• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel predictive and prognostic strategies of hepatitis B virus related hepatocellular carcinoma

    2016-02-11 02:35:56
    Hepatoma Research 2016年12期

    Department of Epidemiology, Second Military Medical University, Shanghai 200433, China. *Authors contributed equally.

    Novel predictive and prognostic strategies of hepatitis B virus related hepatocellular carcinoma

    Wen-Bin Liu*, Fan Yang*, Ding-Yi Shao*, Guang-Wen Cao

    Department of Epidemiology, Second Military Medical University, Shanghai 200433, China. *Authors contributed equally.

    How to cite this article:Liu WB, Yang F, Shao DY, Cao GW. Novel predictive and prognostic strategies of hepatitis B virus related hepatocellular carcinoma. Hepatoma Res 2016;2:331-40.

    Article history:

    Received: 14-09-2016

    Accepted: 12-12-2016

    Published: 23-12-2016

    Hepatocellular carcinoma, hepatitis B virus, evolution, prediction, prognosis

    Hepatocellular carcinoma (HCC) is a common malignancy and an important cause of cancer death worldwide. Chronic hepatitis B virus (HBV) infection is the major cause of HCC. Recent studies of HBV-induced carcinogenesis not only discovered many new biomarkers but also developed a novel theory: Cancer Evolution-Development (Cancer Evo-Dev). Cancer Evo-Dev provides an evolutionary insight of developing more reasonable predictive and prognostic strategies. Characterizing chronic infammatory microenvironment of cancer evolution, genetic polymorphisms of infammatory factors, and HCC-related HBV mutations that negatively selected by host immunity may help greatly in identifying HBV-infected individuals who are more likely to develop HCC or beneft from HCC prophylactic options. Gene expression signatures and somatic mutation profles refect the different patterns of signaling pathway networks underlying tumor heterogeneity and can be applied to improve the molecular classifcation and prognostic stratifcation of HCC patients. Mutant cells that survive the selection can retro-differentiate into tumor initial cells and aggressive sub-clones. Detection of mutants or their hallmarks in cell-free DNA in peripheral blood potentially improve the early diagnosis, prognosis prediction, and personalized treatment of HBV-caused HCC.

    INTRODUCTION

    Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed cancers and an important cause of cancer death worldwide. Annually, there are 782,500 HCC incident cases and 745,500 HCC-caused deaths worldwide.[1]Developing countries in East Asia and Sub-Saharan Africa contribute 80% of new HCC cases and related deaths.[2]Chronic infection of hepatitis B virus (HBV) is the major etiological reason for HCC in these areas, which contributes 80-90% of HCC patients.[3,4]According to a cohort study conducted in Taiwan, the cumulative lifetime (age 30 to 75 years) incidences of HCC for men and women that positive for hepatitis B surface antigen (HBsAg) were 27.38% and 7.99%, far more than those of men and women negativefor HBsAg and anti-hepatitis C virus (1.55% and 1.30%).[5]Besides, HBV infection is also responsible for the increasing trend of HCC in western countries because of the travel and immigration of HBV infected populations.[6]Most HCC patients are diagnosed at advanced stage and cannot accept resection operation or liver transplantation.[7]Approximately 70% patients that have curative hepatectomy will relapse within 5 years.[8]Both the narrow therapeutic window and the high recurrence rate highlight the importance of developing more rigorous surveillance and more active prevention for chronic HBV infected subjects with high HCC risk, and tailoring more suitable treatment options for HCC patients, which depend on continuously discovering promising biomarkers as well as developing carcinogenesis theory for the specifc prophylaxis.

    Cancer Evo-Dev is a novel scientifc theory describing the mechanism of HBV-induced hepatocarcinogenesis.[9]The central aspects of its framework are as follows. Carcinogenesis is an evolutionary process under the microenvironment of chronic non-resolving infammation. This microenvironment is characterized by immune imbalance due to the interaction between the genetic predisposition of immune/proinfammatory molecules and HBV infection. Cytidine deaminases and their analogous are persistently activated by proinflammatory factors and subsequently induced mutations both in host and viral genomes. Mutant cells are mostly eliminated by selective pressures. Only a small proportion can survive in the inflammatory microenvironment because the somatic mutations alter signaling pathways. Those surviving clones usually share some characteristics of stem cells and gradually retro-differentiate into cancer initialing cells.

    This theory was presented based on recent outcomes of HBV-related carcinogenesis researches, mainly including molecular epidemiological studies, cancer genomic mutation analyses, and signaling transduction researches.[10-20]Those breakthroughs not only improved the understanding of cancer evolution from different aspects but also discovered many novel biomarkers and therapeutic targets. Therefore, this theory can provide an evolutionary insight of predicting HCC risk and developing more reasonable predictive and prognostic biomarkers and therapeutic targets. Here, we summarize the important novel viral, infammatory, genetic, and protein biomarkers of HCC occurrence and prognosis and evaluate them through the lens of Evo-Dev theory.

    EVALUATING THE MICROENVIRONMENT OF CANCER EVOLUTION

    In the evolution process of HBV-induced hepatocarcinogenesis, inflammatory microenvironment plays an important role via facilitating the generation of viral and host genetic mutation and also providing selective pressure. Therefore, the characteristics of the microenvironment in different evolutionary phases and in different populations can be used to stratify HBV-infected individuals with different risk of developing HCC. Although inflammatory microenvironment is a complex system, it can be elucidated in two aspects: HBV itself and immune imbalance.

    HBV

    Despite the high incidence of HCC in HBV-infected population, only small percentages of chronic hepatitis B (CHB) patients develop HCC. HBV variables can serve as clues to identify distinctive outcomes of HBV-infected populations, and to guide the personalized preventive medication accordingly.

    HBV replication

    The level of HBV replication directly reflects the selective stress from the inflammatory environment, which can influence the evolution of HCC as well. Currently, HBV DNA load is regularly applied in clinic as an indicator of initiating antiviral treatment. It has been demonstrated by various studies that HBV DNA load increases the risk of HCC in CHB patients.[21-23]High level of HBV DNA load either in serum or liver tissue can also predict poor postoperative prognosis in HCC.[24]Hepatitis B e antigen (HBeAg), encoded by HBV precore region, is another marker for active replication of HBV. HBeAg positivity has been proved to be associated with an increased risk of HCC.[25]However, due to HBeAg seroconversion during the natural course of HBV infection, HBeAg expression is not usually high in HCC patients, explaining the reasons that HBeAg positivity is not significantly associated with an increased risk of HCC in some case-control studies.[14]Thus, HBV DNA load should be a more reliable indicator in the prediction of HCC.

    HBV genotypes

    According to a sequence divergence of no less than 8% in whole viral genome, HBV can be classifed into eight genotypes A to H, which can be further classifed into sub-genotypes if the sequence divergence is between 4% and 8%.[26]Variant genotypes are distributed unevenly around the world, and the predominant one in mainland China is genotype C (68.3%), followed by genotype B (25.5%).[27]Under selection pressure from inflammatory microenvironment, the fates of different genotypes/sub-genotypes are distinct in a given population. Genotype C HBV infection is an independent risk factor for HCC development.[16,21,28,29]Meanwhile, genotype B HBV infection was associatedwith the development of HCC in young patients (< 50 years old).[30]Our study further revealed that genotype B2 HBV infection was related to HCC recurrence, and that HBV genotype C2 HBV was predominant in HCC patients, which was related to its high prevalence.[31]As the HBV genotype is usually identified through a complex procedure that includes extracting HBV DNA, polymerase chain reaction, sequencing, and phylogenetic analysis, the wide application of HBV genotype/subgenotype for preliminary screening in community is limited.

    HBV mutations

    In the process of HBV-HCC evolution, one of the most prominent molecular events is the generation of HBV mutation, especially mutations in the preS region and basic core promoter (BCP) region of HBV genome. Due to lack of proof reading capacity, HBV genome has a higher mutation rate than other DNA viruses. Moreover, inflammatory factors induced by HBV infection can activate the expression of apolioprotein B mRNA editing enzyme catalytic polypeptides (APOBECs). HBV genome can be degraded and edited by APOBECs.[32]Most HBV mutants are cleared by host immune system, and only those that gained the ability to escape immune eradication survived. The mutant viruses, in return, keep on stimulating the immune system and maintain the inflammatory microenvironment. The HBV mutations refect, to some extent, the selection pressure of host immune system and serve as risk factors of HCC.

