• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Kunneth Formula for Finite Sets?

    2021-11-13 09:06:40ChongWANGShiquanRENJianLIU

    Chong WANG Shiquan REN Jian LIU

    Abstract In this paper, the authors define the homology of sets, which comes from and contains the ideas of path homology and embedded homology. Moreover, A K¨unneth formula for sets associated to the homology of sets is given.

    Keywords K¨unneth formula, Finite set,Principal ideal domain,Cartesian product,Free R-module

    1 Introduction

    LetRbe a commutative ring with unit, and let (C,?) be a complex of finitely generated freeR-modules of rankn. LetX={x1,···,xn} be a finite set. Then there is a natural map

    wheree1,···,enis a basis ofC. For the sake of simplicity, we denoteC=(R[X],?). LetSbe a graded subR-module ofC. Let Inf?(S,C)=(S∩??1S,?). Then Inf?(S,C) is a subcomplex ofC.

    Definition 1.1Let Y be a subset of X, and let R[Y]be a free R-module generated by Y.The homology of the set Y associated to C=(R[X],?)is

    If there is no ambiguity, we denote H(Y)=HC(Y;R).

    The idea of the homology of sets is essentially from the path homology of digraphs (see [4])and multi-graphs(see [5]) and the embedded homology of hypergraphs(see [2]). In this paper,we will always consider freeR-modules instead of abelian groups.

    K¨unneth formulas describe the homology of a product space in terms of the homology of the factors. In [7], Hatcher gave the classical algebraic K¨unneth formula. In[4, 6], Grigor’yan,Lin,Muranov and Yau studied the K¨unneth formula for the path homology (with field coefficients)of digraphs. In this paper, we study the K¨unneth formula for sets which can be applied to digraphs and hypergraphs.

    From now on,Ris assumed to be a principal ideal domain. For convenience, the tensor product is always overR.

    Theorem 1.1Let R be a principal ideal domain. Let C=R[X],C′=R[X′]be complexes of free R-modules generated by finite sets X, X′,respectively, and let Y, Y′be subsets of X, X′,respectively. Then there is a natural exact sequence

    where Y×Y′is the Cartesian product of sets.

    Recently, people are interested in digraphs in topology (see [4, 6]). LetG= (V,E) be a digraph. LetXbe the set of regular paths onV. Then we can obtain a chain complex(C,?)=(R[X],?) (see [6]). LetA(G) be the set of allowed paths onG. We find that the path homology of digraphGcoincides with the homology of setA(G), i.e.,

    Grigor’yan et al. studied the K¨unneth formula for digraphs over a field (see [6]). LetG′be another digraph. In view of Theorem 1.1, in order to get the K¨unneth formula for digraphs with ring coefficients, we need to show where □denotes the Cartesian product of digraphs.

    A hypergraph is a potential topic connecting simplicial complex in topology and a graph in combinatorics,which is worth studying both in theory and application (see [1—3, 9]). Let H be a hypergraph. Let KHbe the smallest simplicial complex containing H. Note that H is a set of hyperedges, we observe that

    where (C,?) = (C?(KH;R),?) is the chain complex of simplicial complex KH. Let H′be another hypergraph. By Theorem 1.1, we have

    where H×H′is the Cartesian product of sets. Unfortunately, H×H′is not a hypergraph.In another paper, we give a product of hypergraphs and show the K¨unneth formula for hypergraphs.

    In the next section, we build a basic algebraic language. In Section 3, we prove Theorem 1.1.

    2 Preliminaries

    In this section, let (C,?)=(R[X],?) be a complex of freeR-modules generated by a finite setX. LetD=R[Y] be a freeR-module generated byY?X.

    Proposition 2.1(see [8])Let M be an m×n matrix over R. Then we have

    wheredet(U)=det(V)=1andΛis a matrix of form(ΛmO)or. Here,ΛmandΛnare diagonal matrices.

    Lemma 2.1Suppose that z∈D and λz∈Inf?(D,C)for some nonzero element λ∈R.Then we have z∈Inf?(D,C).

    ProofLetX= {x1,···,xn}. Thenx1,···,xnis a basis ofR[X]. For convenience,we denoteeX= (x1,···,xn)T. LetZbe the set of complement ofYinX. Then we haveX=Y?Z. Assume that

    where a = (a1,···,a|Y|) ∈R1×|Y|, b = (b1,···,b|Z|) ∈R1×|Z|andeY,eZare given by setsY,Z, respectively. Sinceλ?z∈D, it follows that

    SinceRis an integral domain, we have beZ=0. Thus we obtain

    The lemma is proved.

