• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    P-Indeterminate Vector Similarity Measures of Orthopair Neutrosophic Number Sets and Their Decision-Making Method with Indeterminate Degrees

    2021-11-08 08:07:34MailingZhaoandJunYe

    Mailing Zhao and Jun Ye,2,★

    1Department of Electrical Engineering and Automation,Shaoxing University,Shaoxing,312000,China

    2School of Civil and Environmental Engineering,Ningbo University,Ningbo,315211,China

    ABSTRACT In the complexity and indeterminacy of decision making (DM) environments, orthopair neutrosophic number set(ONNS)presented by Ye et al.can be described by the truth and falsity indeterminacy degrees.Then,ONNS demonstrates its advantages in the indeterminate information expression,aggregations, and DM problems with some indeterminate ranges.However,the existing research lacks some similarity measures between ONNSs.They are indispensable mathematical tools and play a crucial role in DM,pattern recognition, and clustering analysis.Thus,it is necessary to propose some similarity measures between ONNSs to supplement the gap.To solve the issue,this study firstly proposes the p-indeterminate cosine measure,p-indeterminate Dice measure,p-indeterminate Jaccard measure of ONNSs(i.e.,the three parameterized indeterminate vector similarity measures of ONNSs)in vector space.Then,a DM method based on the parameterized indeterminate vector similarity measures of ONNSs is developed to solve indeterminate multiple attribute DM problems by choosing different indeterminate degrees of the parameter p,such as the small indeterminate degree(p=0)or the moderate indeterminate degree(p=0.5)or the big indeterminate degree (p=1).Lastly,an actual DM example on choosing a suitable logistics supplier is provided to demonstrate the flexibility and practicability of the developed DM approach in indeterminate DM problems.By comparison with existing relative DM methods,the superiority of this study is that the established DM approach indicates its flexibility and suitability depending on decision makers’indeterminate degrees(decision risks)in ONNS setting.

    KEYWORDS Orthopair neutrosophic number set; p-indeterminate vector similarity measure; p-indeterminate cosine measure; p-indeterminate Dice measure; p-indeterminate Jaccard measure; decision making

    1 Introduction

    Since intuitionistic fuzzy sets (IFSs) [1] were proposed by Atanassov in incomplete and uncertain situations, they have been wildly applied in various fields [2-8].Particularly, similarity measures play important roles in decision making (DM), pattern recognition, and clustering analysis.For instance, various similarity measures of IFSs, such as the Dice measures and the cosine measures of IFSs [9-12], were proposed and used for DM problems in IFS setting.Then,many researchers [13-17] also introduced different similarity measures of IFSs and applied them to pattern recognitions.Also, the Jaccard and Dice measures of IFSs [18,19] were presented and applied to clustering analyses.

    It is known that IFS is depicted by both the truth membership degree and the falsity membership degree.Then, it can be also denoted as an orthopair fuzzy set regarding the truth and falsity membership degrees.There may be a situation where the sum of the truth membership degree and falsity membership degree are more than one.To solve this issue, Yager [20,21] presented the Pythagorean fuzzy set (PFS) as the extension of IFS.Then Wei et al.[22] introduced the cosine similarity measure of PFSs and applied them in pattern recognition and medical diagnosis.Nguyen et al.[23] introduced exponential similarity measures of PFSs and utilized them in pattern recognition and DM problems.As the further extension of IFS and PFS, Yager et al.[24,25]proposed the concept of q-rung orthopair fuzzy set (q-ROFS), which gives decision makers more flexibility to represent the information expression range of the truth and falsity membership degrees by choosing a suitable value of the parameterq.Then, Liu et al.[26] introduced some cosine similarity measures and distance measures between q-ROFSs and used them for DM problems in orthopair fuzzy setting.

    Due to the complexity and indeterminacy of current DM environments, IFS, PFS, and q-ROFS also indicate some limitations in describing the decision information.For instance, if decision makers believe that their truth and falsity membership degrees contain their partial determinacy and partial indeterminacy owing to their hesitancy, inconsistence, and indeterminacy.In the partial certain and partial uncertain situations, IFS, PFS, and q-ROFS cannot express them.Then, a neutrosophic number (NN) [27-29] composed of its certain termaand its uncertain termbIcan effectively express the partial certain and partial uncertain information, which is denoted asu=a+bIfor indeterminacyI∈[I-,I+] anda,b∈R(all real numbers).The NNu=a+bIchanges with the changes ofI∈[I-,I+], which implies a changeable interval number depending on the interval ranges ofI∈[I-,I+].Therefore, NN is more suitable for indeterminate information expression and applications in indeterminate environments [30,31], which shows its advantage.Based on the hybrid concept of both IFS and NN, Ye et al.[32] originally proposed orthopair indeterminate sets/neutrosophic number sets (OISs/ONNSs) and their aggregation operators, then applied them to multiple attribute DM problems under indeterminate environments.Although the indeterminate DM method introduced in [32] demonstrated its advantages in the indeterminate information expression, aggregations and decision process, the existing research [32]lacks a similarity measure between ONNSs, which is an essential mathematical tool and plays a crucial role in DM, pattern recognition, and clustering analysis.Therefore, it is necessary to propose some similarity measures between ONNSs to supplement the gap.To do so, we propose the p-indeterminate cosine measure, p-indeterminate Dice measure, p-indeterminate Jaccard measure of ONNSs in vector space (the three parameterized indeterminate vector similarity measures/p-indeterminate vector similarity measures of ONNSs).Then, we develop a DM method based on the proposed p-indeterminate vector similarity measures of ONNSs to solve indeterminate DM problems with the small indeterminate degree (p= 0) or the moderate indeterminate degree(p= 0.5) or the big indeterminate degree (p= 1) specified by decision makers.However, the developed DM method not only gives decision makers much more flexibility to express the information of the troth and falsity indeterminacy degrees by choosing the value/range of the indeterminacyI∈[I-,I+], but also deals with indeterminate DM problems by choosing the indeterminate degrees ofpby the decision makers, which show its evident advantages.