    Our recent study of HBV mother-to-child transmission revealed that mutated viruses lost their advantages in infecting infants, whereas the wild-type HBV had advantage of infecting newborn’s hepatocytes, interestingly, the HCC-risk HBV mutations was being gradually selected since the establishment of chronic infection.[10]Mutations in HBV the preS region (including A2962G, A2964C, C3116T, C7A, T105C, and preS start codon mutation) and mutations in the BCP region (including C1653T, T1753V, and A1762T/G1764A) were independently associated with an increased risk of HCC.[11,15,21,33]Mutations in combination (combo mutations) can enhance the validity of predicting the occurrence of HCC.[21,33,34]HBV combo mutations of C1653T, T1753V, and A1762T/G1764A increase the validity of HCC prediction compared with single HBV mutation.[21]The HBV mutations can improve the sensitivity and specifcity of HCC prediction model based on age, gender, cirrhosis and HBV DNA loads.[21,25,35]

    The carcinogenic effects of HBV can be blocked by antiviral treatments. In our prospective hospitalbased cohort study, antiviral treatment against HBV using interferon and nucleoside analogues (NAs) signifcantly reduced HCC occurrence (13.90/1,000 vs. 7.70/1,000 person-years, P = 0.005).[36]Furthermore, proved by a cohort study and randomized clinical trial, treatment with NAs can also signifcantly reduce the risk of early recurrence (hazard ratios, 0.41; P <0.001).[13]However, levels of those protective effects are distinct among HBV-infected subjects with different viral mutations. Antiviral treatment with NAs cannot reduce HCC risk in patients without A1762T/G1764A or C1653T and in those with T1753V.[36]The protective function of antiviral treatments for postoperative recurrence cannot be observed in the HCC patients expressing carboxylic acid-terminal truncated HBV X protein (Ct-HBx) in their liver remnants.[13]

    Immune imbaIance

    Immune imbalance is responsible for the maintenance of chronic non-resolving inflammation and subsequently provides a fertile microenvironment for cancer evolution. Immune imbalance can be refected by the proportion shift of immune cells, abnormal activation of inflammatory pathways, and genetic predisposition of inflammatory molecules, which can serve as biomarkers for HCC prediction and prognosis.

    Immune cells

    The liver is enriched with innate immune cells such as macrophages and natural killer (NK) cells, as well as adaptive immune cells such as CD8+cytotoxic T cells, CD4+T helper cells and B cells, playing an important role not only in host defenses against invading microorganisms and tumor transformation, but also in liver injury and repair. Their presence or enrichment can be seen as predictive or prognostic factors for HCC. CD8+T in liver tissues, for example, is the protective factor, while the enrichment of M2 macrophages and T helper 17 cells (Th17) as well as the imbalance between CD8+T cells and regulatory T (Treg) cells or between Th1 and Th2 are the risk factors of HCC.[37]Immune cells that infltrated into HCC tissues function distinctly on HCC prognosis. Intratumoral natural killer cells and CD8+T cells indicate good prognosis, while intratumoral Treg cells, neutrophils, and M2 macrophages indicate poor prognosis.[37]

    Infammatory pathways

    The abnormal alteration of inflammatory pathways can be reflected by hallmark cytokines. Biomarkers indicating the abnormal activation of inflammatory pathways can also predict the occurrence and recurrence of HCC.[38,39]For example, Wnt/β-catenin signaling pathway plays an important role in infammation-induced carcinogenesis via regulating the expression of cytokine-induced human inducible nitricoxide synthase.[40]Activation of Wnt/β-catenin pathway contributes to HCC development. The hallmarks of Wnt/β-catenin pathway, Wnt-1 and Wnt3a, have both predictive and prognostic value.[37,41,42]Likewise, signaling pathways such as phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway, and insulin-like growth factor pathway also play an important role in hepatocarcinogenesis.[43]

    Genetic polymorphisms of immune/inflammatory molecules

    Genetic polymorphisms of immune/inflammatory molecules can also serve as predictive biomarkers for HCC development. For example, genetic polymorphisms of signal transducer and activator of transcription 3 (STAT3), class II human leukocyte antigen DP (HLA-DP), HLA-DQ, miRNA-122-binding site, pre-miR-218, nuclear factor-kappaB (NF-κB), and its inhibitor IkappaBalpha are signifcantly associated with HCC risk.[12,17,18,44-47]

    IDENTIFYING SIGNATURES OF SIGNALING PATHWAY ALTERATION

    Gene signatures

    The alteration of signaling pathways confers stemness characteristics and competitive advantages to cancer cells. These alterations usually affect complex signaling networks that cannot be represented by a signal gene. More than 300 published microarray studies of human HCC samples provide sufficient information regarding tumor gene expression profiles.[48]The accumulation of data regarding differentially expressing genes makes it possible to conduct metaanalysis and subsequently determine gene signatures. Recent gene signature studies are summarized in Table 1.[49-66]Gene signatures developed in those studies were used to separate patients into 2 or more subgroups with different clinical outcomes, phenotypes, and altered signaling pathways. The methods of developing gene signatures fall into two major groups. The first group of gene signatures was generated in case-control studies with the data of training cohort or published gene expression data. Most of the gene signature studies belong to this group.[50,52,53,55,57,59,61-65]The second group of gene signatures concerning defined phenotypes or signaling pathways was derived from the data of cell or animal model studies.[49,51,56,58,60]For examples, Lee et al.[49]developed a gene signature of stemness from the gene profling data of rat fetal liver tissue and Kaposi-Novak et al.[51]developed a gene signature of Met signaling pathway using the Met defcient mouse model. The predictive value of novel gene signatures was usually evaluated in cohort studies. High risk patients that were identified through cluster analysis or score model based on gene signatures were prone to have unfavourable clinical outcomes, such as poor overall survival and early recurrence.

    Although the tumor gene signatures were identified by different studies with various comparison strategies, they shared some genes conferring cancer stemness. For instance, a group of genes related to proliferation and epithelial cell adhesion molecule (EpCAM)-positive phenotype were included in 8 gene signatures summarized in different studies and all associated with poor prognosis.[48]Gene signatures from adjacent non-tumor tissues were also reported to be significantly associated with HCC recurrence, indicating that the histological “normal” adjacent tissue may be at the early stage of cancer evolution. That highlights the need of biopsy-based gene signature detection for specific individuals, like HBV-infected patients. However, signatures from adjacent tissues obtained in different studies are lack of genes in common. Cross validations are needed to consolidate the criteria. Altered expression patterns of the genes in HCC are usually caused by epigenetic modifcations in their regulatory elements and somatic mutations of their repressors.

    Somatic mutation profiIes

    Somatic mutations are genetic basis of carcinogenesis. The values of somatic mutations depend on their impacts on related signaling pathways. By changing patterns of signaling transduction, somatic mutations on a small proportion of genes can promote cancer evolution, which are categorized as “driver mutations”.[19]As a matter of fact, some outstanding somatic mutations in HBV-HCC occur in the genes responsible for epigenetic modifications-chromatin remodeling including ARID1A and ARID2 and methylation such MLL4.[67,68]Due to survival competition and the positive selection of infammatory microenvironment, driver mutations accumulate sufficiently to promote malignant transformation of hepatocytes.

    The distribution, combination, and dynamic patterns of driver mutations reflex the pressure of microenvironmental selection and growth advantage of hepatocyte subsets. The high frequent mutations can have clinical values as biomarkers for targeted therapy, classification, and prognostic prediction.[67-71]For instance, homozygous deletions were detected in 40% of HCC patients and were signifcantly associated with poor survival (P < 0.0001).[68]

    Using next generation sequencing technology, somebasic patterns of HCC somatic mutations have been extensively investigated. The somatic mutations provide a novel genomic insight of molecular classification and prognostic prediction. Some genes including TP53, TERT, CTNNB1, ARID1A, and AXIN1 are proved to be hotspots of genetic alteration [Table 2]. However, specifc mutation in a single hot gene is not frequent, ranging from 5% to 20%. Such a low ratelimits the application of a single mutation. For example, RB1 somatic mutation can serve as an independent predictor for poor cancer-specific survival (HR 2.5, 95% CI: 1.05-5.93, P = 0.038) and early recurrence (OR 3.93, 95% CI: 1.29-11.90, P = 0.015). But the frequencies of RB1 somatic mutation were only 3.4% and 7% among different studies.[68,69]Similarly, somatic mutations of CDKN2A and FGF-CCND1 were proved to be significantly associated with overall survival (P = 3.0 × 10-4and P = 7.4 × 10-6respectively) and their frequencies were both less than 5%.[70]

    Table 1: Representative gene signature studies of hepatocellular carcinoma

    Table 2: Important somatic mutations and related signaling pathways of hepatocellular carcinoma

    Although the spectrums and frequencies of altered genes vary greatly among individuals, they are clustered to pathways or function groups that are closely related with stemness and embryonic characteristics. In this regard, global mutation rates of functionally related genes are added together to defne the mutation rate of a given signaling pathway. Mutation rates of Wnt/β-catenin, p53/cell cycle control, JAK/STAT, PI3k/mTOR, and MAP kinas signaling pathways range from 12% to 72%. Similar outstanding outcomes are also observed in function gene groups of chromatin remodeling and telomere maintenance. Ahn et al.[69]developed a somatic mutation signature of cell cycle pathway which comprised 4 genes including RB1, MYC, CCND1, and RBL2. The total mutation rate of those 4 genes were 23% and the signature was significantly associated with poor cancer-specifc and recurrence-free survival (P = 0.002 and P = 0.007, respectively). Therefore, it is promising to use combo somatic mutations as predictive and prognostic biomarkers.