    Lemma 2.2There is a basis e1,···,er(D)of D such that e1,···,eαis a basis ofInf?(D,C)for some α, where r(D)is the rank of D.

    ProofLete1,···,enbe a basis ofD, and letf1,···,fαbe a basis of Inf?(D,C). Then we have

    where f = (f1,···,fα)T,e = (e1,···,en)TandAis anα×nmatrix overR. By Proposition 2.1, we obtain

    where det(U)=det(V)=1 and

    Let (x1,···,xα)=U?1f and (y1,···,yn)=Ve, then we have

    By Lemma 2.1, we haveyi∈Inf?(D,C),i= 1,···,α. It follows thaty1,···,yαis a basis of Inf?(D,C). Thusy1,···,ynis the desired basis.

    Example 2.1Let (C,?) = (Z[x,y],?),?y=x,?x= 0,degx= 1, and letD= Z[2x,y] be a free Z-module generated by 2x,y. Note that

    Thus the condition thatDis a freeR-module generated by a subset ofXis necessary for Lemma 2.2.

    Lemma 2.3Let K=ker??C. Then there is a basis e1,···,er(C)of C such that e1,···,eαis a basis of K for some α, where r(C)is the rank of C.

    ProofBy a similar argument with the proof of Lemma 2.2, we have this lemma.

    Definition 2.1Let M be a finitely generated free R-module, and let N?M be a free sub R-module of M. We say a family of elements x1,···,xn∈M is linearly independent modulo N if the condition

    implies c1=···=cn=0.

    By Lemma 2.3,we haveC=V⊕K, whereK=ker?andVis the space of the complement ofKinC. Note that a family of elementsx1,···,xn∈Cis linearly independent moduloKif and only if?x1,···,?xnis linearly independent.

    3 The Proof of Main Theorem

    In this section, letC=R[X],C′=R[X′] be complexes of finitely generated freeR-modules generated by setsX,X′, respectively. LetD=R[Y],D′=R[Y′] be finitely generated freeR-modules generated byY?X,Y′?X′, respectively. For convenience, all the differentials will be denoted by?if there is no ambiguity.

    The keypoint of proving Theorem 1.1 is to show

    We will give some lemmas first.

    Lemma 3.1Let M,N be finitely generated free R-modules. For each z∈M?N, there exists a nonzero element λ∈R such that

    where{xi}1≤i≤k,{yi}1≤i≤kare two families of linearly independent elements in M,N, respectively.

    ProofLetz=wherexi∈M,yi∈N,i=1,···,n. Ifx1,···,xnare not linearly independent, we have

    We may assumecn/=0. It follows that

    Letzi=cnyi?ciyn. Then we haveBy finite steps, the above equation can be reduced to

    whereλ/= 0 and {xi}1≤i≤k,{y}1≤i≤kare two families of linearly independent elements inMandN, respectively.

    Remark 3.1In the above lemma, we can chooseλ= 1. Let {ei}1≤i≤m,{fi}1≤i≤nbe the bases ofM,N, respectively. Then we have

    LetA=(aij)1≤i≤m,1≤j≤nbe a matrix overR. By Proposition 2.1, we have

    where det(U)=det(V)=1 andHere,

    Denote e=(e1,···,em)Tand f =(f1,···,fn)T. Then we have

    which is the desired result.

    The following lemma is a very useful tool in proving our main theorem.

    Lemma 3.2Let{xi}1≤i≤k,{yi}1≤i≤kbe two families of linearly independent elements in C and C′, respectively.then we have

    ProofLete1,···,eα,eα+1,···,embe a basis ofCsuch thate1,···,eαis a basis ofD.Similarly, letf1,···,fα,fα+1,···,fnbe a basis ofC′such thatf1,···,fβis a basis ofD′.Assume that

    whereais,bit∈Rfor 1 ≤s≤m,1 ≤t≤n. Note that

    and

    It follows that

    Since rank(AT0)≥rank(AT0B0)=k, we have

    Thus we obtainB1=O. Similarly, we haveA1=O. These imply the lemma.

    The following two lemmas are important parts of the proof of Theorem 3.1.

    Lemma 3.3Let z=Inf?(D?D′,C?C′)such that

    and each of the following sets

    is linearly independent. Then there exists a nonzero element λ∈R such that λz∈Inf?(D,C)?Inf?(D′,C′).

