• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Progress of Intelligent Monitoring Technology for Wheat Fusarium Head Blight

    2021-11-11 21:26:43QixunSUN
    Asian Agricultural Research 2021年3期

    Qixun SUN

    University of Washington, Bothell 98011, USA

    Abstract Fusarium head blight is one of the most important diseases affecting wheat yield and quality. It is of great significance to carry out intelligent monitoring of wheat Fusarium head blight for high yield, high quality and sustainable development of wheat. On the basis of identifying the harms of wheat Fusarium head blight, this paper analyzed the monitoring technology of wheat Fusarium head blight based on satellite remote sensing, hyperspectral, near-infrared, Internet of things and photoelectric system, to provide a reference for the intelligent monitoring of wheat Fusarium head blight.

    Key words Wheat, Fusarium head blight, Hazard, Intelligent monitoring

    1 Introduction

    Fusarium

    head blight (FHB) is a worldwide disease caused by

    Fusarium

    asiaticum

    and

    F

    .

    graminearium

    . It mainly occurs in warm and humid areas. The wheat producing areas in the middle and lower reaches of the Yangtze River and spring wheat areas in eastern Northeast China are the main epidemic areas of FHB. China is the country with the greatest wheat FHB damage in the world, with an annual affected area of 7.5 million ha, accounting for 1/4 of the total wheat area in the country. The annual yield loss caused by FHB is 2 million to 3 million t. The wheat areas in the middle and lower reaches of the Yangtze River are the most frequently affected areas of wheat FHB. In ordinary years, the FHB damage can cause a yield loss of 10%-15%, and in epidemic years, the yield loss can be up to 50% or even no harvest.

    2 Hazard of wheat FHB

    Wheat FHB is also called ear blight rot, bad wheat head, wheat ear rot or red wheat head. The disease can harm every growth stage of wheat and cause spike rot, stalk rot, seedling rot, stalk rot, among which spike rot brings the greatest harm and loss in China. It is an important basis for comprehensive control of wheat FHB to find out the yield loss of wheat FHB and work out reasonable control indexes. In the past, the method of selecting individual plants with different disease grades to measure the yield was used to study the damage loss of wheat scab, but there was a great difference between individual plants. In addition, it was difficult to find out the single plant of different grades with the same panicle size in the same field at the same time, and the single plant of different fields was difficult to compare with each other due to the difference of fertility density and variety. According to the study of Song Fengxian

    et

    al

    ., in general, when the disease index increased by l%, the yield loss rate increased by about 0.5%; when the head rate of disease increased by 1.3%, the rate of disease grain increased by about 0.5%. Xiang Zepan

    et

    al

    .believed that with the global warming and the change of farming systems such as straw returning to the field and no-tillage cultivation, the occurrence area of wheat FHB in China rapidly expanded from the Yangtze River Basin to the northwest and north China. In recent years, there had been serious outbreaks of barley and wheat FHB in Hebei, Henan, Shandong, Shanxi and Shaanxi provinces and some other regions. Especially in 2008 and 2010, the scab was seriously prevalent in China, and the northern provinces also suffered serious losses.

    2 Intelligent monitoring technology of wheat FHB

    2.1 Satellite remote sensing monitoring technology

    At present, there were few studies on the application of satellite remote sensing in wheat scab monitoring. Yin Wen

    et

    al

    .combined HJ satellite remote sensing images with field experimental data and used different mathematical modeling methods to construct an estimation model for winter wheat FHB, aiming to explore a comprehensive meteorological factor and remote sensing factor estimation model for winter wheat scab, which could directly reflect the incidence of winter wheat scab from space. The results showed that there was an exponential correlation between winter wheat scab index and NDVI relative humidity and biomass, a linear correlation with LAI, and a power exponential correlation with temperature. The fitting results of the multiple linear regression model constructed were relatively ideal. Jin Zhengting

    et

    al

    .used multiple linear regression between wheat growth parameters and climatic factors and the disease index of FHB to establish an estimation model of FHB. The model was tested with data outside the modeling, and a comparison diagram of 1∶1 between the predicted value and the measured value was generated. RMSE was 1.412. The model had high accuracy and could be applied to the estimation of winter wheat FHB in the heading to flowering stage. Li Weiguo

    et

    al

    .established the remote sensing estimation model of winter wheat scab disease index based on interactions between spectral information and climatic factors, combining 5 sensitive factors

    i

    .

    e

    . NDVI, RVI, DVI, mean daily temperature of 5 d and average daily relative humidity of 5 d. The estimated value of the model was consistent with the measured value, root mean square error (RMSE) is 5.3%, and the estimation accuracy was 90.46%. It showed that the estimation model in this study could effectively estimate winter wheat FHB.