    The rest of the paper is indicated below.Section 2 introduces preliminaries of IFS, NN and ONNS.Section 3 proposes the p-indeterminate cosine measure, p-indeterminate Dice measure,p-indeterminate Jaccard measure of ONNSs in vector space.In Section 4, a DM method based on the p-indeterminate vector similarity measures of ONNSs is developed to solve indeterminate DM problems with the small indeterminate degree (p= 0) or the moderate indeterminate degree(p= 0.5) or the big indeterminate degree (p= 1) of the decision makers.In Section 5, an actual DM example on choosing a suitable logistics supplier is provided to demonstrate the flexibility and efficiency of the developed DM approach in indeterminate DM problems.Conclusions and further study are contained in Section 6.

    2 Preliminaries of IFS,NN and ONNSs

    Since there are the indeterminacies of the truth membership degree and the falsity membership degree in the real-life situations, Ye et al.[32] proposed an ONNS concept based on hybrid concepts of IFS and NN as the generalization of the IFS concept in incomplete and indeterminate situations.

    Under incomplete and uncertain situations, an IFSDin a universe setX= {x1,x2,...,xn}is defined as the following form [1]:

    whereTD(xi) ∈[0, 1] andFD(xi) ∈[0, 1] forxk∈X(k= 1, 2,...,n) are the truth membership degree and the falsity membership degree of the elementxktoD, respectively, such that the condition 0 ≤TD(xk) +FD(xk) ≤1.Then, IFS can be also considered as an orthopair fuzzy number, denoted by 〈TD(xk),FD(xk)〉.

    In indeterminate situations, NN [27-29] is defined asu=a+bIfor indeterminacyI∈[I-,I+] anda,b∈R, whereais its certain term andbIis its uncertain term.NN indicates either a single valueu=a+bIforI=I-=I+or an interval numberu= [a+bI-,a+bI+] forI= [I-,I+].Especially, there isu=aifbI= 0 (no indeterminate term) oru=bIifa= 0 (no determinate term).Obviously, one does not doubt the superiority of NN over the unique interval expression due to its expressional flexibility in determinate and/or indeterminate cases.

    Regarding the hybrid concept of IFS and NN, Ye et al.[32] defined ONNS to express the orthopair indeterminate information composed of both truth indeterminate degrees and falsity indeterminate degrees.

    Definition 2.1[32].LetX= {x1,x2,...,xn} be a fixed universe set.An ONNSOis defined as the following form:

    For convenient representation, the component 〈xk,TO(xk,I),FO(xk,I)〉 in the ONNSOforxk∈X(k= 1, 2,...,n) andI∈[I-,I+] is denoted simply by 〈Tk(I),Fk(I)〉=〈ak+bkI,ck+dkI〉,which is called the orthopair NN (ONN).

    Obviously, the ONNSOis reduced to the IFS or interval-valued IFS as a special case of the ONNSOcorresponding to some specified single value or interval value ofI∈[I-,I+].In fact, ONNS can be considered as an IFS (orthopair fuzzy set) family or an interval-valued IFS(orthopair interval-valued fuzzy set) family depending on a group of single values or interval values ofI∈[I-,I+].

    Seto1=andforI∈[I-,I+] as two ONNs.Then, there exist the following relations [32]:

    (6)αo1=〈[1-(1-inf(I))α,1-(1-supT1(I))α],[(infF1(I))α,(supF1(I))α]〉forα >0;

    (7)oα1=〈[(infT1(I))α,(supT1(I))α],[1-(1-inf(I))α,1-(1-sup ~F1(I))α]〉forα >0.