    ProofBy Lemma 3.2, we have

    Note that

    If?xk,β1,···,βnare not linearly independent, we have

    Thenck?xk∈D. Moreover, we obtain

    We may assume that?xk,β1,···,βnare not linearly independent form′+1 ≤k≤m. By finite steps, the above equation can be reduced to

    for some nonzero elementλ∈R, wherey′j?λ?yj(j= 1,···,n) is linearly generated byαm′+1,···,αm. In addition,?x1,···,?xm′,β1,···,βnare linearly independent. Ify′j,α1,···,αm′are not linearly independent,we can changey′jsimilarly as above. Then the above equation can be reduced to

    for some nonzero elementsλ,λ1∈R, wherex′i?λ1λ?xi(i= 1,···,m′) is linearly generated byβn′+1,···,βn. In addition,y′1,···,y′n′,α1,···,αm′are linearly independent. Ifx′1,···,x′m′,β1,···,βn′are not linearly independent, then?x1,···,?xm′,β1,···,βnare not linearly independent, which contradicts to our construction. Thusx′1,···,x′m′,β1,···,βn′are linearly independent. By Lemma 3.2, we have

    It follows that

    Recall that we haveck?xk∈D,ck/= 0 form′+1 ≤k≤m. It follows thatλ?xk∈Dform′+1 ≤k≤m. Similarly, we haveλ1y′t∈D′forn′+1 ≤t≤n. Hence, we obtain that

    Thus there exists a nonzero elementλ2∈Rsuch thatλ2z∈Inf?(D,C)?Inf?(D′,C′).

    Lemma 3.4Let C=V⊕K and C′=V′⊕K′, where K and K′are the spaces of cycles in C and C′, respectively. For each element z∈C?C′, there exists a nonzero element λ∈R such that

    where

    for1 ≤i≤N1,1 ≤j≤N2,1 ≤k≤N3,1 ≤l≤N4and

    (i)x1,···,xN1,y1,···,yN3,u1,···,uN2,v1,···,vN4are linearly independent;

    (ii)x1,···,xN1,y1,···,yN3are linearly independent modulo K;

    (iii)x′1,···,x′N1,y′1,···,y′N2,u′1,···,u′N3,v′1,···,v′N4are linearly independent;

    (iv)x′1,···,x′N1,y′1,···,y′N2are linearly independent modulo K′.

    ProofNote that

    In view of Lemma 3.1, for each elementz∈C?C′, we have

    for someλ1∈R, where

    for 1 ≤i≤N1,1 ≤j≤N2,1 ≤k≤N3,1 ≤l≤N4and each of the following sets

    is a family of linearly independent elements. Ifx1,···,xN1,yk0are not linearly independent,we obtain

    for some nonzero elementck0∈R. Thus we have

    By finite steps, the above equation can be reduced to

    whereare linearly independent moduloK′andx1,···,xN1,y1,···,yN′3are linearly independent. Ifare not linearly independent, by a similar substitution,we can obtain such that

    (ii)are linearly independent moduloK;

    (iv)are linearly independent moduloK′.To complete our proof, it suffices to consider the elementsv1,···,vN4andv′1,···,v′N4. Ifvl0,u1,···,uN′2are linearly independent, by a similar method as above, we can obtain the desired result.

    Now, we return to the theorem mentioned before.

    Theorem 3.1Inf?(D?D′,C?C′)=Inf?(D,C)?Inf?(D′,C′).

    ProofIt can be directly verified that

    Our main work is to show the inverse.

    For each elementz∈Inf?(D?D′,C?C′), we have

    whereλ∈R,xi,yk∈C,uj,vl∈K,x′i,y′k∈C′,u′k,v′l∈K′are given in Lemma 3.4. Sincez∈D?D′, by Lemma 3.2, we have

    for 1 ≤i≤N1,1 ≤j≤N2,1 ≤k≤N3,1 ≤l≤N4. Note that

    Sincex1,···,xN1,y1,···,yN3are linearly independent moduloK, we obtain that

    are linearly independent. Ifuj0,?x1,···,?xN1,?y1,···,?yN3are not linearly independent, we have

    It follows that

    We may assume thatuj0,?x1,···,?xN1,?y1,···,?yN3are not linearly independent forN′2+1 ≤j0≤N2. By finite steps, we can reduce the above equation to

    for some nonzero elementsλ1,μ1,μ2∈R, where

    are linearly independent. By the above construction, we have that

    are linearly independent. Ifare not linearly independent, by a similar progress, we can obtain

    for some nonzero elementsλ2,ν1,ν2,ν3,ν4∈R, where

    are linearly independent and

    are linearly independent. Recall that?z∈D?D′. By Lemma 3.2, we have

    It follows that

    Similarly, we havex′1,···,x′N1,y′1,···,y′N′2∈Inf?(D′,C′). It implies that

    Let

    The previous construction implies thatuN′2+1,···,uN2andu′N′3+1,···,u′N3are boundaries. By Lemma 3.3, there exists a nonzero elementλ′∈Rsuch thatλ′z1∈Inf?(D,C)?Inf?(D′,C′).Therefore we have