    2.2 Hyperspectral monitoring technology

    Hyperspectral data can be divided into imaging hyperspectral data and non-imaging hyperspectral data. The imaging hyperspectral technology effectively combines the spectral information representing the internal attributes of the target with the image information reflecting the external attributes of the target, which not only greatly improves the information richness, but also provides the possibility for more effective and reasonable analysis and processing of the spectral data in terms of theoretical research. Non-imaging hyperspectral data can be obtained by the portable ground object spectrometer (ASD), which mainly measures the spectral reflectance of the target in the band range of 350-2 500 nm. Compared with the imaging high spectral spectrometer, the number of bands obtained is more, and it is suitable for remote sensing monitoring of regional scale diseases and insect pests.

    On the spike scale, imaging hyperspectral spikes were used to collect hyperspectral image data of wheat spikes of different disease severity, and the classification model of wheat FHB severity was constructed by combining spectral features and image features. On the canopy scale, a non-imaging ground feature spectrometer was used to collect healthy and diseased wheat canopy hyperspectral data as research objects. Using random frog jumping (RF), competitive adaptive weighted resampling (CARS), and Variable combination cluster analysis (VCPA) three-variable screening method. Based on particle swarm algorithm optimized support vector machine, different wheat canopy FHB disease surveillance models were constructed and compared.

    In the aspect of wheat FHB symptom recognition, Bauriegel Elke

    et

    al

    .used principal component analysis (PCA) and spectral Angle mapping (SAM) to model hyperspectral processing, and the diagnostic accuracy of FHB could reach 87%. Jin Xiu

    et

    al

    .based on two typical structures of deep convolutional neural networks, convolutional neural networks with different depths were constructed to compare the training and testing results of hyperspectral data point sets of wheat FHB. The results showed that the deep neural network based on VGG could effectively extract the hyperspectral characteristics of wheat FHB. Jayme Garcia

    et

    al

    .presented an algorithm for automatic detection of FHB in wheat kernels using HIS(hyperspectral imaging). The goal was to develop a simple and accurate algorithm which gave as output an index that can be interpreted as the likelihood of the kernel being infected by FHB. With the classification accuracy above 91%, the developed algorithm was robust to factors such as shape, orientation, shadowing and clustering of kernels. Zhang

    et

    al

    . proposed a specific FHB classification index (FCI) for detection of this disease in wheat. The final FCI was FCI=0.25×[2(R668-R417)-R539], with an overall classification accuracy of 89.80%. The FCI was tested for its ability to detect and classify the healthy and diseased areas of wheat spikelets through comparison with six commonly used SVIs (simple spectral vegetation indices), and its disease identification accuracy is almost 30% higher than that of the best-performing SVI.In terms of wheat FHB grain identification, standard normal variable transform (SNV) and multiple scatter correction (MSC) methods were used for spectral data pretreatment,and continuous projection algorithm (CARS) and the positive adaptive weighted (SPA) algorithm were used to select wavelength. The results showed that the determination coefficients (R2) of MSC-SPA and SNV-SPA were 0.901 9 and 0.900 6, respectively, the root mean square errors were 0.223 8 and 0.223 2, respectively, and the numbers of selected wavelength were 7 and 5, respectively. Support vector machine (SVM) and BP neural network algorithms were used for modeling. The results showed that the accuracy of the four models were above 90%. Liu Shuang

    et

    al

    .using hyperspectral imaging system combined with machine learning, proposed an algorithm for rapid visual recognition of a large number of wheat FHB grain samples. 400 healthy wheat samples and 400 infected wheat samples were collected from the position of the mask image, of which 75% were used for the modeling set and 25% for the test set. The classification model was established by cross validation method, linear discriminant analysis (LDA), k-nearest neighbor algorithm (KNN) and support vector machine (SVM), and the accuracy of the test set reached more than 90%.