    DETECTING CELLS WITH MALIGNANCY POTENTIAL AND THEIR HALLMARKS IN PERIPHERAL BLOOD

    CircuIating tumor ceIIs

    Release of cancer cells into the circulation is common in HCC patients. The appearance of circulating tumor cells (CTC) in the blood stream characterizes the intermediate stage of tumor metastasis process.[72]CTC test can be applied to monitor early metastasis, assess the effectiveness of therapeutic options, and predict the prognosis.[73]A study examining blood samples of 123 HCC patients one month before and after tumor resection indicated that EpCAM+CTCs were presented in 66.67% of patients and that CTCs count in 7.5 mL blood (CTC7.5) is an independent prognostic factorof tumor recurrence.[74]Therefore, EpCAM+CTCs may be used as a real-time parameter for monitoring treatment response. In addition, EpCAM+CTCs are positive in HCC patients with different BCLC stages and the positive rates of EpCAM+CTCs in patients of BCLA stage A, B, and C are 11.1%, 19.4%, and 57.9%, respectively.[75]Thus, EpCAM+CTC is prognostic and predictive in HCC.

    CeII-free DNA

    Biopsy of HCC may be restricted by the special position of tumors or the poor condition of patients, resulting in the limitation of HCC gene analysis for prognostic and predictive purposes.[76]The necrosis and apoptosis of tumor cells usually release cell-free DNA (cfDNA) into circulation. Based on sequencing technology, genetic and epigenetic information can be obtained from these cfDNA. Detecting cfDNA is a microinvasive method to find early HCC, termed as “l(fā)iquid biopsy”.[77]The abnormities including methylation changes and point mutations in cfDNA can be detected in peripheral blood even before the solid tumor nidus can be detected.

    Hypermethylated RASSF1A within cfDNA sequence is present in the sera of 93% HCC patients. When combining RASSF1A methylation and AFP to diagnose HCC, the sensitivity and specifcity increase from 65% and 87% using AFP alone to 77% and 89%, respectively. Serum methylated RASSF1A is also prognostic and also reflects the tumor load in HCC patients.[78]A study with a cohort of 151 HCC patients indicated that 4 hypermethylation genes (RGS10, ST8SIA6, RUNX2, and VIM) in sera have weak correlation with each other but the combination of the 4 genes as a classifier successfully identified HCC patients from HBV-induced cirrhosis population, with the sensitivity of 85% and the specifcity of 96%.[79]

    TP53 R249S mutation in cfDNA was proved to have a remarkable ecological correlation with HCC exposure in China and Africa.[80]In a retrospective study using short oligonucleotide mass analysis to exam R249S in the plasma ahead of cancer diagnosis, 9 (64%) of 14 patients who developed HCC during the followup were positive for R249S.[81]Genetic mutation in serum is related to the mutation in tumor tissue. Another study examining the mutations of CTNNB1, a gene encoding β-catenin, in HCC patients’ sera indicated that CTNNB1 mutation was not present both in serum and corresponding tumor tissues, although the average mutation rate of CTNNB1 was about 25% in previous researches.[82]This suggests that clinical application of cfDNA mutations should be mutation signatures rather than single gene mutation.

    CONCLUSION

    HBV-induced HCC is a common malignancy characterized by high mortality, high recurrence rate, and significant heterogeneity. Cancer Evo-Dev, a novel scientific theory of HBV-induced carcinogenesis, provides an evolutionary insight of HCC occurrence/recurrence prediction. From this point of view, recent development of HCC predictive and prognostic strategies can be categorized as three main directions: evaluating the inflammatory microenvironment of cancer evolution via investigating HBV variables and characteristics of immune imbalance, identifying alteration patterns of signaling transformation through signatures of gene expression and somatic mutation, and detecting cells with malignancy potential and their hallmarks in peripheral blood. To validate predictive or prognostic biomarkers, 4 steps should be taken: (1) exploratory research, to discover promising biomarkers; (2) case-control study, to evaluate statistical association between the occurrence/recurrence and biomarkers; (3) cohort study, to validate the sensitivity and specificity of biomarkers; (4) randomized clinical control trail, to determine if the screening and related prophylaxis/ treatment can reduce the occurrence/recurrence. Currently, most novel biomarkers were just validated in phase 2 or 3. Further validation and reasonable combination of novel biomarkers should be conducted under the direction of Cancer Evo-Dev theory.

    FinanciaI support and sponsorship

    This work was supported by grants from the National Key Basic Research Program (Grant No. 2015CB554006). The study sponsors had no role in the writing of the manuscript or in the decision to submit the manuscript for publication.

    ConfIicts of interest

    There are no conficts of interest.

    Patient consent

    There is no patient involved.

    Ethics approvaI

    This review is waived for ethical approval.

    REFERENCES

    1. Torre LA, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65:87-108.

    2. Nguyen VT, Law MG, Dore GJ. Hepatitis B-related hepatocellular carcinoma: epidemiological characteristics and disease burden. J Viral Hepat 2009;16:453-63.

    3. Lavanchy D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J Clin Virol 2005;34 Suppl 1:S1-3.

    4. E-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012;142:1264-73.

    5. Huang YT, Jen CL, Yang HI, Lee MH, Su J, Lu SN, Iloeje UH, Chen CJ. Lifetime risk and sex difference of hepatocellular carcinoma among patients with chronic hepatitis B and C. J Clin Oncol 2011;29:3643-50.

    6. Sharma S, Carballo M, Feld JJ, Janssen HL. Immigration and viral hepatitis. J Hepatol 2015;63:515-22.

    7. Du Y, Su T, Ding Y, Cao G. Effects of antiviral therapy on the recurrence of hepatocellular carcinoma after curative resection or liver transplantation. Hepat Mon 2012;12:e6031.

    8. Hyder O, Marques H, Pulitano C, Marsh JW, Alexandrescu S, Bauer TW, Gamblin TC, Sotiropoulos GC, Paul A, Barroso E, Clary BM, Aldrighetti L, Ferrone CR, Zhu AX, Popescu I, Gigot JF, Mentha G, Feng S, Pawlik TM. A nomogram to predict long-term survival after resection for intrahepatic cholangiocarcinoma: an Eastern and Western experience. JAMA Surg 2014;149:432-8.

    9. Liu WB, Wu JF, DuY, Cao GW. Cancer Evolution-Development: experience of hepatitis B virus-induced hepatocarcinogenesis. Curr Oncol 2016;23:e49-56.

    10. Li ZX, Xie ZY, Ni HX, Zhang Q, Lu W, Yin JH, Liu WB, Ding YB, Zhao Y, Zhu YB, Pu R, Zhang HW, Dong HJ, Fu YF, Sun Q, Xu GZ, Cao GW. Mother-to-child transmission of hepatitis B virus: evolution of hepatocellular carcinoma-related viral mutations in the postimmunization era. J Clin Virol 2014;61:47-54.

    11. Liu S, Zhang H, Gu C, Yin J, He Y, Xie J, Cao G. Associations between hepatitis B virus mutations and the risk of hepatocellular carcinoma: a meta-analysis. J Natl Cancer Inst 2009;101:1066-82.

    12. Xie J, Zhang Y, Zhang Q, Han Y, Yin J, Pu R, Shen Q, Lu W, Du Y, Zhao J, Han X, Zhang H, Cao G. Interaction of signal transducer and activator of transcription 3 polymorphisms with hepatitis B virus mutations in hepatocellular carcinoma. Hepatology 2013;57:2369-77.