    By Lemma 2.2, there exists a basisS1?T1ofDsuch thatS1is a basis of Inf?(D,C).Similarly, there is a basisS2?T2ofD′such thatS2is a basis of Inf?(D′,C′). LetS=S1?S2.Thus we can choose a basisS?TofD?D′such thatSis a basis of Inf?(D,C)?Inf?(D′,C′).Assume that

    where a = (a1,···,a|S|) ∈R1×|S|, b = (b1,···,b|T|) ∈R1×|T|. Sinceλλ′z∈Inf?(D,C)?Inf?(D′,C′), it follows that

    Recall thatRis a principal ideal domain, we have beT=0. This implies that

    which gives the desired result.

    Example 3.1Continuing with Example 2.1, let (C′,?) = (Z[x′,y′],?),?y′=x′,?x′=0,degx′=1, and letD′=Z[2x′,y′] be a free Z-module generated by 2x′,y′. Then we have

    A straightforward calculation shows that

    Thus the result in Theorem 3.1 also depends on the condition thatD,D′are freeR-modules generated by subsets ofX,X′, respectively.

    Theorem 3.2(see [7, Theorem 3B.5])Let R be a principal ideal domain, and let C,C′be chain complexes of free R-modules. Then there is a natural exact sequence

    Proof of Theorem 1.1Note thatR[Y]?R[Y′] ~=R[Y×Y′].The theorem follows from Theorems 3.1—3.2.

    AcknowledgementThe authors would like to thank Prof. Yong Lin and Prof. Jie Wu for their supports, discussions and encouragements. The authors also would like to express their deep gratitude to the reviewer(s)for their careful reading,valuable comments and helpful suggestions.