    2.3 Near-infrared monitoring technology

    The near-infrared spectral characteristics of an organism are the essential reflection of its surface optical characteristics and intrinsic component chemical properties. A comparison between two VIS-NIR spectral based systems performed in laboratory vs. infield for the early detection of

    Fusarium

    head blight infection in two cultivars of durum wheat (Creso and Simeto) was carried out. Using the Euclidean distance matrix cladogram results for the laboratory, three models were used considering spectral data from GS70, GS71+GS73, GS75, while for in-field data from GS70+GS71 and GS73+GS75. In the laboratory good performance of classification (86%) was observed at GS71+GS73

    i

    .

    e

    ., only 8-10 d after the infection. The in-field measurement showed a lower percentage of correct classification at the same growth stages. Guan Erqi

    et

    al

    .based on near-infrared spectroscopy, grain samples of wheat varieties were analyzed, and stoichiometric methods such as Ward method cluster analysis and principal component analysis were adopted to construct SIMCA identification model for wheat grains infected with FHB and uninfected wheat grains. The results of model diagnosis and validation showed that the correct recognition rate of SIMCA model for wheat grains infected with FHB and uninfected wheat grains was 100%, and the recognition effect was good.Short-wave Infrared (SWIR) spectroscopy is similar to near-infrared spectroscopy, and it is also an important direction of modern spectroscopic analysis technique. Zhang Jian

    et

    al

    .obtained spectral images of wheat scab samples by short-wave infrared spectrometer, and analyzed and processed the data. The experimental data showed that there were significant differences in the spectral line data between wheat seeds with scab disease and healthy wheat seeds in the spectral range of 1 350-1 600 nm, which proved that the application of short-wave infrared imaging spectroscopy technology in the detection of wheat scab has a certain degree of application.

    2.4 Internet of Things monitoring technology

    The wheat FHB monitoring based on the Internet of Things(IoT) is to monitor and recognize the symptoms of wheat FHB in the field by using image acquisition, data transmission, image recognition and other technologies, which is real-time and convenient. The study of Yuan Dongzhen

    et

    al

    .showed that the monitoring and early warning system of wheat scab could issue early warning information one week before wheat flowering, with a prediction accuracy of 94.4%. The system operated stably and had a high degree of automation. The study of Huang Chong

    et

    al

    .showed that the average accuracy of forecasting the diseased ears rate and the epidemic level of

    Fusarium

    head blight were 79.9% and 74.5%, respectively. The average forecast accuracy of the epidemic level in the Huanghuai wheat planted area was 84.3%, which was higher than that of 67.1% in the Yangtze River valley. The average forecast accuracy of the diseased ears rate was 86.8% in the Huanghuai wheat planted area, which was also higher than that of 73.0% in the Yangtze River valley. The model had a good short-term early warning effect on

    Fusarium

    head blight in the Huanghuai wheat planted area. The IoT monitoring technology of wheat FHB cannot be separated from the prediction model. Zhang Pingping

    et

    al

    . established a prediction model of wheat FHB disease head rate in Guanzhong based on the density of husk-producing straw, and based on this, developed a forecaster and an automatic monitoring and early warning system for wheat FHB based on the IoT. Song Rui

    et

    al

    .installed wheat scab predictors in Jiangsu, Shaanxi, Henan, Hubei, and Anhui, 18 counties (cities), and uncontrolled wheat fields were set in the surrounding areas to investigate the scab, and the accuracy of the automatic monitoring and early warning system for wheat scab was evaluated by comparing with the prediction results of the early warning software platform. The evaluation results showed that the prediction accuracy of the system reached 71.8% in 2018.

    2.5 Other monitoring technologies

    He Liuqin

    et

    al

    ., through the comparison of domestic and foreign technologies in the grain detection industry, found the superiority of the photoelectric detection system in the field of detection, and combined with the theoretical study of photoelectric detection, put forward the design scheme of the photoelectric detection system for wheat grain FHB. The prototype test results showed that the system was not only fast and efficient, but also had high stability and good real-time performance, which provided a reliable theoretical basis and technical support for the development and application of photoelectric detection technology in wheat FHB.