    Setok=forI∈[I-,I+] (k= 1, 2,...,n) as a group of ONNs.Then, Ye et al.[32] proposed the ONN weighted arithmetic averaging (ONNWAA) and ONN weighted geometric averaging (ONNWGA) operators:

    whereαk∈[0, 1] (k= 1, 2,...,n) is the weight ofokfor

    For any ONNok=〈Tk(I),Fk(I)〉=〈ak+bkI,ck+dkI〉forI∈[I-,I+], Ye et al.[32] defined its score and accuracy functions withI∈[I-,I+], respectively, as follows:

    Regarding the two functionsS(ok) andH(ok), the ranking method of two ONNsok==〈ak+bkI,ck+dkI〉(k= 1, 2) forI∈[I-,I+] is defined as the following laws [32]:

    (1)o1>o2ifS(o1) >S(o2);

    (2)o1>o2ifS(o1) =S(o2) andH(o1) >H(o2);

    (3)o1=o2ifS(o1) =S(o2) andH(o1) =H(o2).

    3 New p-Indeterminate Vector Similarity Measures of ONNSs

    This section presents new p-indeterminate vector similarity measures of ONNSs in vector space, including the p-indeterminate cosine measure, p-indeterminate Dice measure, and p-indeterminate Jaccard measure of ONNSs.

    Definition 3.1.SetO1= {o11,o12,...,o1n}andO2= {o21,o22,...,o2n} as two ONNSs, where=〈a1k+b1kI,c1k+d1kI〉ando2k=〈T2k(I),F2k(I)〉=〈a2k+b2kI,c2k+d2kI〉are ONNs forI∈[I-,I+].Letp∈[0, 1] be an indeterminate parameter.Then, the p-indeterminate vector similarity measures between ONNSsO1andO2with indeterminate degrees ofp∈[0, 1]are presented as the following p-indeterminate cosine measure, p-indeterminate Dice measure and p-indeterminate Jaccard measure:

    Especially whenpis specified as any value, the p-indeterminate cosine measure,p-indeterminate Dice measure and p-indeterminate Jaccard measure are reduced to the cosine measure [15], Dice measure [19] and Jaccard measure [18] of IFSs, respectively.Hence, based on the properties of the vector similarity measures [15,18,19], the p-indeterminate cosine measure,p-indeterminate Dice measure and p-indeterminate Jaccard measure also obviously contain the following properties:

    (1)Cp(O1,O2) =Cp(O2,O1),Dp(O1,O2) =Dp(O2,O1) andJp(O1,O2) =Jp(O2,O1);

    (2)Cp(O1,O2) =Dp(O1,O2) =Jp(O1,O2) = 1 ifO1=O2;

    (3)Cp(O1,O2),Dp(O1,O2),Jp(O1,O2) ∈[0, 1].

    When the importance of each ONNojk(j= 1, 2;k= 1, 2,...,n) inO1andO2is taken into account and specified by its weightαkwith 0 ≤αk≤ 1 and= 1, the weighted p-indeterminate cosine measure, weighted p-indeterminate Dice measure, and weighted p-indeterminate Jaccard measure of ONNSsO1andO2can be given, respectively, as follows:

    Obviously, the weighted p-indeterminate cosine, weighted p-indeterminate Dice and weighted p-indeterminate Jaccard measures also contain the following properties:

    (1)Cwp(O1,O2) =Cwp(O2,O1),Dwp(O1,O2) =Dwp(O2,O1) andJwp(O1,O2) =Jwp(O2,O1);

    (2)Cwp(O1,O2) =Dwp(O1,O2) =Jwp(O1,O2) = 1 ifO1=O2;

    (3)Cwp(O1,O2),Dwp(O1,O2),Jwp(O1,O2) ∈[0, 1].

    However, the weighted p-indeterminate cosine measure of ONNSs, the weighted p-indeterminate Dice measure of ONNSs and the weighted p-indeterminate Jaccard measure of ONNSs imply the cosine measure family of IFSs, the Dice measure family of IFSs, and the Jaccard measure family of IFSs, respectively, regarding a group ofpvalues, then the existing cosine,Dice and Jaccard measures of IFSs [15,18,19] are the special cases of the three p-indeterminate vector similarity measures (4)-(6) corresponding to the each value ofp∈[0, 1].It is obvious that the parameterized indeterminate vector similarity measures of ONNs with indeterminate degrees ofp∈[0, 1] show their measure flexibility in different indeterminate ranges ofIand indeterminate degrees ofp.

    4 DM Method Using the Proposed p-Indeterminate Vector Similarity Measures of ONNSs

    This section develops a multiple attribute DM method with indeterminate degrees (decision risks) of decision makers based on the proposed p-indeterminate vector similarity measures under ONNS environment.

    Regarding a multiple attribute DM problem, there is a set of alternativesL= {L1,L2,...,Lm}, which is assessed by a set of attributesX= {x1,x2,...,xn}.Then, the weight of eachxkis specified byαkwith 0 ≤αk≤1 and=1.Decision makers are required to satisfactorily assess each alternativeLj(j= 1, 2,...,m) with respect to each attributexk(k= 1, 2,...,n)by the ONNojk=where ~Tjk(I)=ajk+bjkI?[0,1] andandI∈[I-,I+] are the truth and falsity indeterminate degrees.Thus, all ONNs can be constructed as the decision matrix of ONNsO= (ojk)m×n.