    男女边吃奶边做爰视频| 中国国产av一级| 天天添夜夜摸| 国产成人午夜福利电影在线观看| 国产精品一区二区精品视频观看| 国产精品免费大片| 亚洲av中文av极速乱| 一本一本久久a久久精品综合妖精| 妹子高潮喷水视频| 校园人妻丝袜中文字幕| 夫妻性生交免费视频一级片| 久热爱精品视频在线9| 又粗又硬又长又爽又黄的视频| 国产一卡二卡三卡精品 | bbb黄色大片| 天天操日日干夜夜撸| 久久女婷五月综合色啪小说| 亚洲国产日韩一区二区| 巨乳人妻的诱惑在线观看| 一区二区三区乱码不卡18| 在线观看三级黄色| 国产成人免费观看mmmm| 精品一区二区三区四区五区乱码 | 欧美日韩国产mv在线观看视频| 丝袜美腿诱惑在线| 日日啪夜夜爽| 日韩制服丝袜自拍偷拍| 欧美亚洲日本最大视频资源| 欧美亚洲日本最大视频资源| 国产精品一二三区在线看| 2018国产大陆天天弄谢| 男女边摸边吃奶| 欧美变态另类bdsm刘玥| 国产精品免费视频内射| 久久久久国产精品人妻一区二区| 中文乱码字字幕精品一区二区三区| 我要看黄色一级片免费的| 日韩欧美精品免费久久| 2018国产大陆天天弄谢| 日本一区二区免费在线视频| 制服诱惑二区| 亚洲久久久国产精品| 女人高潮潮喷娇喘18禁视频| 丰满饥渴人妻一区二区三| 日韩 亚洲 欧美在线| 欧美日韩视频高清一区二区三区二| 人人妻人人爽人人添夜夜欢视频| 自线自在国产av| 黄网站色视频无遮挡免费观看| 日韩欧美精品免费久久| 又大又黄又爽视频免费| av.在线天堂| 国产精品国产av在线观看| 国产一级毛片在线| 日本欧美国产在线视频| 一级毛片电影观看| 超色免费av| 亚洲精品久久久久久婷婷小说| 精品免费久久久久久久清纯 | 国产色婷婷99| 日韩一区二区三区影片| 中文字幕av电影在线播放| av片东京热男人的天堂| 国产成人精品无人区| 精品人妻在线不人妻| 一级黄片播放器| 久久ye,这里只有精品| 99精品久久久久人妻精品| 国产有黄有色有爽视频| 美女午夜性视频免费| 在线观看www视频免费| 中文字幕av电影在线播放| 中国国产av一级| 熟女少妇亚洲综合色aaa.| 亚洲精品日韩在线中文字幕| 色网站视频免费| 国产人伦9x9x在线观看| 日本欧美国产在线视频| 精品一区二区三区av网在线观看 | 男人舔女人的私密视频| 亚洲精品在线美女| www日本在线高清视频| 国产片特级美女逼逼视频| 9色porny在线观看| 欧美日韩视频精品一区| videosex国产| 天天影视国产精品| 欧美97在线视频| 日韩电影二区| 丝袜喷水一区| 免费日韩欧美在线观看| 国产一区二区 视频在线| 日韩av免费高清视频| 免费人妻精品一区二区三区视频| 国产精品无大码| 免费高清在线观看视频在线观看| 亚洲精品,欧美精品| 中文字幕另类日韩欧美亚洲嫩草| 成年人免费黄色播放视频| 国产免费现黄频在线看| 亚洲人成网站在线观看播放| 韩国精品一区二区三区| videos熟女内射| 精品亚洲成a人片在线观看| 男女午夜视频在线观看| 亚洲国产看品久久| 99久久人妻综合| 97人妻天天添夜夜摸| 只有这里有精品99| 亚洲中文av在线| 免费高清在线观看日韩| 欧美人与善性xxx| 国产xxxxx性猛交| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美一区二区三区国产| 欧美人与性动交α欧美软件| 久久97久久精品| 久久ye,这里只有精品| 最新在线观看一区二区三区 | 久久久久久久精品精品| 91国产中文字幕| 国产成人精品无人区| 欧美最新免费一区二区三区| 在线精品无人区一区二区三| 亚洲欧美色中文字幕在线| 三上悠亚av全集在线观看| 免费黄频网站在线观看国产| av在线老鸭窝| 亚洲,欧美精品.| 一级a爱视频在线免费观看| 欧美精品av麻豆av| 最新在线观看一区二区三区 | 国产又色又爽无遮挡免| 秋霞伦理黄片| 亚洲第一av免费看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品久久成人aⅴ小说| 热99久久久久精品小说推荐| 国产成人系列免费观看| 婷婷色综合www| 中国国产av一级| 别揉我奶头~嗯~啊~动态视频 | 丰满乱子伦码专区| 51午夜福利影视在线观看| 国产一区二区三区综合在线观看| 午夜福利乱码中文字幕| 国产精品香港三级国产av潘金莲 | 中国国产av一级| 一区二区三区精品91| 汤姆久久久久久久影院中文字幕| 