xiao K C,et al. Soil microbial processes and resource limitation in Karst and non-Karst forests[J]. Functional Ecology,2018,32(5):1400—1409. [13] Sheng M Y,Xiong K N,Wang L J,et al. Response of soil physical and chemical properties to Rocky desertification succession in South China Karst[J]. Carbonates and Evaporites,2018,33(1):15—28. [14] Wang S S,Huang X Z,Shi D M,et al. Study on soil aggregates stability of mulberry ridge in Rocky Desertification based on Le Bissonnais method[J]. Acta Ecologica Sinica,2013,33(18):5589—5598. [汪三樹,黃先智,史東梅,等. 基于Le Bissonnais法的石漠化區(qū)桑樹地埂土壤團聚體穩(wěn)定性研究[J]. 生態(tài)學(xué)報,2013,33(18):5589—5598.] [15] Department of Soil Physics,Nanjing Institute of Soil Research,Chinese Academy of Sciences. Determination of soil physical properties [M]. Beijing:Science Press,1978. [中國科學(xué)院南京土壤研究所土壤物理研究室. 土壤物理性質(zhì)測定法[M]. 北京:科學(xué)出版社,1978.] [16] Le Bissonnais Y,Arrouays D. Aggregate stability and assessment of soil crustability and erodibility:II. Application to humic loamy soils with various organic carbon contents[J]. European Journal of Soil Science,1997,48(1):39—48. [17] Yang P L,Luo Y P,Shi Y C. Fractal characteristics of soil characterized by particle size weight distribution[J]. Chinese Science Bulletin,1993,38(20):1896—1899. [楊培嶺,羅遠培,石元春. 用粒徑的重量分布表征的土壤分形特征[J]. 科學(xué)通報,1993,38(20):1896—1899.] [18] Li J,Han J C,Chen C,et al. Effects of land use types on soil aggregate characteristics in hilly-gully region of loess plateau[J]. Journal of Soil and Water Conservation,2017,31(1):248—253,259. [李娟,韓霽昌,陳超,等. 黃土高原丘陵溝壑區(qū)土地利用方式對土壤團聚體特征的影響[J]. 水土保持學(xué)報,2017,31(1):248—253,259.] [19] Shrestha B M,Sitaula B K,Singh B R,et al. Soil organic carbon stocks in soil aggregates under different land use systems in Nepal[J]. Nutrient Cycling in Agroecosystems,2004,70(2):201—213. [20] Qi Y C,Wang Y Q,Liu J,et al. Comparative study on composition of soil aggregates with different land use patterns and several kinds of soil aggregate stability index[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(1):340—347. [祁迎春,王益權(quán),劉軍,等. 不同土地利用方式土壤團聚體組成及幾種團聚體穩(wěn)定性指標的比較[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(1):340—347.] [21] Peng X H,Zhang B,Zhao Q G. Effect of soil organic carbon on aggregate stability after vegetativer estoration on severely eroded red soil[J]. Acta Ecologica Sinica,2003,23(10):2176—2183. [彭新華,張斌,趙其國. 紅壤侵蝕裸地植被恢復(fù)及土壤有機碳對團聚體穩(wěn)定性的影響[J]. 生態(tài)學(xué)報,2003,23(10):2176—2183.] [22] Zhang Q,Han G L,Liu M,et al. Spatial distribution of soil phosphorus and controlling factors from Puding Karst critical zone,Guizhou Province,Southwest China[J]. Chinese Journal of Ecology,2019,38(2):321—328. [張倩,韓貴琳,柳滿,等. 貴州普定喀斯特關(guān)鍵帶土壤磷分布特征及其控制因素[J]. 生態(tài)學(xué)雜志,2019,38(2):321—328.] [23] Yan F L,Shi Z H,Li Z X,et al. Estimating interrill soil erosion from aggregate stability of Ultisols in subtropical China[J]. Soil and Tillage Research,2008,100(1/2):34—41. [24] Xiao H,Liu G,Zhang Q,et al. Quantifying contributions of slaking and mechanical breakdown of soil aggregates to splash erosion for different soils from the Loess plateau of China[J]. Soil and Tillage Research,2018,178:150—158. [25] Ren W,Xie S Y,Xie D T. Changes of soil moisture ecoeffects during process of typical ecosystem restoration in Karst mountain[J]. Journal of Soil and Water Conservation,2009,23(5):128—132. [任偉,謝世友,謝德體. 