    3 Conclusions

    Once wheat FHB occurs, it will exert a great influence on the wheat yield and quality. In order to reduce the loss caused by scab to wheat production, effective monitoring and prevention should be carried out. With the continuous development of modern information technology, the intelligent monitoring technology is becoming more and more mature, and the monitoring method of wheat FHB will be gradually improved, and the accuracy will also be continuously improved, so as to ensure the high yield, high quality, ecology and sustainable development of wheat.

    香蕉av资源在线| 国产主播在线观看一区二区| 欧美在线黄色| 午夜影院日韩av| 欧美精品啪啪一区二区三区| 在线看三级毛片| 欧美激情在线99| 丰满人妻一区二区三区视频av| 欧美bdsm另类| 午夜福利欧美成人| 女同久久另类99精品国产91| av黄色大香蕉| 中文字幕精品亚洲无线码一区| 日韩高清综合在线| 久久性视频一级片| 嫩草影院入口| 精品人妻视频免费看| 又紧又爽又黄一区二区| 亚洲人成网站高清观看| 国产精品久久久久久久久免 | 免费人成视频x8x8入口观看| 国产精品av视频在线免费观看| 国产爱豆传媒在线观看| 少妇高潮的动态图| 99久久精品一区二区三区| 欧美一级a爱片免费观看看| 中文字幕久久专区| 欧美高清性xxxxhd video| 欧美xxxx黑人xx丫x性爽| 黄片小视频在线播放| 精品久久久久久,| 最新中文字幕久久久久| 精品久久久久久,| 此物有八面人人有两片| 一本综合久久免费| a级一级毛片免费在线观看| 男女那种视频在线观看| 国产久久久一区二区三区| 亚洲在线自拍视频| 男女那种视频在线观看| 91麻豆av在线| 国产真实乱freesex| 亚洲精品粉嫩美女一区| 免费av毛片视频| 国产一区二区激情短视频| 国产精品1区2区在线观看.| 日本成人三级电影网站| 伦理电影大哥的女人| 看片在线看免费视频| 国产av麻豆久久久久久久| 别揉我奶头 嗯啊视频| 亚洲人成网站在线播| 老女人水多毛片| 日韩大尺度精品在线看网址| 99久国产av精品| 在线免费观看不下载黄p国产 | 亚洲美女视频黄频| 久久精品国产清高在天天线| 在线观看午夜福利视频| 一级毛片aaaaaa免费看小| 国产大屁股一区二区在线视频| 女人久久www免费人成看片| 少妇被粗大猛烈的视频| 精品少妇久久久久久888优播| 亚洲va在线va天堂va国产| 最后的刺客免费高清国语| 久久ye,这里只有精品| 日韩精品有码人妻一区| 街头女战士在线观看网站| 日韩不卡一区二区三区视频在线| 少妇人妻一区二区三区视频| 免费播放大片免费观看视频在线观看| 一个人观看的视频www高清免费观看| 成人二区视频| 黄色一级大片看看| 国产真实伦视频高清在线观看| 一级片'在线观看视频| 久久久久久久午夜电影| 亚洲精品国产色婷婷电影| 亚洲怡红院男人天堂| 国产午夜精品久久久久久一区二区三区| 欧美亚洲 丝袜 人妻 在线| 2022亚洲国产成人精品| av播播在线观看一区| 亚洲欧洲国产日韩| 黑人高潮一二区| 