    To solve multiple attribute DM problems with ONN information, we present a multiple attribute DM method using the weighted p-indeterminate vector similarity measures (the weighted p-indeterminate cosine, weighted p-indeterminate Dice, weighted p-indeterminate Jaccard measures) with indeterminate degrees ofp∈[0, 1] specified by decision makers and give the following decision steps:

    Step 1:An ideal solution/alternativeis yielded from the decision matrixOby the ideal ONNs2,...,m) forI∈[I-,I+].

    Step 2:By applying one of Eqs.(8)-(10) corresponding to the small indeterminate degree(p= 0) or the moderate indeterminate degree (p= 0.5) or the big indeterminate degree (p= 1) of the decision makers, the weighted p-indeterminate cosine measure or the weighted p-indeterminate Dice measure or the weighted p-indeterminate Jaccard measure betweenOj(j= 1, 2,...,m) andO* is presented by the following formula:

    Step 3:The alternatives are ranked and the best one is chosen corresponding to the values of the weighted p-indeterminate vector similarity measure according to the indeterminate degreep= 0 orp= 0.5 orp= 1 specified by the decision makers.

    Step 4:End.

    5 Actual DM Example

    5.1 Multiple Attribute DM Problem on Choosing a Suitable Logistics Supplier

    A suitable third part logistics supplier is selected to play a key role because it can improve efficiency, market share and service quality and reduce costs in business development.In this section, we consider a multiple attribute DM problem on choosing a suitable logistics supplier as the third part for a manufacturing company to show the practicability and effectiveness of the proposed DM method in ONNS setting.

    Suppose that four possible logistics suppliers are chosen as a set of their alternativesL={L1,L2,L3,L4} for a manufacturing company, which must be evaluated by the three requirements/attributes:the efficiency (x1), the service quality (x2), and the cost (x3).Then, the weight vector of the three attributes is given asα= (0.35, 0.32, 0.33).Thus, the satisfactory assessment of each alternativeLj(j= 1, 2, 3, 4) are given over the attributesxk(k= 1, 2, 3) by decision makers, and then the assessment information of the truth indeterminacy degree and the falsity indeterminacy degree is expressed as the ONNojk=where(I)=ajk+bjkI?[0,1],(I)=cjk+djkI?[0,1], and 0 ≤sup3, 4 andk= 1, 2, 3) for the indeterminacyI∈[0, 1].Thus, all ONNs can be established as their decision matrix:

    Therefore, the developed DM approach is applied in the indeterminate DM problem withI∈[0, 1] and indicated by the following decision process:

    First of all, an ideal solution/alternativeO*=={〈0.8,0.1〉,〈0.8,0.1〉,〈0.8,0.0〉} is obtained from the decision matrixOforI∈[I-,I+] = [0, 1].

    Then by applying one of Eqs.(11)-(13) regarding the small indeterminate degree (p= 0) or the moderate indeterminate degree (p= 0.5) or the big indeterminate degree (p= 1) presented by the decision makers, the values of the weighted p-indeterminate cosine measure or the weighted p-indeterminate Dice measure or the weighted p-indeterminate Jaccard measure betweenOj(j=1, 2,...,m) andO* and decision results are shown in Tab.1.

    Table 1:Decision results regarding the p-indeterminate vector similarity measures

    As for decision results in Tab.1, the ranking orders and the best alternatives obtained by the weighted p-indeterminate Dice measure and the weighted p-indeterminate Jaccard measure are identical and then both indicates their sensitivity and ranking changeability corresponding to the different indeterminate degrees (p= 0, 0.5, 1); while the ranking order and the best alternative obtained by the weighted p-indeterminate cosine measure are different from the ones obtained by both the weighted p-indeterminate Dice measure and the weighted p-indeterminate Jaccard measure and indicate some robustness corresponding to the different indeterminate degrees (p= 0,0.5, 1).But, the weighted p-indeterminate cosine measure lacks some sensitivity to the different indeterminate degrees.From the perspective of decision flexibility, the weighted p-indeterminate Dice measure and the weighted p-indeterminate Jaccard measure are superior to the weighted p-indeterminate cosine measure.Then, their final decision results indicate that the best alternative isL1orL4depending on an indeterminate degree and a similarity measure specified by the decision makers.

    5.2 Comparison with Related DM Methods

    In the setting of IFSs, existing vector similarity measures of IFSs in the literature [15,18,19]only are the special cases of the proposed p-indeterminate vector similarity measures of ONNSs whenptakes some specified indeterminate degree (i.e.,p= 0 or 0.5 or 1).Then, the DM method based on the proposed p-indeterminate vector similarity measures shows its better flexibility and practicability depending on decision makers’indeterminate degrees in indeterminate DM problems, while the existing related DM methods [15,18,19] cannot deal with the indeterminate DM problems with ONNS information.Therefore, the developed DM method is more generalized suitability and superior to the existing DM methods, and also shows the advantages in its flexibility,efficiency and practicability under indeterminate DM environments.