    13. Yin J, Li N, Han Y, Xue J, Deng Y, Shi J, Guo W, Zhang H, Wang H, Cheng S, Cao G. Effect of antiviral treatment with nucleotide/ nucleoside analogs on postoperative prognosis of hepatitis B virusrelated hepatocellular carcinoma: a two-stage longitudinal clinical study. J Clin Oncol 2013;31:3647-55.

    14. Yin J, Xie J, Liu S, Zhang H, Han L, Lu W, Shen Q, Xu G, Dong H, Shen J, Zhang J, Han J, Wang L, Liu Y, Wang F, Zhao J, Zhang Q, Ni W, Wang H, Cao G. Association between the various mutations in viral core promoter region to different stages of hepatitis B, ranging of asymptomatic carrier state to hepatocellular carcinoma. Am J Gastroenterol 2011;106:81-92.

    15. Yin J, Xie J, Zhang H, Shen Q, Han L, Lu W, Han Y, Li C, Ni W, Wang H, Cao G. Signifcant association of different preS mutations with hepatitis B-related cirrhosis or hepatocellular carcinoma. J Gastroenterol 2010;45:1063-71.

    16. Zhang HW, Yin JH, Li YT, Li CZ, Ren H, Gu CY, Wu HY, Liang XS, Zhang P, Zhao JF, Tan XJ, Lu W, Schaefer S, Cao GW. Risk factors for acute hepatitis B and its progression to chronic hepatitis in Shanghai, China. Gut 2008;57:1713-20.

    17. Zhang Q, Ji XW, Hou XM, Lu FM, DuY, Yin JH, Sun XY, Deng Y, Zhao J, Han X, Yang GS, Zhang HW, Chen XM, Shen HB, Wang HY, Cao GW. Effect of functional nuclear factor-kappaB genetic polymorphisms on hepatitis B virus persistence and their interactions with viral mutations on the risk of hepatocellular carcinoma. Ann Oncol 2014;25:2413-9.

    18. Zhang Q, Yin J, Zhang Y, Deng Y, Ji X, Du Y, Pu R, Han Y, Zhao J, Han X, Zhang H, Cao G. HLA-DP polymorphisms affect the outcomes of chronic hepatitis B virus infections, possibly through interacting with viral mutations. J Virol 2013;87:12176-86.

    19. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjord JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jager N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, Lopez-Otin C, Martin S, Munshi N C, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson J V, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdes-Mas R, van Buuren MM, Laura van ‘t Veer, Vincent-Salomon A, Waddell N, Yates LR, Australian Pancreatic Cancer Genome I, Consortium I B C, Consortium I M-S, PedBrain I, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfster S M, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature 2013;500:415-21.

    20. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009;458:719-24.

    21. Chan HL, Tse C H, Mo F, Koh J, Wong VW, Wong GL, Chan SL, Yeo W, Sung JJ, Mok TS. High viral load and hepatitis B virus subgenotype ce are associated with increased risk of hepatocellular carcinoma. J Clin Oncol 2008;26:177-82.

    22. Yang HI, Yuen MF, Chan HL, Han KH, Chen PJ, Kim DY, Ahn SH, Chen CJ, Wong VW, Seto WK. Risk estimation for hepatocellular carcinoma in chronic hepatitis B (REACH-B): development and validation of a predictive score. Lancet Oncol 2011;12:568-74.

    23. Lee MH, Yang HI, Liu J, Batrla-Utermann R, Jen CL, Iloeje UH, Lu SN, You S L, Wang LY, Chen CJ. Prediction models of longterm cirrhosis and hepatocellular carcinoma risk in chronic hepatitis B patients: risk scores integrating host and virus profles. Hepatology 2013;58:546-54.

    24. Yeh CT, So M, Ng J, Yang HW, Chang ML, Lai MW, Chen TC, Lin CY, Yeh T S, Lee WC. Hepatitis B virus-DNA level and basal core promoter A1762T/G1764A mutation in liver tissue independently predict postoperative survival in hepatocellular carcinoma. Hepatology 2010;52:1922-33.

    25. Yang HI, Lu SN, Liaw YF, You SL, Sun CA, Wang LY, Hsiao CK, Chen PJ, Chen DS, Chen CJ. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med 2002;347:168-74.

    26. Norder H, Courouce AM, Coursaget P, Echevarria JM, Lee SD, Mushahwar IK, Robertson BH, Locarnini S, Magnius LO. Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBsAg subtypes. Intervirology 2004;47:289-309.

    27. Yin J, Zhang H, He Y, Xie J, Liu S, Chang W, Tan X, Gu C, Lu W, Wang H, Bi S, Cui F, Liang X, Schaefer S, Cao G. Distribution and hepatocellular carcinoma-related viral properties of hepatitis B virus genotypes in Mainland China: a community-based study. Cancer Epidemiol Biomarkers Prev 2010;19:777-86.

    28. Chan HL, Hui AY, Wong ML, Tse AM, Hung LC, Wong VW, Sung JJ. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut 2004;53:1494-98.

    29. Yu MW, Yeh SH, Chen PJ, Liaw YF, Lin CL, Liu CJ, Shih WL, Kao JH, Chen D S, Chen CJ. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 2005;97:265-72.

    30. Kao JH, Chen PJ, Lai MY, Chen DS. Hepatitis B genotypes correlate with clinical outcomes in patients with chronic hepatitis B. Gastroenterology 2000;118:554-59.

    31. Yin J, Zhang H, Li C, Gao C, He Y, Zhai Y, Zhang P, Xu L, Tan X, Chen J, Cheng S, Schaefer S, Cao G. Role of hepatitis B virus genotype mixture, subgenotypes C2 and B2 on hepatocellular carcinoma: compared with chronic hepatitis B and asymptomatic carrier state in the same area. Carcinogenesis 2008;29:1685-91.

    32. Deng Y, Du Y, Zhang Q, Han X, Cao G. Human cytidine deaminases facilitate hepatitis B virus evolution and link inflammation andhepatocellular carcinoma. Cancer Lett 2014;343:161-71.

    33. Liu S, Xie J, Yin J, Zhang H, Zhang Q, Pu R, Li C, Ni W, Wang H, Cao G. A matched case-control study of hepatitis B virus mutations in the preS and core promoter regions associated independently with hepatocellular carcinoma. J Med Virol 2011;83:45-53.

    34. Xie JX, Zhao J, Yin JH, Zhang Q, Pu R, Lu WY, Zhang HW, Wang HY, Cao GW. Association of novel mutations and haplotypes in the preS region of hepatitis B virus with hepatocellular carcinoma. Front Med China 2010;4:419-29.

    35. Yuen MF, Tanaka Y, Fong D Y, Fung J, Wong D K, Yuen J C, But D Y, Chan A O, Wong B C, Mizokami M, Lai C L. Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B. J Hepatol 2009;50:80-8.

    36. Yin J, Wang J, Pu R, Xin H, Li Z, Han X, Ding Y, Du Y, Liu W, Deng Y, Ji X, Wu M, Yu M, Zhang H, Wang H, Thompson TC, Ni W, Cao G. Hepatitis B virus combo mutations improve the prediction and active prophylaxis of hepatocellular carcinoma: a clinic-based cohort study. Cancer Prev Res (Phila) 2015;8:978-88.

    37. Han YF, Zhao J, Ma LY, Yin JH, Chang WJ, Zhang HW, Cao GW. Factors predicting occurrence and prognosis of hepatitis-B-virus-related hepatocellular carcinoma. World J Gastroenterol 2011;17:4258-70.

    38. Chew V, Tow C, Teo M, Wong HL, Chan J, Gehring A, Loh M, Bolze A, Quek R, Lee VK, Lee KH, Abastado JP, Toh HC, Nardin A. Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J Hepatol 2010;52:370-9.

    39. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, Xu Y, Li YW, Tang ZY. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007;25:2586-93.

    40. Du Q, Zhang X, Cardinal J, Cao Z, Guo Z, Shao L, Geller DA. Wnt/ beta-catenin signaling regulates cytokine-induced human inducible nitric oxide synthase expression by inhibiting nuclear factor-kappaB activation in cancer cells. Cancer Res 2009;69:3764-71.

    41. Pan L, Yao M, Zheng W, Gu J, Yang X, Qiu L, Cai Y, Wu W, Yao D. Abnormality of Wnt3a expression as novel specifc biomarker for diagnosis and differentiation of hepatocellular carcinoma. Tumour Biol 2016;37:5561-8.