日本猛色少妇xxxxx猛交久久| 亚洲av一区综合| 国产老妇伦熟女老妇高清| 亚洲精品一区蜜桃| 色5月婷婷丁香| 欧美激情久久久久久爽电影| 亚洲国产日韩一区二区| 波多野结衣巨乳人妻| 欧美97在线视频| 国产在线男女| 97超碰精品成人国产| h日本视频在线播放| 永久免费av网站大全| 久久99蜜桃精品久久| 亚洲av中文av极速乱| 欧美精品人与动牲交sv欧美| 身体一侧抽搐| 蜜臀久久99精品久久宅男| av免费观看日本| 少妇人妻久久综合中文| 日本av手机在线免费观看| 美女视频免费永久观看网站| 国产高清不卡午夜福利| 久久精品国产自在天天线| 国产国拍精品亚洲av在线观看| 久久人人爽人人爽人人片va| 国产精品久久久久久精品电影| 在线观看一区二区三区| 男女下面进入的视频免费午夜| 欧美bdsm另类| 激情五月婷婷亚洲| 国产精品久久久久久精品古装| 天堂网av新在线| 国产毛片在线视频| kizo精华| 亚洲最大成人中文| 久久久久国产网址| 天堂中文最新版在线下载 | 男人舔奶头视频| 国产男人的电影天堂91| 一区二区三区四区激情视频| 禁无遮挡网站| 老司机影院成人| 亚洲av免费高清在线观看| 高清欧美精品videossex| 在线免费观看不下载黄p国产| 国产日韩欧美亚洲二区| 中文在线观看免费www的网站| 熟女av电影| 一区二区三区精品91| 大码成人一级视频| 狂野欧美激情性xxxx在线观看| 少妇的逼好多水| 亚洲精品色激情综合| 亚洲精品色激情综合| 亚洲精品久久午夜乱码| 性插视频无遮挡在线免费观看| 好男人在线观看高清免费视频| 国产久久久一区二区三区| 午夜视频国产福利| 日韩,欧美,国产一区二区三区| 午夜免费男女啪啪视频观看| 亚洲av成人精品一区久久| 97超碰精品成人国产| 国产熟女欧美一区二区| 夫妻性生交免费视频一级片| 国内少妇人妻偷人精品xxx网站| 国产精品一及| av在线播放精品| 18禁在线无遮挡免费观看视频| 日韩免费高清中文字幕av| 日韩 亚洲 欧美在线| a级毛色黄片| 久久精品国产a三级三级三级| 国产精品不卡视频一区二区| 在线看a的网站| 国产 一区精品| 99久久精品热视频| 国产成年人精品一区二区| 欧美bdsm另类| 少妇的逼好多水| av国产久精品久网站免费入址| 中文欧美无线码| 欧美日韩视频精品一区| 亚洲aⅴ乱码一区二区在线播放| 国产综合懂色| 1000部很黄的大片| 七月丁香在线播放| 国产av国产精品国产| 99久久精品国产国产毛片| 国产亚洲av嫩草精品影院| 国产精品国产三级国产专区5o| 天堂俺去俺来也www色官网| 涩涩av久久男人的天堂| 日韩在线高清观看一区二区三区| 大话2 男鬼变身卡| 欧美性猛交╳xxx乱大交人| 亚洲国产成人一精品久久久| 国产午夜精品一二区理论片| 午夜福利在线观看免费完整高清在| 午夜福利高清视频| 国产精品偷伦视频观看了| 国产午夜精品久久久久久一区二区三区| av免费在线看不卡| 成人漫画全彩无遮挡| 51国产日韩欧美| 欧美97在线视频| av天堂中文字幕网| 亚洲熟女精品中文字幕| 国产成人福利小说| 久久影院123| 午夜亚洲福利在线播放| 国产精品嫩草影院av在线观看| 国产精品蜜桃在线观看| 尾随美女入室| 亚洲欧美精品自产自拍| 精品国产三级普通话版| 亚洲aⅴ乱码一区二区在线播放| av在线老鸭窝| 日韩av在线免费看完整版不卡| av国产精品久久久久影院| 中文字幕免费在线视频6| 亚洲国产日韩一区二区| 久久久亚洲精品成人影院| 3wmmmm亚洲av在线观看| 一边亲一边摸免费视频| 久久久国产一区二区| 日韩欧美精品免费久久| 国产一级毛片在线| 欧美人与善性xxx| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 五月天丁香电影| 