    To compare the proposed DM method with the existing DM method [32] in the setting of ONNSs, we apply the existing DM method [32] to the above DM example in the setting of ONNSs.By using Eqs.(1) and (2), the aggregated values of the ONNWAA and ONNWGA operators are calculated when the indeterminate ranges areI= [I-,I+] = [0, 0], [0, 0.5], [0, 1].Then, the score values ofS(oj) (j= 1, 2, 3, 4) are calculated by Eq.(3) and the decision results are shown in Tabs.2 and 3, respectively.

    Table 2:Decision results exiting DM method using the ONNWAA operator and score function [32]

    Table 3:Decision results of exiting DM method using the ONNWGA operator and score function [32]

    From the ranking results of Tabs.2 and 3, the exiting DM method [32] reflects ranking difference based on the ONNWAA operator and the ONNWGA operator.Then, two kinds of ranking orders are always unchanged corresponding to different indeterminate rangesI= [I-,I+]= [0, 0], [0, 0.5], [0, 1], which demonstrates no sensitivity to the different indeterminate ranges.Obviously, the indeterminate ranges cannot affect the ranking order of alternatives in the DM example under the environment of ONNSs.

    Compared with the proposed DM method, there is the same ranking order between the exiting DM method using the ONNWGA operator and score function [32] and the proposed DM method using Eqs.(12) and (13) for the indeterminate degree ofp= 0, but the other ranking orders show their difference.Then, the best alternativeL1orL4is the same between the proposed DM method and the existing one [32] in the DM example.However, the proposed DM method shows its advantages in some decision flexibility and efficiency corresponding to decision makers’various indeterminate degrees (decision risks).But the existing DM method cannot result in the ranking change of alternatives corresponding to decision makers’different indeterminate ranges in the DM example, and then it lacks the decision flexibility, which show its insufficiency.Therefore, it is obvious that the proposed DM method is superior to the existing one in indeterminate DM problems with ONNS information.

    6 Conclusion

    Due to the lack of similarity measures of ONNSs in the existing literature [32], this study proposed the p-indeterminate vector similarity measures of ONNSs, including the p-indeterminate cosine measure, the p-indeterminate Dice measure, and the p-indeterminate Jaccard measure of ONNSs to provide effective mathematical tools for flexible DM in indeterminate problems.Then,a multiple attribute DM approach with the different indeterminate degrees (p= 0, 0.5, 1) of the decision makers was developed by using the p-indeterminate vector similarity measures under the indeterminate DM environment.Lastly, an actual DM example on choosing a suitable logistics supplier was presented to demonstrate the flexibility, efficiency and practicability of the developed DM approach in indeterminate DM situations.By comparison with the existing DM methods,the superiority of this study is that the established DM approach indicates its flexibility, efficiency,and practicability depending on decision makers’indeterminate degrees in ONNS setting.