    42. Ding SL, Yang ZW, Wang J, Zhang XL, Chen XM, Lu FM. Integrative analysis of aberrant Wnt signaling in hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2015;21:6317-28.

    43. Fabregat I. Dysregulation of apoptosis in hepatocellular carcinoma cells. World J Gastroenterol 2009;15: 513-20.

    44. He Y, Zhang H, Yin J, Xie J, Tan X, Liu S, Zhang Q, Li C, Zhao J, Wang H, Cao G. IkappaBalpha gene promoter polymorphisms are associated with hepatocarcinogenesis in patients infected with hepatitis B virus genotype C. Carcinogenesis 2009;30:1916-22.

    45. Du Y, Han X, Pu R, Xie J, Zhang Y, Cao G. Association of miRNA-122-binding site polymorphism at the interleukin-1 alpha gene and its interaction with hepatitis B virus mutations with hepatocellular carcinoma risk. Front Med 2014;8:217-26.

    46. Han Y, Pu R, Han X, Zhao J, Li W, Yin J, Zhang Y, Shen Q, Xie J, Zhang Q, Jiang S, Li J, Zhang H, Wang H, Cao G. Association of a potential functional pre-miR-218 polymorphism and its interaction with hepatitis B virus mutations with hepatocellular carcinoma risk. Liver Int 2014;34:728-36.

    47. Ji X, Zhang Q, Li B, Du Y, Yin J, Liu W, Zhang H, Cao G. Impacts of human leukocyte antigen DQ genetic polymorphisms and their interactions with hepatitis B virus mutations on the risks of viral persistence, liver cirrhosis, and hepatocellular carcinoma. Infect Genet Evol 2014;28:201-9.

    48. Andrisani OM, Studach L, Merle P. Gene signatures in hepatocellular carcinoma (HCC). Semin Cancer Biol 2011;21:4-9.

    49. Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, Roberts LR, Demetris AJ, Sun Z, Nevens F, Roskams T, Thorgeirsson SS. A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 2006;12:410-6.

    50. Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, Kammula US, Chen Y, Qin LX, Tang ZY, Wang XW. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell 2006;10:99-111.

    51. Kaposi-Novak P, Lee JS, Gomez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Met-regulated expression signature defnes a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 2006;116:1582-95.

    52. Wang SM, Ooi LL, Hui KM. Identifcation and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma. Clin Cancer Res 2007;13:6275-83.

    53. Boyault S, Rickman DS, de Reynies A, Balabaud C, Rebouissou S, Jeannot E, Herault A, Saric J, Belghiti J, Franco D, Bioulac-Sage P, Laurent-Puig P, Zucman-Rossi J. Transcriptome classifcation of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007;45:42-52.

    54. Woo HG, Park ES, Cheon JH, Kim JH, Lee JS, Park BJ, Kim W, Park SC, Chung YJ, Kim BG, Yoon JH, Lee HS, Kim CY, Yi NJ, Suh KS, Lee KU, Chu IS, Roskams T, Thorgeirsson SS, Kim YJ. Gene expression-based recurrence prediction of hepatitis B virus-related human hepatocellular carcinoma. Clin Cancer Res 2008;14:2056-64.

    55. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J, Reich M, Chan JA, Glickman JN, Ikeda K, Hashimoto M, Watanabe G, Daidone MG, Roayaie S, Schwartz M, Thung S, Salvesen HB, Gabriel S, Mazzaferro V, Bruix J, Friedman SL, Kumada H, Llovet JM, Golub TR. Gene expression in fxed tissues and outcome in hepatocellular carcinoma. N Engl J Med 2008;359:1995-2004.

    56. Coulouarn C, Factor VM, Thorgeirsson SS. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology 2008;47:2059-67.

    57. Yoshioka S, Takemasa I, Nagano H, Kittaka N, Noda T, Wada H, Kobayashi S, Marubashi S, Takeda Y, Umeshita K, Dono K, Matsubara K, Monden M. Molecular prediction of early recurrence after resection of hepatocellular carcinoma. Eur J Cancer 2009;45:881-9.

    58. Woo HG, Lee JH, Yoon JH, Kim CY, Lee HS, Jang JJ, Yi NJ, Suh KS, Lee KU, Park ES, Thorgeirsson S S, Kim Y J. Identifcation of a cholangiocarcinoma-like gene expression trait in hepatocellular carcinoma. Cancer Res 2010;70:3034-41.

    59. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX, Wang XW. A unique metastasis gene signature enables prediction of tumor relapse in earlystage hepatocellular carcinoma patients. Cancer Res 2010;70:10202-12.

    60. Villanueva A, Hoshida Y, Battiston C, Tovar V, Sia D, Alsinet C, Cornella H, Liberzon A, Kobayashi M, Kumada H, Thung S N, Bruix J, Newell P, April C, Fan JB, Roayaie S, Mazzaferro V, Schwartz ME, Llovet JM. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 2011;140:1501-12.

    61. Minguez B, Hoshida Y, Villanueva A, Toffanin S, Cabellos L, Thung S, Mandeli J, Sia D, April C, Fan J B, Lachenmayer A, Savic R, Roayaie S, Mazzaferro V, Bruix J, Schwartz M, Friedman S L, Llovet JM. Gene-expression signature of vascular invasion in hepatocellularcarcinoma. J Hepatol 2011;55:1325-31.

    62. Weng L, Du J, Zhou Q, Cheng B, Li J, Zhang D, Ling C. Identification of cyclin B1 and Sec62 as biomarkers for recurrence in patients with HBV-related hepatocellular carcinoma after surgical resection. Mol Cancer 2012;11:39.

    63. Kim SM, Leem SH, Chu IS, Park YY, Kim SC, Kim SB, Park ES, Lim JY, Heo J, Kim YJ, Kim DG, Kaseb A, Park YN, Wang XW, Thorgeirsson SS, Lee JS. Sixty-fve gene-based risk score classifer predicts overall survival in hepatocellular carcinoma. Hepatology 2012;55:1443-52.

    64. Kim BY, Suh KS, Lee JG, Woo SR, Park IC, Park SH, Han CJ, Kim SB, Jeong S H, Yeom YI, Yang SJ, Kim CM, Cho SJ, Yoo YD, Cho MH, Jang JJ, Choi DW, Lee KH. Integrated analysis of prognostic gene expression profles from hepatitis B virus-positive hepatocellular carcinoma and adjacent liver tissue. Ann Surg Oncol 2012;19 Suppl 3:S328-38.

    65. Lim HY, Sohn I, Deng S, Lee J, Jung SH, Mao M, Xu J, Wang K, Shi S, Joh JW, Choi YL, Park CK. Prediction of disease-free survival in hepatocellular carcinoma by gene expression profling. Ann Surg Oncol 2013;20:3747-53.

    66. Kim JH, Sohn BH, Lee HS, Kim SB, Yoo JE, Park YY, Jeong W, Lee SS, Park E S, Kaseb A, Kim BH, Kim WB, Yeon JE, Byun KS, Chu IS, Kim SS, Wang XW, Thorgeirsson SS, Luk JM, Kang KJ, Heo J, Park YN, Lee JS. Genomic predictors for recurrence patterns of hepatocellular carcinoma: model derivation and validation. PLoS Med 2014;11:e1001770.

    67. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad I B, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, Clement B, Balabaud C, Chevet E, Laurent A, Couchy G, Letouze E, Calvo F, Zucman-Rossi J. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012;44:694-8.

    68. Kan Z, Zheng H, Liu X, Li S, Barber TD, Gong Z, Gao H, Hao K, Willard MD, Xu J, Hauptschein R, Rejto PA, Fernandez J, Wang G, Zhang Q, Wang B, Chen R, Wang J, Lee NP, Zhou W, Lin Z, Peng Z, Yi K, Chen S, Li L, Fan X, Yang J, Ye R, Ju J, Wang K, Estrella H, Deng S, Wei P, Qiu M, Wulur IH, Liu J, Ehsani ME, Zhang C, Loboda A, Sung WK, Aggarwal A, Poon RT, Fan ST, Wang J, Hardwick J, Reinhard C, Dai H, Li Y, Luk JM, Mao M. Wholegenome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res 2013;23:1422-33.

    69. Ahn SM, Jang SJ, Shim JH, Kim D, Hong SM, Sung CO, Baek D, Haq F, Ansari AA, Lee SY, Chun SM, Choi S, Choi HJ, Kim J, Kim S, Hwang S, Lee YJ, Lee J E, Jung WR, Jang HY, Yang E, Sung WK, Lee NP, Mao M, Lee C, Zucman-Rossi J, Yu E, Lee HC, Kong G. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratifcation. Hepatology 2014;60:1972-82.