亚洲精品乱码久久久v下载方式| 亚洲av成人精品一区久久| 亚洲国产日韩一区二区| 全区人妻精品视频| av播播在线观看一区| 亚洲内射少妇av| 久久久久精品性色| 日日摸夜夜添夜夜添av毛片| 2021天堂中文幕一二区在线观| a级毛片免费高清观看在线播放| 好男人视频免费观看在线| 国产美女午夜福利| 欧美高清性xxxxhd video| 亚洲,欧美,日韩| 免费观看在线日韩| 久久久久精品久久久久真实原创| 日韩免费高清中文字幕av| videos熟女内射| 亚洲av二区三区四区| 日韩一本色道免费dvd| 最新中文字幕久久久久| 少妇的逼好多水| 美女cb高潮喷水在线观看| 国产高清三级在线| 国产黄片美女视频| 视频区图区小说| 一个人观看的视频www高清免费观看| 精品视频人人做人人爽| 中文天堂在线官网| 麻豆国产97在线/欧美| 少妇猛男粗大的猛烈进出视频 | 日韩欧美一区视频在线观看 | 大片免费播放器 马上看| 男人爽女人下面视频在线观看| 高清在线视频一区二区三区| 男人舔奶头视频| 插阴视频在线观看视频| 人人妻人人爽人人添夜夜欢视频 | 干丝袜人妻中文字幕| 国产色婷婷99| 国产一区二区三区综合在线观看 | 亚洲精品第二区| 亚洲无线观看免费| 久久99热这里只有精品18| 久久午夜福利片| 秋霞在线观看毛片| 成人一区二区视频在线观看| 夜夜看夜夜爽夜夜摸| 日韩伦理黄色片| 观看美女的网站| 欧美3d第一页| 中文资源天堂在线| 国产精品一及| 男人和女人高潮做爰伦理| 黄色欧美视频在线观看| 九草在线视频观看| 亚洲精品aⅴ在线观看| 99热网站在线观看| 观看美女的网站| 97精品久久久久久久久久精品| 精品久久久噜噜| 国产有黄有色有爽视频| 啦啦啦中文免费视频观看日本| 国产色婷婷99| 国产精品国产三级专区第一集| 亚洲av一区综合| 国产视频内射| 人妻制服诱惑在线中文字幕| 婷婷色麻豆天堂久久| 一边亲一边摸免费视频| 下体分泌物呈黄色| 欧美日本视频| 国产高潮美女av| 精品久久久久久久久av| 在线免费观看不下载黄p国产| 全区人妻精品视频| 久久影院123| 日本三级黄在线观看| 国产免费福利视频在线观看| 亚洲人与动物交配视频| 别揉我奶头 嗯啊视频| www.av在线官网国产| eeuss影院久久| 久久久久久久午夜电影| 成人免费观看视频高清| 亚洲精品影视一区二区三区av| 日韩一区二区三区影片| 国产成人a区在线观看| 你懂的网址亚洲精品在线观看| 国产国拍精品亚洲av在线观看| 亚洲国产精品成人久久小说| 久久久久久久亚洲中文字幕| 在线看a的网站| 成人特级av手机在线观看| 亚洲精品456在线播放app| 99re6热这里在线精品视频| 汤姆久久久久久久影院中文字幕| 啦啦啦在线观看免费高清www| 禁无遮挡网站| 在线观看人妻少妇| 久久久久久九九精品二区国产| 久久久精品94久久精品| 下体分泌物呈黄色| 中文资源天堂在线| 九九久久精品国产亚洲av麻豆| 黄色视频在线播放观看不卡| 天堂中文最新版在线下载 | 欧美极品一区二区三区四区| 日本免费在线观看一区| 亚州av有码| 亚洲精品日本国产第一区| 可以在线观看毛片的网站| 日本-黄色视频高清免费观看| 久久精品综合一区二区三区| 美女视频免费永久观看网站| 亚洲av二区三区四区| 黑人高潮一二区| 美女高潮的动态| 在线a可以看的网站| 一级a做视频免费观看| 乱系列少妇在线播放| 色5月婷婷丁香| 亚洲av.av天堂| 婷婷色综合www| 国产 一区 欧美 日韩| 中文天堂在线官网| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区在线观看99| 免费观看性生交大片5| 国产毛片在线视频| 国产成人福利小说| 18禁动态无遮挡网站| 在线a可以看的网站| 亚州av有码| 精品人妻熟女av久视频| 