    In this study, however, we only use the proposed p-indeterminate vector similarity measures of ONNSs for DM problems, but lack more applications.Therefore, it is necessary for us to extend the p-indeterminate vector similarity measures to medical diagnosis, pattern recognition,and clustering analysis as further research directions in ONNS setting.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    男女做爰动态图高潮gif福利片| 久久国产乱子伦精品免费另类| 国产精品免费视频内射| 亚洲一区二区三区不卡视频| 成人一区二区视频在线观看| 波多野结衣巨乳人妻| 99久久99久久久精品蜜桃| 日韩欧美在线乱码| 亚洲精品av麻豆狂野| 天堂av国产一区二区熟女人妻 | 亚洲自拍偷在线| 九色成人免费人妻av| 俺也久久电影网| 精品久久久久久成人av| 老司机在亚洲福利影院| 亚洲国产精品999在线| 国产一区二区激情短视频| 中国美女看黄片| 精品欧美一区二区三区在线| 久久久久免费精品人妻一区二区| 色在线成人网| 日日干狠狠操夜夜爽| 亚洲免费av在线视频| 国产成人精品久久二区二区免费| 人人妻,人人澡人人爽秒播| 亚洲熟妇熟女久久| 精品欧美国产一区二区三| 午夜成年电影在线免费观看| 国产精品久久久久久久电影 | 在线观看舔阴道视频| 搡老熟女国产l中国老女人| av免费在线观看网站| 国产真人三级小视频在线观看| 19禁男女啪啪无遮挡网站| 久久午夜亚洲精品久久| 夜夜躁狠狠躁天天躁| 夜夜看夜夜爽夜夜摸| 国产私拍福利视频在线观看| 毛片女人毛片| 国产激情欧美一区二区| 两个人的视频大全免费| 国产av不卡久久| 老鸭窝网址在线观看| 精品欧美一区二区三区在线| 在线观看66精品国产| avwww免费| 日韩av在线大香蕉| 色综合欧美亚洲国产小说| 女人爽到高潮嗷嗷叫在线视频| 97碰自拍视频| 狠狠狠狠99中文字幕| 成年女人毛片免费观看观看9| 好看av亚洲va欧美ⅴa在| 亚洲全国av大片| 床上黄色一级片| 欧美日韩一级在线毛片| 国产激情欧美一区二区| 最好的美女福利视频网| 天天添夜夜摸| 午夜福利成人在线免费观看| 又紧又爽又黄一区二区| 一二三四社区在线视频社区8| 在线观看免费日韩欧美大片| 亚洲精品av麻豆狂野| 99久久久亚洲精品蜜臀av| 亚洲国产欧洲综合997久久,| 国产日本99.免费观看| 久久久久免费精品人妻一区二区| 97人妻精品一区二区三区麻豆| 国产精品自产拍在线观看55亚洲| 精品日产1卡2卡| 色老头精品视频在线观看| 国产真人三级小视频在线观看| 搡老妇女老女人老熟妇| 国产精品 欧美亚洲| av免费在线观看网站| 日韩欧美一区二区三区在线观看| www.www免费av| 久久国产精品人妻蜜桃| 在线观看www视频免费| 深夜精品福利| 国产麻豆成人av免费视频| 一区二区三区国产精品乱码| 国产精品久久久av美女十八| 欧美在线一区亚洲| 久久热在线av| 亚洲全国av大片| 国产一区二区三区在线臀色熟女| 国产v大片淫在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 欧美av亚洲av综合av国产av| 两个人视频免费观看高清| 亚洲男人的天堂狠狠| 欧美精品亚洲一区二区| 久久久久久久久久黄片| 亚洲人成伊人成综合网2020| 成年版毛片免费区| 亚洲成人国产一区在线观看| 99久久国产精品久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 一个人免费在线观看电影 | 亚洲午夜精品一区,二区,三区| 国产精品香港三级国产av潘金莲| www.www免费av| 国产成人av激情在线播放| 老熟妇仑乱视频hdxx| 亚洲中文av在线| 免费在线观看成人毛片| 成人高潮视频无遮挡免费网站| 午夜福利欧美成人| 欧美成狂野欧美在线观看| 国产精品野战在线观看| 色在线成人网| 91国产中文字幕| 日韩大尺度精品在线看网址| 精品人妻1区二区| 一个人免费在线观看电影 | 不卡av一区二区三区| 一a级毛片在线观看| 性欧美人与动物交配| 色综合婷婷激情| 日韩免费av在线播放| 极品教师在线免费播放| 国产激情久久老熟女| 91九色精品人成在线观看| 国内精品一区二区在线观看| 麻豆一二三区av精品| 中文字幕av在线有码专区| 亚洲精品在线美女| 亚洲国产精品sss在线观看| 国产免费av片在线观看野外av| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品夜夜夜夜夜久久蜜豆 | 香蕉国产在线看| 久久久国产成人精品二区| 黄色a级毛片大全视频| 欧美精品啪啪一区二区三区| 999久久久国产精品视频| 日韩欧美一区二区三区在线观看| 国产伦人伦偷精品视频| aaaaa片日本免费| 