亚洲欧美一区二区三区黑人| 人妻 亚洲 视频| 午夜福利视频在线观看免费| 丁香六月天网| 飞空精品影院首页| 国产在线一区二区三区精| 国产精品蜜桃在线观看| 国产 精品1| 一本大道久久a久久精品| 男男h啪啪无遮挡| 国产视频首页在线观看| 高清av免费在线| 日日撸夜夜添| 日韩精品有码人妻一区| e午夜精品久久久久久久| 精品久久久久久电影网| 又粗又硬又长又爽又黄的视频| 黑人欧美特级aaaaaa片| 精品久久久久久电影网| 只有这里有精品99| 这个男人来自地球电影免费观看 | 久久精品国产综合久久久| 下体分泌物呈黄色| 97人妻天天添夜夜摸| 亚洲一区中文字幕在线| 亚洲精品中文字幕在线视频| 精品国产一区二区三区四区第35| 亚洲,欧美,日韩| 欧美日韩综合久久久久久| 考比视频在线观看| 亚洲成人免费av在线播放| 一区二区三区激情视频| 美女视频免费永久观看网站| 午夜福利视频在线观看免费| 欧美变态另类bdsm刘玥| 久久亚洲国产成人精品v| 免费在线观看完整版高清| 久久精品国产a三级三级三级| 亚洲av成人不卡在线观看播放网 | 欧美日本中文国产一区发布| 男人添女人高潮全过程视频| 亚洲成人一二三区av| 麻豆乱淫一区二区| 九九爱精品视频在线观看| 日韩 欧美 亚洲 中文字幕| 两个人免费观看高清视频| 黄片小视频在线播放| 叶爱在线成人免费视频播放| 亚洲美女黄色视频免费看| 国产精品亚洲av一区麻豆 | 久久久久久久大尺度免费视频| 97精品久久久久久久久久精品| 啦啦啦视频在线资源免费观看| 日本av手机在线免费观看| 午夜91福利影院| 国产一级毛片在线| kizo精华| 在线天堂中文资源库| 亚洲,欧美精品.| 亚洲精品美女久久久久99蜜臀 | 乱人伦中国视频| 国产一区有黄有色的免费视频| 美女午夜性视频免费| 80岁老熟妇乱子伦牲交| 成人午夜精彩视频在线观看| 女性生殖器流出的白浆| 亚洲国产欧美一区二区综合| 久久这里只有精品19| 精品国产一区二区久久| 99精品久久久久人妻精品| 久久久久精品久久久久真实原创| bbb黄色大片| 国产成人91sexporn| 精品国产一区二区久久| 七月丁香在线播放| 一本色道久久久久久精品综合| 国产成人欧美在线观看 | 最近手机中文字幕大全| 日本欧美国产在线视频| 亚洲欧美一区二区三区久久| 韩国高清视频一区二区三区| 亚洲国产成人一精品久久久| 十八禁高潮呻吟视频| 国产熟女午夜一区二区三区| 大码成人一级视频| 我的亚洲天堂| 制服诱惑二区| 亚洲精品乱久久久久久| 国产一区二区在线观看av| 性少妇av在线| 成人影院久久| 午夜91福利影院| 一级黄片播放器| 日本欧美视频一区| 丝袜美腿诱惑在线| 亚洲精品,欧美精品| 一级毛片 在线播放| 久久久久久久久免费视频了| 少妇人妻精品综合一区二区| 久久久国产欧美日韩av| 天天添夜夜摸| 男人操女人黄网站| 日韩制服骚丝袜av| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩制服骚丝袜av| 中文字幕最新亚洲高清| 九色亚洲精品在线播放| avwww免费| 中文天堂在线官网| 免费久久久久久久精品成人欧美视频| 国产精品国产三级专区第一集| 一区二区av电影网| 伦理电影免费视频| 曰老女人黄片| videos熟女内射| 夫妻性生交免费视频一级片| 少妇被粗大猛烈的视频| 看免费av毛片| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美成人精品一区二区| 国产熟女欧美一区二区| 女人精品久久久久毛片| 大片电影免费在线观看免费| 亚洲精品自拍成人| 视频在线观看一区二区三区| 青草久久国产| 欧美日韩福利视频一区二区| 久久久久国产一级毛片高清牌| xxx大片免费视频| 亚洲欧美成人综合另类久久久| 国产女主播在线喷水免费视频网站| 男女下面插进去视频免费观看| 亚洲av国产av综合av卡| 精品免费久久久久久久清纯 | 午夜日韩欧美国产| 亚洲婷婷狠狠爱综合网| 最近中文字幕高清免费大全6| 午夜免费鲁丝| 好男人视频免费观看在线| 国产成人a∨麻豆精品| 中文字幕最新亚洲高清| www.