国产成人午夜福利电影在线观看| 亚洲欧美日韩无卡精品| 国产高清国产精品国产三级 | 一区二区三区乱码不卡18| 新久久久久国产一级毛片| 亚洲精品乱码久久久久久按摩| 国产精品熟女久久久久浪| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花 | 国产中年淑女户外野战色| 一级爰片在线观看| 午夜福利在线观看免费完整高清在| 夫妻午夜视频| 麻豆精品久久久久久蜜桃| 国产一区二区三区综合在线观看 | 日本黄大片高清| 卡戴珊不雅视频在线播放| 精品视频人人做人人爽| 3wmmmm亚洲av在线观看| 国产av国产精品国产| 精品99又大又爽又粗少妇毛片| 老司机影院毛片| 少妇丰满av| 18禁在线无遮挡免费观看视频| 午夜免费观看性视频| 亚洲天堂av无毛| 久久99热这里只频精品6学生| tube8黄色片| 亚洲精品成人久久久久久| 国产视频内射| 亚洲欧美精品专区久久| 免费看日本二区| 黄片wwwwww| 高清毛片免费看| 亚洲国产精品专区欧美| 新久久久久国产一级毛片| 亚洲一级一片aⅴ在线观看| 久久久久久久大尺度免费视频| 欧美精品人与动牲交sv欧美| 一个人观看的视频www高清免费观看| 国产高清三级在线| 在线观看av片永久免费下载| 一级毛片电影观看| 人妻系列 视频| 国产黄片美女视频| 国产成人精品婷婷| a级毛色黄片| 我的老师免费观看完整版| 一级毛片我不卡| 黄色一级大片看看| 午夜激情久久久久久久| 欧美高清性xxxxhd video| 在线观看av片永久免费下载| 久久影院123| 久久久久久久国产电影| 国产午夜福利久久久久久| 欧美性感艳星| 97在线人人人人妻| 亚洲精品视频女| 免费观看的影片在线观看| 国产高清不卡午夜福利| 色视频在线一区二区三区| 大又大粗又爽又黄少妇毛片口| 97人妻精品一区二区三区麻豆| 久久韩国三级中文字幕| av在线老鸭窝| 亚洲天堂av无毛| 精品久久久久久久久av| 国产精品伦人一区二区| 永久网站在线| 男人和女人高潮做爰伦理| av在线蜜桃| 18禁裸乳无遮挡免费网站照片| 国产毛片a区久久久久| 色哟哟·www| 成人二区视频| 亚洲欧美一区二区三区黑人 | 一区二区三区四区激情视频| 亚洲av中文字字幕乱码综合| 亚洲综合色惰| 国产精品久久久久久久久免| 欧美精品人与动牲交sv欧美| 欧美xxxx黑人xx丫x性爽| 91精品一卡2卡3卡4卡| 国产精品秋霞免费鲁丝片| 日韩 亚洲 欧美在线| 国产毛片a区久久久久| 国产一区二区亚洲精品在线观看| 熟妇人妻不卡中文字幕| 久久99蜜桃精品久久| 欧美xxxx性猛交bbbb| av在线蜜桃| 性色avwww在线观看| 国产又色又爽无遮挡免| 久久99热这里只有精品18| av女优亚洲男人天堂| 五月开心婷婷网| 麻豆国产97在线/欧美| 男女那种视频在线观看| 少妇人妻 视频| 国产黄色视频一区二区在线观看| 成人亚洲欧美一区二区av| 国产国拍精品亚洲av在线观看| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 黄色视频在线播放观看不卡| 中文欧美无线码| 晚上一个人看的免费电影| 汤姆久久久久久久影院中文字幕| 国产精品熟女久久久久浪| 成人亚洲欧美一区二区av| 搡老乐熟女国产| 日本与韩国留学比较| av在线天堂中文字幕| 久久久久久久久久成人| 久久精品综合一区二区三区| 大又大粗又爽又黄少妇毛片口| 视频区图区小说| 美女视频免费永久观看网站| 成人毛片60女人毛片免费| 久久99热这里只频精品6学生| 亚洲三级黄色毛片| 26uuu在线亚洲综合色| 国产亚洲一区二区精品| 亚洲精品视频女| 国产亚洲精品久久久com| 黄色配什么色好看| 国国产精品蜜臀av免费| 天堂网av新在线| 少妇的逼好多水| 