中文字幕高清在线视频| 18禁黄网站禁片免费观看直播| 男女视频在线观看网站免费 | 久久中文字幕人妻熟女| √禁漫天堂资源中文www| 欧美三级亚洲精品| 一个人免费在线观看电影 | 亚洲熟女毛片儿| 亚洲熟妇熟女久久| 国产激情久久老熟女| 亚洲熟女毛片儿| 色综合站精品国产| svipshipincom国产片| 亚洲 欧美 日韩 在线 免费| 国产三级黄色录像| 国产精品永久免费网站| 亚洲全国av大片| 51午夜福利影视在线观看| 亚洲国产中文字幕在线视频| 精品电影一区二区在线| 中亚洲国语对白在线视频| 脱女人内裤的视频| av在线播放免费不卡| a级毛片在线看网站| 国产探花在线观看一区二区| 村上凉子中文字幕在线| 久久九九热精品免费| 国产精品野战在线观看| 精品人妻1区二区| 啪啪无遮挡十八禁网站| 99国产精品99久久久久| 国产免费av片在线观看野外av| 在线观看日韩欧美| 久久久久免费精品人妻一区二区| 国产高清视频在线观看网站| 最新在线观看一区二区三区| 在线观看www视频免费| 成在线人永久免费视频| 九色国产91popny在线| 国产精品影院久久| 亚洲成av人片免费观看| 激情在线观看视频在线高清| 国产黄a三级三级三级人| 成年免费大片在线观看| 欧美三级亚洲精品| 亚洲欧美一区二区三区黑人| 91老司机精品| 午夜福利欧美成人| 国内精品久久久久久久电影| 成人国产综合亚洲| 亚洲无线在线观看| 亚洲男人的天堂狠狠| 日韩欧美 国产精品| 在线观看美女被高潮喷水网站 | 国产亚洲精品第一综合不卡| 成人手机av| 在线观看舔阴道视频| 国产蜜桃级精品一区二区三区| 女警被强在线播放| 亚洲国产精品合色在线| 免费在线观看完整版高清| 亚洲人成伊人成综合网2020| 欧美日韩黄片免| 国产黄色小视频在线观看| 黑人欧美特级aaaaaa片| 精品久久久久久,| 青草久久国产| 亚洲一区中文字幕在线| a级毛片a级免费在线| 国产精品永久免费网站| 此物有八面人人有两片| 老鸭窝网址在线观看| 国产激情欧美一区二区| av在线播放免费不卡| av福利片在线| 少妇熟女aⅴ在线视频| 哪里可以看免费的av片| 中文字幕最新亚洲高清| 久久国产乱子伦精品免费另类| 男人的好看免费观看在线视频 | 国产成人精品久久二区二区91| 91老司机精品| 国产精品久久久人人做人人爽| 一级作爱视频免费观看| 亚洲人成网站在线播放欧美日韩| 久久人妻福利社区极品人妻图片| 脱女人内裤的视频| 国产精品免费一区二区三区在线| 精品午夜福利视频在线观看一区| 亚洲 国产 在线| 一边摸一边抽搐一进一小说| 久久久久免费精品人妻一区二区| av有码第一页| 亚洲在线自拍视频| 色综合亚洲欧美另类图片| 18禁黄网站禁片午夜丰满| 一本综合久久免费| 亚洲18禁久久av| 久久久久久亚洲精品国产蜜桃av| 国产精品亚洲一级av第二区| 国产黄色小视频在线观看| 日韩欧美国产在线观看| 美女大奶头视频| 十八禁人妻一区二区| 国产熟女xx| 他把我摸到了高潮在线观看| 又爽又黄无遮挡网站| 成人特级黄色片久久久久久久| 久久久久久国产a免费观看| 老司机午夜福利在线观看视频| 国产精品亚洲一级av第二区| 亚洲九九香蕉| 黄色a级毛片大全视频| 日韩成人在线观看一区二区三区| 欧美日韩一级在线毛片| av免费在线观看网站| 亚洲av日韩精品久久久久久密| 性欧美人与动物交配| 全区人妻精品视频| 性色av乱码一区二区三区2| 天堂影院成人在线观看| 亚洲成人中文字幕在线播放| 久99久视频精品免费| 在线十欧美十亚洲十日本专区| 真人一进一出gif抽搐免费| 日韩国内少妇激情av| 日韩欧美三级三区| 熟女少妇亚洲综合色aaa.| 人人妻,人人澡人人爽秒播| 午夜福利视频1000在线观看| 激情在线观看视频在线高清| 久久久精品欧美日韩精品| 淫妇啪啪啪对白视频| 国产不卡一卡二| 国内精品久久久久久久电影| 久久精品人妻少妇| 麻豆国产av国片精品| 久久久久国产精品人妻aⅴ院| 亚洲中文av在线| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美日韩无卡精品| 在线观看免费日韩欧美大片| 一二三四在线观看免费中文在| 国产精品av久久久久免费| 人妻丰满熟妇av一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 不卡一级毛片| 一本久久中文字幕| av福利片在线观看| 久久久久久久精品吃奶| 又黄又粗又硬又大视频| 最近视频中文字幕2019在线8| 99热这里只有是精品50| 久久精品国产清高在天天线| 国产单亲对白刺激| 精品一区二区三区视频在线观看免费| videosex国产| 成人三级做爰电影| 亚洲最大成人中文| 日韩精品青青久久久久久| 国产精品av久久久久免费| 久久久久国产一级毛片高清牌| 久久久久国产精品人妻aⅴ院| 午夜免费观看网址| 给我免费播放毛片高清在线观看| 亚洲天堂国产精品一区在线| 国产精品一区二区精品视频观看| 国产精品,欧美在线| 日韩高清综合在线| 人人妻人人看人人澡| www日本黄色视频网| 黄频高清免费视频| 国产成人啪精品午夜网站| 动漫黄色视频在线观看| 床上黄色一级片| 亚洲第一欧美日韩一区二区三区| 日本熟妇午夜| 国产av一区二区精品久久| 