精华液| 久久久国产一区二区| 久久久久视频综合| 免费不卡黄色视频| 亚洲免费av在线视频| 中国三级夫妇交换| 极品人妻少妇av视频| 制服诱惑二区| 国产精品偷伦视频观看了| 亚洲精品日韩在线中文字幕| 亚洲av欧美aⅴ国产| 亚洲av欧美aⅴ国产| 久久精品国产亚洲av高清一级| 免费高清在线观看日韩| 精品国产露脸久久av麻豆| 国产一区二区激情短视频 | 啦啦啦 在线观看视频| 免费观看av网站的网址| 大香蕉久久成人网| 香蕉国产在线看| 久久性视频一级片| 视频区图区小说| 啦啦啦在线观看免费高清www| 国产亚洲午夜精品一区二区久久| 日日摸夜夜添夜夜爱| 老司机在亚洲福利影院| 亚洲欧美精品综合一区二区三区| 一二三四在线观看免费中文在| 伊人久久大香线蕉亚洲五| 午夜福利乱码中文字幕| 久久精品国产亚洲av涩爱| 成人毛片60女人毛片免费| 久久99精品国语久久久| 欧美日韩一级在线毛片| 大香蕉久久成人网| 国产欧美日韩综合在线一区二区| 亚洲综合色网址| 久久午夜综合久久蜜桃| 亚洲精品国产一区二区精华液| xxx大片免费视频| 亚洲精品第二区| 久久精品国产综合久久久| 久久国产精品大桥未久av| 久久天躁狠狠躁夜夜2o2o | 热99国产精品久久久久久7| 日本猛色少妇xxxxx猛交久久| 午夜福利视频精品| 久热爱精品视频在线9| 伊人久久国产一区二区| 五月开心婷婷网| 丝袜人妻中文字幕| 亚洲国产欧美在线一区| 天美传媒精品一区二区| 黄色视频在线播放观看不卡| 97精品久久久久久久久久精品| 老司机亚洲免费影院| 亚洲欧美日韩另类电影网站| 男女无遮挡免费网站观看| 黄色一级大片看看| 国产黄频视频在线观看| 久久久久国产一级毛片高清牌| 王馨瑶露胸无遮挡在线观看| 最近的中文字幕免费完整| 免费看av在线观看网站| 少妇被粗大的猛进出69影院| 蜜桃在线观看..| 狠狠婷婷综合久久久久久88av| 日韩一本色道免费dvd| 一级片免费观看大全| 国产熟女欧美一区二区| 日韩熟女老妇一区二区性免费视频| 欧美97在线视频| 亚洲精品一二三| 99精国产麻豆久久婷婷| 美女扒开内裤让男人捅视频| 久久精品久久精品一区二区三区| 久久精品亚洲熟妇少妇任你| 女的被弄到高潮叫床怎么办| 欧美黄色片欧美黄色片| a级毛片在线看网站| 丰满迷人的少妇在线观看| 国产成人免费无遮挡视频| 亚洲专区中文字幕在线 | 女性生殖器流出的白浆| 视频在线观看一区二区三区| 亚洲av电影在线观看一区二区三区| 欧美亚洲日本最大视频资源| 尾随美女入室| 国产熟女欧美一区二区| 免费av中文字幕在线| 不卡av一区二区三区| 在线观看一区二区三区激情| 天天操日日干夜夜撸| 18禁裸乳无遮挡动漫免费视频| 黄片播放在线免费| 最近2019中文字幕mv第一页| 18禁观看日本| 日本欧美视频一区| 精品国产乱码久久久久久男人| 别揉我奶头~嗯~啊~动态视频 | 99精品久久久久人妻精品| 熟女少妇亚洲综合色aaa.| 无限看片的www在线观看| 国产深夜福利视频在线观看| 欧美黑人欧美精品刺激| 母亲3免费完整高清在线观看| 亚洲成国产人片在线观看| 最近中文字幕高清免费大全6| 精品国产国语对白av| 一本久久精品| 秋霞在线观看毛片| 少妇人妻精品综合一区二区| 青春草国产在线视频| 精品人妻在线不人妻| 你懂的网址亚洲精品在线观看| 又大又爽又粗| 母亲3免费完整高清在线观看| 日韩精品有码人妻一区| 黑人猛操日本美女一级片| 午夜91福利影院| 久久精品亚洲熟妇少妇任你| 国产精品一二三区在线看| 日本欧美国产在线视频| 女性被躁到高潮视频| 伊人久久大香线蕉亚洲五| 亚洲欧美成人精品一区二区| 黑丝袜美女国产一区| 日韩一本色道免费dvd| 观看av在线不卡| 亚洲美女视频黄频| 国产视频首页在线观看| 一区二区三区乱码不卡18| 亚洲欧美激情在线| 国产日韩欧美亚洲二区| 波多野结衣av一区二区av| 午夜福利一区二区在线看| 精品一区二区三卡| 老司机影院毛片| 久久久精品国产亚洲av高清涩受| 黄色毛片三级朝国网站| 老司机靠b影院| 精品一品国产午夜福利视频| 天天添夜夜摸| 如日韩欧美国产精品一区二区三区| 亚洲av男天堂| 在线观看免费高清a一片| 激情视频va一区二区三区| 欧美在线黄色| 国产精品国产av在线观看| 亚洲,欧美,日韩| 日本色播在线视频| 99热国产这里只有精品6| 国产亚洲欧美精品永久| 王馨瑶露胸无遮挡在线观看| 午夜福利乱码中文字幕| av.