喀斯特山地典型植被恢復(fù)過程中的土壤水分生態(tài)效應(yīng)[J]. 水土保持學(xué)報,2009,23(5):128—132.] [26] Zhang L,Wang J X,Dai Y C,et al. Study on stability and influential factors on surface-layer aggregates of red bare soil in Karst area of east Yunnan,China[J]. Soils,2015,47(4):790—796. [張磊,王嘉學(xué),代云川,等. 滇東喀斯特地區(qū)紅裸土表層團聚體穩(wěn)定性及其影響因素研究[J]. 土壤,2015,47(4):790—796.] [27] Wei Y W,Su Y R,Chen X B,et al. Responses of soil properties to ecosystem degradation in Karst region of northwest Guangxi,China[J]. Chinese Journal of Applied Ecology,2010,21(5):1308—1314. [魏亞偉,蘇以榮,陳香碧,等. 桂西北喀斯特土壤對生態(tài)系統(tǒng)退化的響應(yīng)[J]. 應(yīng)用生態(tài)學(xué)報,2010,21(5):1308—1314.] [28] Liu M,Han G L,Zhang Q. Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an erodible region in southwest China[J]. International Journal of Environmental Research and Public Health,2019,16(20):3809. [29] Tang F K,Cui M,Lu Q,et al. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical Karst gorge region[J]. Solid Earth,2016,7(3):141—151. [30] Xiao H,Gao F,Shao Y Y,et al. Influence of native soil particles on soil aggregate stability relative to breaking- down mechanism[J]. Acta Pedologica Sinica,2021,58(3),104594. [肖海,高峰,邵艷艷,等. 土壤原始顆粒對不同破碎機制下團聚體穩(wěn)定性的影響[J]. 土壤學(xué)報,2021,58(3),104594. [31] Panabokke C R,Quirk J P. Effect of initial water content on stability of soil aggregates in water[J]. Soil Science,1957,83(3):185—196. [32] Xu J,Tang Y Q,Zhou J. Effect of drying–wetting cycles on aggregate breakdown for yellow-brown earths in Karst areas[J]. Geoenvironmental Disasters,2017,4(1):1—13. [33] Pires L F,Bacchi O O S,Reichardt K. Assessment of soil structure repair due to wetting and drying cycles through 2D tomographic image analysis[J]. Soil and Tillage Research,2007,94(2):537—545. [34] Wang J K,Xu Y D,Ding F,et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization:A review[J]. Acta Pedologica Sinica,2019,56(3):528—540. [汪景寬,徐英德,丁凡,等. 植物殘體向土壤有機質(zhì)轉(zhuǎn)化過程及其穩(wěn)定機制的研究進展[J]. 土壤學(xué)報,2019,56(3):528—540.] [35] Liu Y L,Li Y,Zhang M,et al. Analysis of soil nutrient conditions under different rocky desertification grades in Guizhou Karst region by the bibliometrics method[J]. Soil and Fertilizer Sciences in China,2019(2):171—180. [劉彥伶,李渝,張萌,等. 基于文獻計量的貴州喀斯特地區(qū)石漠化等級土壤養(yǎng)分狀況分析[J]. 中國土壤與肥料,2019(2):171—180.] [36] Liu C Q. Biogeochemical processes and cycling of nutrients in the earth's surface:Cyling of nutrients in soil-plant systems of karstic enviroments,southwest China[M]. Beijing:Science Press,2009. [劉叢強. 生物地球化學(xué)過程與地表物質(zhì)循環(huán):西南喀斯特土壤-植被系統(tǒng)生源要素循環(huán)[M]. 北京:科學(xué)出版社,2009.] [37] Niklas K J,Owens T,Reich P B,et al. Nitrogen/ phosphorus leaf stoichiometry and the scaling of plant growth[J]. Ecology Letters,2005,8(6):636—642. [38] Aerts R,de Caluwe H,Beltman B. Is the relation between nutrient supply and biodiversity co-determined by the type of nutrient limitation?