    70. Schulze K, Imbeaud S, Letouze E, Alexandrov LB, Calderaro J, Rebouissou S, Couchy G, Meiller C, Shinde J, Soysouvanh F, Calatayud AL, Pinyol R, Pelletier L, Balabaud C, Laurent A, Blanc JF, Mazzaferro V, Calvo F, Villanueva A, Nault JC, Bioulac-Sage P, Stratton MR, Llovet JM, Zucman-Rossi J. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015;47:505-11.

    71. Totoki Y, Tatsuno K, Covington KR, Ueda H, Creighton CJ, Kato M, Tsuji S, Donehower LA, Slagle BL, Nakamura H, Yamamoto S, Shinbrot E, Hama N, Lehmkuhl M, Hosoda F, Arai Y, Walker K, Dahdouli M, Gotoh K, Nagae G, Gingras MC, Muzny DM, Ojima H, Shimada K, Midorikawa Y, Goss JA, Cotton R, Hayashi A, Shibahara J, Ishikawa S, Guiteau J, Tanaka M, Urushidate T, Ohashi S, Okada N, Doddapaneni H, Wang M, Zhu Y, Dinh H, Okusaka T, Kokudo N, Kosuge T, Takayama T, Fukayama M, Gibbs RA, Wheeler DA, Aburatani H, Shibata T. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet 2014;46:1267-73.

    72. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011;331:1559-64.

    73. Wu LJ, Pan YD, Pei XY, Chen H, Nguyen S, Kashyap A, Liu J, Wu J. Capturing circulating tumor cells of hepatocellular carcinoma. Cancer Lett 2012;326:17-22.

    74. Sun Y F, Xu Y, Yang XR, Guo W, Zhang X, Qiu SJ, Shi RY, Hu B, Zhou J, Fan J. Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology 2013;57:1458-68.

    75. Schulze K, Gasch C, Staufer K, Nashan B, Lohse AW, Pantel K, Riethdorf S, Wege H. Presence of EpCAM-positive circulating tumor cells as biomarker for systemic disease strongly correlates to survival in patients with hepatocellular carcinoma. Int J Cancer 2013;133:2165-71.

    76. Tang JC, Feng YL, Guo T, Xie AY, Cai XJ. Circulating tumor DNA in hepatocellular carcinoma: trends and challenges. Cell Biosci 2016;6:32.

    77. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011;11:426-37.

    78. Chan KC, Lai PB, Mok TS, Chan HL, Ding C, Yeung SW, Lo YM. Quantitative analysis of circulating methylated DNA as a biomarker for hepatocellular carcinoma. Clin Chem 2008;54:1528-36.

    79. Wen L, Li J, Guo H, Liu X, Zheng S, Zhang D, Zhu W, Qu J, Guo L, Du D, Jin X, Zhang Y, Gao Y, Shen J, Ge H, Tang F, Huang Y, Peng J. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients. Cell Res 2015;25:1376.

    80. Villar S, Le Roux-Goglin E, Gouas D A, Plymoth A, Ferro G, Boniol M, Lereau M, Bah E, Hall AJ, Wild CP, Mendy M, Norder H, van der Sande M, Whittle H, Friesen MD, Groopman JD, Hainaut P. Seasonal variation in TP53 R249S-mutated serum DNA with afatoxin exposure and hepatitis B virus infection. Environ Health Perspect 2011;119:1635-40.

    81. Szymanska K, Chen J G, Cui Y, Gong Y Y, Turner P C, Villar S, Wild C P, Parkin D M, Hainaut P. TP53 R249S mutations, exposure to afatoxin, and occurrence of hepatocellular carcinoma in a cohort of chronic hepatitis B virus carriers from Qidong, China. Cancer Epidemiol Biomarkers Prev 2009;18:1638-43.

    82. Hosny G, Farahat N, Tayel H, Hainaut P. Ser-249 TP53 and CTNNB1 mutations in circulating free DNA of Egyptian patients with hepatocellular carcinoma versus chronic liver diseases. Cancer Lett 2008;264:201-8.

    Prof. Guang-Wen Cao, Department of Epidemiology, Second Military Medical University, 800 Xiangyin Rd, Shanghai 200433, China. E-mail: gcao@smmu.edu.cn