在线天堂| 久久久久久久久久久久大奶| 成人毛片60女人毛片免费| 欧美人与性动交α欧美精品济南到| 看免费av毛片| 亚洲五月色婷婷综合| 午夜免费男女啪啪视频观看| 亚洲av中文av极速乱| 日韩欧美精品免费久久| 波多野结衣av一区二区av| 中文字幕另类日韩欧美亚洲嫩草| 美女主播在线视频| 精品一区二区三区av网在线观看 | 久久人妻熟女aⅴ| 90打野战视频偷拍视频| 十八禁人妻一区二区| 精品一区二区免费观看| 天堂8中文在线网| 老汉色∧v一级毛片| a级片在线免费高清观看视频| 美女主播在线视频| 亚洲情色 制服丝袜| 亚洲欧美精品综合一区二区三区| 久久精品国产a三级三级三级| 日本黄色日本黄色录像| av福利片在线| 啦啦啦在线免费观看视频4| 999久久久国产精品视频| 不卡视频在线观看欧美| 成人黄色视频免费在线看| 制服诱惑二区| 狂野欧美激情性xxxx| 可以免费在线观看a视频的电影网站 | 国产亚洲av高清不卡| 蜜桃在线观看..| 91国产中文字幕| 成人18禁高潮啪啪吃奶动态图| 国产99久久九九免费精品| 国产 精品1| 国产不卡av网站在线观看| 大香蕉久久成人网| av国产精品久久久久影院| 亚洲图色成人| 满18在线观看网站| 色综合欧美亚洲国产小说| 99久久综合免费| 欧美日韩亚洲高清精品| 熟女av电影| 男人操女人黄网站| 免费av中文字幕在线| 老司机影院成人| 亚洲美女搞黄在线观看| 国产淫语在线视频| 亚洲七黄色美女视频| 中文字幕色久视频| 免费在线观看视频国产中文字幕亚洲 | 国产在视频线精品| 久久精品国产a三级三级三级| 岛国毛片在线播放| 国产熟女午夜一区二区三区| 丰满迷人的少妇在线观看| 国产精品免费视频内射| 在线观看免费视频网站a站| 午夜免费男女啪啪视频观看| 制服丝袜香蕉在线| 成人18禁高潮啪啪吃奶动态图| 日韩中文字幕欧美一区二区 | 国产极品天堂在线| 成年女人毛片免费观看观看9 | 在线观看国产h片| 欧美久久黑人一区二区| 久久人人爽人人片av| av视频免费观看在线观看| 又大又爽又粗| 91精品国产国语对白视频| 国产精品久久久av美女十八| 人成视频在线观看免费观看| 久久久久国产一级毛片高清牌| 免费黄色在线免费观看| 亚洲国产精品国产精品| 成人免费观看视频高清| 成人国产av品久久久| 母亲3免费完整高清在线观看| 欧美日韩福利视频一区二区| 亚洲,一卡二卡三卡| 亚洲国产欧美一区二区综合| 欧美日韩亚洲国产一区二区在线观看 | 国产极品粉嫩免费观看在线| 两个人看的免费小视频| 国产在线一区二区三区精| 精品福利永久在线观看| 国产日韩一区二区三区精品不卡| 精品国产超薄肉色丝袜足j| 精品酒店卫生间| 黑人猛操日本美女一级片| 亚洲国产看品久久| 十八禁人妻一区二区| 在线观看免费高清a一片| 亚洲少妇的诱惑av| 欧美老熟妇乱子伦牲交| 国产欧美日韩一区二区三区在线| 女人久久www免费人成看片| 美女大奶头黄色视频| 中文字幕高清在线视频| 成年动漫av网址| 99精品久久久久人妻精品| 日韩免费高清中文字幕av| 久久久精品免费免费高清| 最黄视频免费看| 2021少妇久久久久久久久久久| 男人添女人高潮全过程视频| 日韩人妻精品一区2区三区| 亚洲精品国产一区二区精华液| 无遮挡黄片免费观看| 视频在线观看一区二区三区| 精品国产国语对白av| 亚洲人成网站在线观看播放| 午夜av观看不卡| 日日摸夜夜添夜夜爱| 丰满饥渴人妻一区二区三| 国产极品粉嫩免费观看在线| av在线播放精品| 国产成人系列免费观看| 国产女主播在线喷水免费视频网站| 丰满乱子伦码专区| 亚洲国产欧美日韩在线播放| 国产成人精品在线电影| 一级毛片 在线播放| 色婷婷久久久亚洲欧美| 欧美人与善性xxx| 菩萨蛮人人尽说江南好唐韦庄| 热99国产精品久久久久久7| 久久精品aⅴ一区二区三区四区| 这个男人来自地球电影免费观看 | 在线观看免费日韩欧美大片| 99热国产这里只有精品6| 777米奇影视久久| 免费看av在线观看网站| 欧美日本中文国产一区发布| 菩萨蛮人人尽说江南好唐韦庄| 黄色视频在线播放观看不卡| 黄色视频不卡| 熟女少妇亚洲综合色aaa.| 熟妇人妻不卡中文字幕| 在线看a的网站| 伦理电影免费视频| 热re99久久精品国产66热6| 国产精品一区二区在线观看99| 亚洲国产av新网站| 成年人午夜在线观看视频| 免费在线观看完整版高清| 国产精品一国产av| 亚洲精品av麻豆狂野| 涩涩av久久男人的天堂| 制服丝袜香蕉在线| 伦理电影免费视频| 久久人人爽人人片av| 91精品三级在线观看| 成人国产麻豆网| av女优亚洲男人天堂| 亚洲成人国产一区在线观看 | 黑人猛操日本美女一级片| 在线免费观看不下载黄p国产| 深夜精品福利| 少妇的丰满在线观看| 国产一级毛片在线| 亚洲七黄色美女视频| 天美传媒精品一区二区| 午夜影院在线不卡|