[J]. Oikos,2003,101(3):489—498. [39] Yang H,Cao J H,Sun L,et al. Fractions and distribution of inorganic phosphorus in different land use types of Karst area[J]. Journal of Soil and Water Conservation,2010,24(2):135—140. [楊慧,曹建華,孫蕾,等. 巖溶區(qū)不同土地利用類型土壤無機磷形態(tài)分布特征[J]. 水土保持學(xué)報,2010,24(2):135—140.] [40] Abiven S,Menasseri S,Chenu C. The effects of organic inputs over time on soil aggregate stability - A literature analysis[J]. Soil Biology and Biochemistry,2009,41(1):1—12. [41] Modak K,Ghosh A,Bhattacharyya R,et al. Response of oxidative stability of aggregate-associated soil organic carbon and deep soil carbon sequestration to zero-tillage in subtropical India[J]. Soil and Tillage Research,2019,195:104370. [42] Liang X Q,Jin Y,Zhao Y,et al. Release and migration of colloidal phosphorus from a typical agricultural field under long-term phosphorus fertilization in southeastern China[J]. Journal of Soils and Sediments,2016,16(3):842—853. [43] Hens M,Merckx R. Functional characterization of colloidal phosphorus species in the soil solution of sandy soils[J]. Environmental Science & Technology,2001,35(3):493—500. [44] Laegdsmand M,de Jonge L W,Moldrup P. Leaching of colloids and dissolved organic matter from columns packed with natural soil aggregates[J]. Soil Science,2005,170(1):13—27. Characteristics of Vertical Variation of Soil Aggregates Stability and Nutrients in Shallow Karst Fissures of Karst Sloping Fields XIONG Bailian1, GAO Yang2, PENG Tao3, YAN Xiong1 (1. College of Resources and Environment, Zunyi Normal University, Zunyi, Guizhou 563006, China; 2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 3. Puding Karst Ecosystem Research Station, Chinese Ecosystem Research Network, Chinese Academy of Sciences, Puding, Guizhou 562100, China) 【Objective】A shallow karst fissure (SKF) is a significant habitat in rocky desertification areas that provides growing space, water, and nutrients for plant growth. To explore the differences in the stability of aggregates, the primary mechanism of aggregate decomposition in different soil horizons in SKF, and the vertical variation characteristics of nutrient contents in aggregates, an experiment was performed in the karst region of southwest China. 【Method】 Two typical forms of SKF (rectangle-type SKF and funnel-type SKF) was selected for this study and the particle size distribution and stability characteristics of soil aggregates in different soil horizons (0–20 cm, 30–50 cm, 50–70 cm, 70–90 cm, and 90–110 cm) were explored by the dry and wet sieving method. Also, the mechanisms of soil aggregate decomposition were analyzed by the Le Bissonnais method. Furthermore, the contents of soil organic matter (SOM), alkali-hydrolyzable nitrogen (AHN), and available phosphorous (AP) were determined in aggregates with different particle sizes, and the relationship between these nutrients and the stability of soil aggregates was analyzed. 