国产精品99久久久久久久久| 亚洲va在线va天堂va国产| 男女啪啪激烈高潮av片| 中文字幕免费在线视频6| xxx大片免费视频| 97超碰精品成人国产| 亚洲精品久久午夜乱码| 日韩,欧美,国产一区二区三区| 在线观看美女被高潮喷水网站| 国产在线男女| 国产av不卡久久| 一级黄片播放器| 精品国产露脸久久av麻豆| 色视频在线一区二区三区| 国产高清三级在线| 国产精品av视频在线免费观看| 三级国产精品片| 22中文网久久字幕| 午夜老司机福利剧场| 岛国毛片在线播放| 欧美性感艳星| 日韩欧美一区视频在线观看 | av国产免费在线观看| 建设人人有责人人尽责人人享有的 | 最近的中文字幕免费完整| 免费看光身美女| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品乱码久久久久久按摩| 99久国产av精品国产电影| 欧美+日韩+精品| 激情五月婷婷亚洲| av专区在线播放| 视频中文字幕在线观看| 亚洲第一区二区三区不卡| 韩国高清视频一区二区三区| 日韩大片免费观看网站| kizo精华| 日日摸夜夜添夜夜爱| 在线a可以看的网站| 18禁裸乳无遮挡免费网站照片| 五月开心婷婷网| 欧美日韩视频高清一区二区三区二| 直男gayav资源| 国产一区二区三区av在线| 国产 精品1| 午夜福利在线观看免费完整高清在| 性色avwww在线观看| 插逼视频在线观看| 午夜福利视频精品| 久久久久久久久久人人人人人人| 一二三四中文在线观看免费高清| 国产欧美亚洲国产| 色播亚洲综合网| 亚洲色图av天堂| 久久久久九九精品影院| 国产精品成人在线| 一级爰片在线观看| 久久99热这里只频精品6学生| 午夜福利在线观看免费完整高清在| 亚洲成人一二三区av| 亚洲一级一片aⅴ在线观看| 麻豆成人av视频| 99久国产av精品国产电影| 哪个播放器可以免费观看大片| 欧美97在线视频| 免费观看无遮挡的男女| 日本免费在线观看一区| 国产成人aa在线观看| 欧美日韩视频精品一区| 99热这里只有精品一区| 亚洲伊人久久精品综合| 久久久久久久久久久丰满| 久久99热这里只有精品18| 伊人久久国产一区二区| www.色视频.com| 日日啪夜夜爽| 丰满人妻一区二区三区视频av| 极品少妇高潮喷水抽搐| 亚洲欧美精品专区久久| 久久精品久久久久久久性| 久久99蜜桃精品久久| 美女视频免费永久观看网站| 五月伊人婷婷丁香| 国产日韩欧美亚洲二区| 爱豆传媒免费全集在线观看| 国产一区二区三区综合在线观看 | 中文字幕人妻熟人妻熟丝袜美| 激情五月婷婷亚洲| 日韩,欧美,国产一区二区三区| 欧美xxxx黑人xx丫x性爽| 成人毛片a级毛片在线播放| 99热全是精品| 日韩伦理黄色片| 国产在线一区二区三区精| 大码成人一级视频| 国产伦精品一区二区三区四那| 色哟哟·www| 波多野结衣巨乳人妻| 国产高清国产精品国产三级 | 国产免费一区二区三区四区乱码| 亚洲国产日韩一区二区| 精品久久久久久久末码| 亚洲第一区二区三区不卡| a级毛色黄片| 国产男人的电影天堂91| 一个人看的www免费观看视频| 中文乱码字字幕精品一区二区三区| 精品国产三级普通话版| 日韩成人伦理影院| 男人和女人高潮做爰伦理| 亚洲欧美成人综合另类久久久| 亚洲欧美成人精品一区二区| 国产精品熟女久久久久浪| 亚洲欧洲国产日韩| av在线亚洲专区| 亚洲国产色片| 久久99蜜桃精品久久| 久久久久久久久久久丰满| 久久人人爽人人爽人人片va| 91精品一卡2卡3卡4卡| 欧美性猛交╳xxx乱大交人| 国产成人精品福利久久| 亚洲va在线va天堂va国产| 午夜福利网站1000一区二区三区| 亚洲人与动物交配视频| 亚洲真实伦在线观看| 日本黄色片子视频| 又大又黄又爽视频免费| 国产在线一区二区三区精| 黑人高潮一二区| 日韩成人伦理影院|