    This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

    For reprints contact: service@oaepublish.com

    成人av一区二区三区在线看| 黄色视频不卡| 久久中文字幕人妻熟女| a级毛片在线看网站| 丝袜人妻中文字幕| 国产国语露脸激情在线看| 亚洲成a人片在线一区二区| x7x7x7水蜜桃| 国产人伦9x9x在线观看| 欧美乱码精品一区二区三区| 亚洲欧美日韩另类电影网站| 久久人人97超碰香蕉20202| 欧美av亚洲av综合av国产av| 一a级毛片在线观看| 在线永久观看黄色视频| 国产精品自产拍在线观看55亚洲 | 满18在线观看网站| 高清毛片免费观看视频网站 | 亚洲第一青青草原| 黄色视频,在线免费观看| 欧美在线一区亚洲| 制服诱惑二区| 亚洲avbb在线观看| 国产成人免费无遮挡视频| 免费在线观看视频国产中文字幕亚洲| 激情视频va一区二区三区| 日韩制服丝袜自拍偷拍| 亚洲精品美女久久久久99蜜臀| 国产成人精品在线电影| 91国产中文字幕| 首页视频小说图片口味搜索| 99精品在免费线老司机午夜| 老熟妇乱子伦视频在线观看| 纯流量卡能插随身wifi吗| 日本欧美视频一区| 国产精品一区二区在线观看99| 欧美在线一区亚洲| e午夜精品久久久久久久| 欧美精品av麻豆av| 欧美性长视频在线观看| 女人被躁到高潮嗷嗷叫费观| 丰满的人妻完整版| 性色av乱码一区二区三区2| 嫁个100分男人电影在线观看| av天堂在线播放| 黄色女人牲交| 性色av乱码一区二区三区2| 亚洲五月婷婷丁香| 欧美黄色淫秽网站| 精品国产乱子伦一区二区三区| 日韩免费高清中文字幕av| 国产精品1区2区在线观看. | 丝袜美腿诱惑在线| 久久九九热精品免费| 在线观看免费午夜福利视频| 成人18禁在线播放| 久久国产亚洲av麻豆专区| 高清欧美精品videossex| 亚洲精品成人av观看孕妇| 伊人久久大香线蕉亚洲五| 免费少妇av软件| 日韩欧美三级三区| 黑丝袜美女国产一区| 母亲3免费完整高清在线观看| 香蕉国产在线看| 日本一区二区免费在线视频| 中文字幕色久视频| 9色porny在线观看| 欧美性长视频在线观看| 午夜激情av网站| 日本欧美视频一区| 大香蕉久久网| a在线观看视频网站| 夜夜夜夜夜久久久久| 久久久久精品国产欧美久久久| 欧美最黄视频在线播放免费 | 如日韩欧美国产精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 高清在线国产一区| 欧美 亚洲 国产 日韩一| 91字幕亚洲| 一a级毛片在线观看| 久久香蕉国产精品| 久久精品亚洲av国产电影网| 色综合欧美亚洲国产小说| 久久国产精品人妻蜜桃| 亚洲国产精品合色在线| 国产日韩欧美亚洲二区| 中文字幕另类日韩欧美亚洲嫩草| 美女 人体艺术 gogo| 免费av中文字幕在线| 99久久99久久久精品蜜桃| 成人特级黄色片久久久久久久| 国产无遮挡羞羞视频在线观看| 欧美av亚洲av综合av国产av| 中文字幕人妻丝袜制服| 国产男女内射视频| 黄色毛片三级朝国网站| 国产野战对白在线观看| 午夜福利在线免费观看网站| 亚洲色图 男人天堂 中文字幕| 国产成人欧美在线观看 | 高潮久久久久久久久久久不卡| 99国产精品一区二区三区| 精品电影一区二区在线| 欧美黑人欧美精品刺激| 中亚洲国语对白在线视频| 老司机午夜十八禁免费视频| 怎么达到女性高潮| 亚洲欧美精品综合一区二区三区| 十八禁网站免费在线| 国产精华一区二区三区| 色综合欧美亚洲国产小说| 精品国产国语对白av| 日本黄色视频三级网站网址 | 久久久精品国产亚洲av高清涩受| 亚洲精品av麻豆狂野| 国产精品一区二区精品视频观看| 精品一品国产午夜福利视频| 狠狠婷婷综合久久久久久88av| 热99re8久久精品国产| 国产aⅴ精品一区二区三区波| 成人永久免费在线观看视频| 免费看a级黄色片| 国产一卡二卡三卡精品| 天天操日日干夜夜撸| 视频在线观看一区二区三区| 精品午夜福利视频在线观看一区| 窝窝影院91人妻| 久久国产精品影院| 国产av一区二区精品久久| 久久人妻熟女aⅴ| 国产极品粉嫩免费观看在线| 91老司机精品| 村上凉子中文字幕在线| 国产色视频综合| 一级毛片高清免费大全| 久久久精品免费免费高清| a在线观看视频网站| 啦啦啦在线免费观看视频4| 亚洲伊人色综图| 国产有黄有色有爽视频| 亚洲精品国产一区二区精华液| 久久精品熟女亚洲av麻豆精品| 国产成人精品无人区| 亚洲一区高清亚洲精品| 亚洲欧美日韩另类电影网站| 黑丝袜美女国产一区| 久久久久国产一级毛片高清牌| 50天的宝宝边吃奶边哭怎么回事| 国产无遮挡羞羞视频在线观看| 国产av一区二区精品久久| 日本a在线网址| 午夜老司机福利片| 午夜日韩欧美国产| 巨乳人妻的诱惑在线观看| 国产男女超爽视频在线观看| svipshipincom国产片| 国产精品乱码一区二三区的特点 | 很黄的视频免费| 免费一级毛片在线播放高清视频 | 99热网站在线观看| 在线观看免费高清a一片| 一进一出抽搐gif免费好疼 | 免费女性裸体啪啪无遮挡网站| 欧美丝袜亚洲另类 | cao死你这个sao货| 黄色a级毛片大全视频| 嫩草影视91久久| 满18在线观看网站| 丁香六月欧美| 午夜福利乱码中文字幕| 夜夜爽天天搞| 亚洲av片天天在线观看| 黄色女人牲交| 制服诱惑二区| 午夜免费鲁丝| 成年动漫av网址| 国内毛片毛片毛片毛片毛片| 色精品久久人妻99蜜桃| 亚洲国产欧美网| 天天躁夜夜躁狠狠躁躁| 亚洲,欧美精品.| 中文欧美无线码| 成人影院久久| 色婷婷久久久亚洲欧美| 日韩欧美三级三区| 国产成人影院久久av| 久久久国产一区二区| 婷婷成人精品国产| 99在线人妻在线中文字幕 | 999久久久精品免费观看国产| 一进一出好大好爽视频| 操出白浆在线播放| 亚洲av片天天在线观看| 巨乳人妻的诱惑在线观看| 制服诱惑二区| 精品国产国语对白av| 国产精品久久久久久精品古装| 精品国产一区二区三区久久久樱花| 很黄的视频免费| 国产成人欧美在线观看 | 成年动漫av网址| 两性夫妻黄色片| 9色porny在线观看| 黄色成人免费大全| 一个人免费在线观看的高清视频| 老司机午夜十八禁免费视频| 少妇猛男粗大的猛烈进出视频| 天堂俺去俺来也www色官网| 丰满迷人的少妇在线观看| 国产成人精品在线电影| 久久久水蜜桃国产精品网| 久久久久精品人妻al黑| 人成视频在线观看免费观看| 夜夜夜夜夜久久久久| 日韩一卡2卡3卡4卡2021年| 国产国语露脸激情在线看| 亚洲第一欧美日韩一区二区三区| 一级毛片精品| 精品国产乱子伦一区二区三区| 老司机亚洲免费影院| 欧美国产精品va在线观看不卡| 一二三四在线观看免费中文在| 精品国内亚洲2022精品成人 | 新久久久久国产一级毛片| av不卡在线播放| 欧美乱码精品一区二区三区| 在线观看日韩欧美| e午夜精品久久久久久久| 19禁男女啪啪无遮挡网站| 国产乱人伦免费视频| 妹子高潮喷水视频| 嫩草影视91久久| 在线观看一区二区三区激情| 欧美黑人精品巨大| 免费在线观看完整版高清| 午夜福利在线免费观看网站| 极品教师在线免费播放| 制服诱惑二区| 99精品久久久久人妻精品| 亚洲五月婷婷丁香| 国产精品免费一区二区三区在线 | 国产精品秋霞免费鲁丝片| 久久午夜亚洲精品久久| 免费在线观看亚洲国产| 午夜久久久在线观看| 黄色怎么调成土黄色| 黄片播放在线免费| 亚洲精品久久午夜乱码| 亚洲免费av在线视频| tocl精华| 丰满的人妻完整版| 欧美黑人欧美精品刺激| 亚洲精品久久成人aⅴ小说| 精品久久久久久,| 国产日韩欧美亚洲二区| 无遮挡黄片免费观看| 日韩 欧美 亚洲 中文字幕| 亚洲第一青青草原| 亚洲中文av在线| 中文字幕人妻丝袜制服| 精品福利永久在线观看| 成人亚洲精品一区在线观看| 国产亚洲欧美在线一区二区| 国产午夜精品久久久久久| 亚洲色图 男人天堂 中文字幕| 日日爽夜夜爽网站| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看| 窝窝影院91人妻| ponron亚洲| 亚洲精品自拍成人| 成人精品一区二区免费| 一级a爱片免费观看的视频| 69精品国产乱码久久久| 欧美乱色亚洲激情| 在线永久观看黄色视频| 操美女的视频在线观看| av免费在线观看网站| 国产av一区二区精品久久| 十分钟在线观看高清视频www| 美国免费a级毛片| 99re在线观看精品视频| 成人国语在线视频| 一区二区三区激情视频| cao死你这个sao货| 久久 成人 亚洲| 国产成人欧美| 国产黄色免费在线视频| 啦啦啦视频在线资源免费观看| 麻豆成人av在线观看| 精品国产超薄肉色丝袜足j| av免费在线观看网站| 精品国产超薄肉色丝袜足j| 妹子高潮喷水视频| 丰满饥渴人妻一区二区三| 美女国产高潮福利片在线看| 午夜激情av网站| 高清欧美精品videossex| 女性被躁到高潮视频| 一级黄色大片毛片| 欧美日韩黄片免| 人人妻,人人澡人人爽秒播| 午夜福利乱码中文字幕| 