【Result】The aggregate fractal dimensions (D) under dry and wet sieving ranged from 1.57 to 2.18 and from 1.55 to 2.15, respectively. The stability and erosion resistance of SKF soil aggregates decreased with the depth of soil horizons, and the rectangle-type SKF soil aggregate was more stable than funnel-type SKF. The major mechanism observed for SKF soil aggregate decomposition was slaking generated by fast wetting. According to the indicators of percentage of aggregate disruption (PAD); the fractal dimension D and mean weight diameter (MWD), SKF soil aggregates have good water stability and permeability. In the 0–20 cm soil horizon, the variation of SOM, AHN, and AP contents in aggregates of different particle sizes were (38.34±6.53)–(90.91±10.02) g·kg–1, (208.09±24.10)– (373.93±38.27) mg·kg–1, and (1.98±0.96)–(8.13±6.45) mg·kg–1, respectively. In soil 30 cm below the surface, the contents of SOM, AHN, and AP declined sharply compared to those in 0–20 cm soil horizon, which were (13.27±0.94)–(37.53±3.47) g·kg–1, (71.58±3.27)–(198.54±22.63) mg·kg–1, and (0.15±0.03)–(0.38±0.10) mg·kg–1, respectively; with a very low AP content. Importantly, the particle size of aggregates was not an important factor governing the nutrient content of the aggregates. Additionally, SKF morphology had different effects on the variations in SOM, AHN, and AP contents with soil depth. SOM content below surface 30 cm horizons in rectangle-type SKF was significantly decreased with increasing depth of SKF, while no significant difference was observed in funnel-type SKF. The variation trends of AP content with increasing SKF depth were consistent in rectangular and funnel-type SKF profiles, while there was no significant correlation between the variation trends of AHN content and SKF morphology. According to the correlation analysis, higher SOM, AHN, and AP contents indicated stronger water stability of the SKF soil aggregates. 【Conclusion】The water stability of SKF soil aggregates is an important factor for these soils and decreases as the soil horizons deepen, with the major mechanism of soil aggregate decomposition being slaking generated by fast wetting. Also, the morphology of SKF showed varied effects on the variations of SOM, AHN, and AP content at different soil depth. Karst sloping fields; Shallow karst fissure; Soil profile; Soil aggregate; Soil nutrient S154.1 A 10.11766/trxb202006300351 熊佰煉,高揚,彭韜,顏雄. 喀斯特坡地淺層巖溶裂隙土壤團聚體穩(wěn)定性與養(yǎng)分垂向變化特征[J].土壤學(xué)報,2021,58(6):1472–1485. XIONG Bailian,GAO Yang,PENG Tao,YAN Xiong. Characteristics of Vertical Variation of Soil Aggregates Stability and Nutrients in Shallow Karst Fissures of Karst Sloping Fields[J]. Acta Pedologica Sinica,2021,58(6):1472–1485. *國家自然科學(xué)基金地區(qū)科學(xué)基金項目(41961047),貴州省科技廳項目(黔科合平臺人才[2017年]5727-12號)和貴州省教育廳貴州省黔北土壤資源與環(huán)境特色重點實驗室項目(黔教合KY字[2017]010號)資助Supported by the National Natural Science Foundation of China(No. 41961047),Department of Science and Technology of Guizhou Province(No. Qian Ke He PingTai Ren Cai [2017] 5727-12),Department of education of Guizhou Province Key Laboratory of Soil Resources and Environmental Characteristics in Northern Guizhou(No. Qian Jiao He KY Zi [2017] 010th) 熊佰煉(1978—),男,湖南南縣人,博士,副教授,主要從事喀斯特關(guān)鍵帶地球化學(xué)過程研究。E-mail:xblxnq@126.com 2020–06–30; 2020–12–28; 2021–03–30 (責任編輯:檀滿枝)2.3 SKF剖面土壤團聚體養(yǎng)分含量
3 討 論
3.1 SKF剖面土壤團聚體穩(wěn)定性與養(yǎng)分含量變化特征
3.2 SKF剖面團聚體穩(wěn)定性特征影響因素
3.3 SKF剖面土壤養(yǎng)分含量及其與團聚體穩(wěn)定性的關(guān)系
4 結(jié) 論