天堂动漫精品| 免费在线观看完整版高清| 亚洲久久久国产精品| 天堂动漫精品| 18在线观看网站| 久久久精品国产亚洲av高清涩受| 首页视频小说图片口味搜索| 国产精品永久免费网站| 免费一级毛片在线播放高清视频 | 亚洲第一av免费看| 一区福利在线观看| 亚洲成人国产一区在线观看| 美女高潮到喷水免费观看| 午夜亚洲福利在线播放| 69av精品久久久久久| 嫁个100分男人电影在线观看| 一级片免费观看大全| 欧美激情高清一区二区三区| 亚洲人成77777在线视频| 亚洲av第一区精品v没综合| 亚洲国产精品一区二区三区在线| 电影成人av| 色精品久久人妻99蜜桃| 国产成人av教育| e午夜精品久久久久久久| 欧美另类亚洲清纯唯美| 欧美最黄视频在线播放免费 | 国产97色在线日韩免费| 悠悠久久av| 国内毛片毛片毛片毛片毛片| 亚洲情色 制服丝袜| 久热这里只有精品99| 美女 人体艺术 gogo| 国产精品1区2区在线观看. | 美女扒开内裤让男人捅视频| 午夜视频精品福利| 夜夜爽天天搞| 成年版毛片免费区| 亚洲九九香蕉| 色播在线永久视频| 欧美激情 高清一区二区三区| 国产成人免费观看mmmm| 精品国产超薄肉色丝袜足j| 亚洲av熟女| 夜夜躁狠狠躁天天躁| av中文乱码字幕在线| 人人妻人人澡人人看| 黄色成人免费大全| 亚洲熟妇中文字幕五十中出 | 人人妻人人添人人爽欧美一区卜| 国产亚洲精品第一综合不卡| 别揉我奶头~嗯~啊~动态视频| 欧美日韩精品网址| 亚洲av日韩精品久久久久久密| 在线播放国产精品三级| 久久人人97超碰香蕉20202| a级毛片在线看网站| 美女福利国产在线| 人妻一区二区av| 最新在线观看一区二区三区| 女同久久另类99精品国产91| 午夜亚洲福利在线播放| 亚洲 欧美一区二区三区| av中文乱码字幕在线| 中亚洲国语对白在线视频| 精品国产国语对白av| 丝瓜视频免费看黄片| 精品熟女少妇八av免费久了| 又紧又爽又黄一区二区| 国产精品自产拍在线观看55亚洲 | 日韩成人在线观看一区二区三区| 欧美黄色淫秽网站| 午夜视频精品福利| 一级片免费观看大全| 国产精品1区2区在线观看. | 免费观看人在逋| 女人爽到高潮嗷嗷叫在线视频| a级片在线免费高清观看视频| 国产国语露脸激情在线看| 亚洲专区国产一区二区| 亚洲精品中文字幕一二三四区| 欧美日韩瑟瑟在线播放| 亚洲中文av在线| 国产99久久九九免费精品| 日韩精品免费视频一区二区三区| 女人精品久久久久毛片| 欧美av亚洲av综合av国产av| 久99久视频精品免费| 国产成人免费无遮挡视频| 色94色欧美一区二区| 黄色丝袜av网址大全| 国产高清视频在线播放一区| 国产精品美女特级片免费视频播放器 | 身体一侧抽搐| 久久天躁狠狠躁夜夜2o2o| 久久精品亚洲精品国产色婷小说| 亚洲av日韩精品久久久久久密| www.精华液| 国产不卡av网站在线观看| 免费在线观看亚洲国产| 超碰97精品在线观看| 亚洲色图 男人天堂 中文字幕| 女性被躁到高潮视频| 久久精品国产亚洲av高清一级| 窝窝影院91人妻| 亚洲精品一二三| 久久久久久久久免费视频了| 精品人妻在线不人妻| 中文字幕最新亚洲高清| 午夜福利欧美成人| 国产精华一区二区三区| 免费在线观看影片大全网站| a级片在线免费高清观看视频| 一区在线观看完整版| av片东京热男人的天堂| 亚洲av欧美aⅴ国产| x7x7x7水蜜桃| 免费观看精品视频网站| av线在线观看网站| 99国产综合亚洲精品| 欧美黄色淫秽网站| 在线观看舔阴道视频| 美女视频免费永久观看网站| 亚洲第一青青草原| 亚洲一区高清亚洲精品| 午夜日韩欧美国产| www.自偷自拍.com| 美女高潮到喷水免费观看| 99riav亚洲国产免费| 久久午夜综合久久蜜桃| 欧美性长视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区在线观看99| e午夜精品久久久久久久| 飞空精品影院首页| 岛国毛片在线播放| 久久久久久亚洲精品国产蜜桃av| 少妇粗大呻吟视频| 电影成人av| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区视频了| 欧美日韩中文字幕国产精品一区二区三区 | 午夜精品在线福利| www.自偷自拍.com| 国产不卡一卡二| 欧美成狂野欧美在线观看| 日日爽夜夜爽网站| 久久精品国产a三级三级三级| 亚洲熟女精品中文字幕| 亚洲午夜理论影院| 精品人妻熟女毛片av久久网站| 午夜成年电影在线免费观看| 91成人精品电影| bbb黄色大片| 欧美性长视频在线观看| 亚洲,欧美精品.| 国产精品久久电影中文字幕 | 亚洲伊人色综图| 99精品久久久久人妻精品| 超碰97精品在线观看| 黄片大片在线免费观看| 一级黄色大片毛片| 大香蕉久久成人网| av线在线观看网站| 午夜成年电影在线免费观看| 国产一区二区三区综合在线观看| 又黄又粗又硬又大视频| 中亚洲国语对白在线视频| 老司机靠b影院| av片东京热男人的天堂| 纯流量卡能插随身wifi吗| 免费观看a级毛片全部| 夫妻午夜视频| 国产成人av教育| 王馨瑶露胸无遮挡在线观看| 亚洲精品国产区一区二| 中文字幕人妻丝袜一区二区| 交换朋友夫妻互换小说| 少妇的丰满在线观看| 欧美激情久久久久久爽电影 | 老司机靠b影院| 亚洲熟妇熟女久久| 欧美人与性动交α欧美精品济南到| 欧美日韩精品网址| 欧美激情 高清一区二区三区| 精品国产一区二区久久| 99国产精品一区二区三区| 亚洲,欧美精品.| 精品午夜福利视频在线观看一区| 国产精品综合久久久久久久免费 | tocl精华| 亚洲精品一卡2卡三卡4卡5卡| 一级,二级,三级黄色视频| 91精品国产国语对白视频| 黄色 视频免费看| 日本a在线网址| 国产精品永久免费网站| 国产av一区二区精品久久| 欧美日韩一级在线毛片| 国产1区2区3区精品| 国产一区在线观看成人免费| 午夜精品久久久久久毛片777| 亚洲成人手机| av中文乱码字幕在线| 欧美激情极品国产一区二区三区| 久99久视频精品免费| 亚洲国产欧美网| 久久狼人影院| 欧美乱妇无乱码| 丁香六月欧美| 天天躁狠狠躁夜夜躁狠狠躁| 男人的好看免费观看在线视频 | 欧美精品av麻豆av| 亚洲五月色婷婷综合| 一本一本久久a久久精品综合妖精| 精品久久久久久电影网| 91九色精品人成在线观看| 亚洲精品国产精品久久久不卡| 电影成人av| 国产亚洲欧美精品永久| 国产乱人伦免费视频| 日韩三级视频一区二区三区| 黑人猛操日本美女一级片| 三上悠亚av全集在线观看| 在线观看免费日韩欧美大片| 亚洲av成人一区二区三| 国产xxxxx性猛交| 欧美黄色淫秽网站| 丰满饥渴人妻一区二区三| 精品国产一区二区三区久久久樱花| 日韩欧美在线二视频 | 另类亚洲欧美激情| 精品欧美一区二区三区在线| 天天躁夜夜躁狠狠躁躁| a级毛片在线看网站| 一级毛片高清免费大全| 午夜福利在线免费观看网站| 黄片播放在线免费| 波多野结衣av一区二区av| 欧美精品一区二区免费开放| 动漫黄色视频在线观看| cao死你这个sao货| 亚洲国产欧美网| 国产精品香港三级国产av潘金莲| 国产精品久久电影中文字幕 | 成人av一区二区三区在线看| 久久久久久久精品吃奶| 少妇猛男粗大的猛烈进出视频| 自线自在国产av| 极品人妻少妇av视频| 欧美性长视频在线观看| 亚洲中文日韩欧美视频| av视频免费观看在线观看| 热99re8久久精品国产| 午夜91福利影院| 亚洲精品美女久久av网站| 精品国产一区二区久久| av天堂在线播放| 一级,二级,三级黄色视频| 亚洲精品国产色婷婷电影| 亚洲成人免费电影在线观看| 久久精品国产a三级三级三级| 久久久久久免费高清国产稀缺| 国产淫语在线视频| 久久性视频一级片| 欧美激情久久久久久爽电影 | 又黄又爽又免费观看的视频| 精品久久久久久,| 大香蕉久久成人网| 欧美 亚洲 国产 日韩一| 国产不卡一卡二| 99热网站在线观看| 欧美黑人精品巨大| 视频区图区小说| 欧美亚洲日本最大视频资源| 日韩中文字幕欧美一区二区| 免费看a级黄色片| 狠狠婷婷综合久久久久久88av| 老司机亚洲免费影院| 日韩欧美免费精品| 精品一区二区三区av网在线观看| 国产野战对白在线观看| av在线播放免费不卡| 一级作爱视频免费观看| 国产精品久久久久久精品古装| 欧美黑人欧美精品刺激| 国产成人免费观看mmmm| 美国免费a级毛片| 啦啦啦 在线观看视频| 亚洲自偷自拍图片 自拍| 亚洲中文av在线| 久久精品亚洲av国产电影网| 国产亚洲av高清不卡| 亚洲国产精品一区二区三区在线| 亚洲国产欧美网| 午夜福利免费观看在线| 高清av免费在线| 欧美日韩亚洲高清精品| 国产精品偷伦视频观看了| 亚洲午夜精品一区,二区,三区| а√天堂www在线а√下载 | 免费av中文字幕在线| 午夜福利欧美成人| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av香蕉五月 | 一边摸一边抽搐一进一出视频| 黄色视频不卡| 高清欧美精品videossex| 亚洲av电影在线进入| 黄色毛片三级朝国网站|