午夜免费激情av| 亚洲 欧美一区二区三区| 欧美三级亚洲精品| 听说在线观看完整版免费高清| 日韩大尺度精品在线看网址| 亚洲乱码一区二区免费版| 啪啪无遮挡十八禁网站| 国产精品98久久久久久宅男小说| 啪啪无遮挡十八禁网站| 国产精品99久久99久久久不卡| 日本免费a在线| 韩国av一区二区三区四区| 国产精品一区二区三区四区久久| 欧美一级a爱片免费观看看 | 黑人操中国人逼视频| 久久精品影院6| 国产精品一区二区免费欧美| 亚洲av美国av| 国产在线精品亚洲第一网站| 在线免费观看的www视频| 欧美中文综合在线视频| 精华霜和精华液先用哪个| 亚洲欧美激情综合另类| 国产亚洲精品第一综合不卡| xxxwww97欧美| 最好的美女福利视频网| 精品无人区乱码1区二区| 亚洲专区中文字幕在线| 精品无人区乱码1区二区| 亚洲 国产 在线| 国产成人aa在线观看| 色哟哟哟哟哟哟| 十八禁人妻一区二区| 久久国产精品影院| 又大又爽又粗| 中文亚洲av片在线观看爽| 99riav亚洲国产免费| 精品少妇一区二区三区视频日本电影| 18美女黄网站色大片免费观看| 欧美精品亚洲一区二区| 免费看十八禁软件| 欧美三级亚洲精品| 久久午夜亚洲精品久久| 久久久久久九九精品二区国产 | 午夜福利18| aaaaa片日本免费| 人人妻,人人澡人人爽秒播| x7x7x7水蜜桃| 国产亚洲精品第一综合不卡| 欧美3d第一页| 丁香欧美五月| 法律面前人人平等表现在哪些方面| 亚洲自拍偷在线| 国产精品亚洲av一区麻豆| 亚洲乱码一区二区免费版| 久久久久性生活片| 免费看a级黄色片| 国产亚洲欧美98| 亚洲真实伦在线观看| 亚洲成a人片在线一区二区| 亚洲乱码一区二区免费版| 国产日本99.免费观看| 人人妻人人澡欧美一区二区| 国产精品亚洲av一区麻豆| 欧美av亚洲av综合av国产av| 99久久综合精品五月天人人| 国产又色又爽无遮挡免费看| 国产久久久一区二区三区| 两个人免费观看高清视频| 亚洲精品国产一区二区精华液| 99re在线观看精品视频| www.熟女人妻精品国产| 中文字幕人妻丝袜一区二区| 真人做人爱边吃奶动态| 久久人妻福利社区极品人妻图片| 又黄又爽又免费观看的视频| 男女视频在线观看网站免费 | 三级毛片av免费| 亚洲 国产 在线| 黄色片一级片一级黄色片| 亚洲 国产 在线| 久久久久性生活片| 五月伊人婷婷丁香| 伦理电影免费视频| 深夜精品福利| 精品久久久久久久人妻蜜臀av| 免费av毛片视频| 精品欧美一区二区三区在线| 久久国产精品影院| 淫秽高清视频在线观看| 国产高清videossex| 亚洲国产高清在线一区二区三| 免费看美女性在线毛片视频| 亚洲国产精品久久男人天堂| 亚洲成人中文字幕在线播放| 国产成人aa在线观看| 久久国产精品影院| 一夜夜www| 超碰成人久久| 欧美成人一区二区免费高清观看 | 婷婷六月久久综合丁香| 黑人欧美特级aaaaaa片| 久久精品综合一区二区三区| 韩国av一区二区三区四区| 国产伦人伦偷精品视频| 在线观看66精品国产| 毛片女人毛片| 久久欧美精品欧美久久欧美| 国产单亲对白刺激| 日韩欧美一区二区三区在线观看| 中文字幕久久专区| or卡值多少钱| 激情在线观看视频在线高清| 18禁裸乳无遮挡免费网站照片| 精品国产亚洲在线| 黄色片一级片一级黄色片| 男女午夜视频在线观看| 法律面前人人平等表现在哪些方面| 91麻豆精品激情在线观看国产| 高潮久久久久久久久久久不卡| 视频区欧美日本亚洲| 亚洲午夜精品一区,二区,三区| 国产黄色小视频在线观看| 白带黄色成豆腐渣| 一本一本综合久久| 亚洲真实伦在线观看| 老司机福利观看| 国产av一区二区精品久久| 91老司机精品| 听说在线观看完整版免费高清| 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av高清一级| 老熟妇乱子伦视频在线观看| 俺也久久电影网| 老熟妇仑乱视频hdxx| e午夜精品久久久久久久| 精华霜和精华液先用哪个| 伦理电影免费视频| av有码第一页| 少妇熟女aⅴ在线视频| 日韩高清综合在线| 91字幕亚洲| 欧美3d第一页| 亚洲激情在线av| 高潮久久久久久久久久久不卡| 一个人免费在线观看的高清视频| 国产精品国产高清国产av| 在线观看午夜福利视频| 男人舔女人的私密视频| 成年女人毛片免费观看观看9| 他把我摸到了高潮在线观看| 免费一级毛片在线播放高清视频| 亚洲精品中文字幕一二三四区| 日本成人三级电影网站| 成人av在线播放网站| 免费看a级黄色片| www.精华液| 免费在线观看完整版高清| 一区二区三区国产精品乱码| 久久久久久久精品吃奶| 亚洲精品中文字幕在线视频| 国产97色在线日韩免费| 国产欧美日韩一区二区三| 日韩大尺度精品在线看网址| 欧美日韩乱码在线| 亚洲熟女毛片儿| 三级毛片av免费| 午夜福利欧美成人| 国内精品久久久久精免费| 久久中文字幕人妻熟女| 精品少妇一区二区三区视频日本电影| 一进一出抽搐动态| avwww免费| 高潮久久久久久久久久久不卡| 极品教师在线免费播放| 麻豆成人av在线观看| av福利片在线| 国产又色又爽无遮挡免费看| 看免费av毛片| 日本免费a在线| 中文亚洲av片在线观看爽| 热99re8久久精品国产| 美女免费视频网站| 两个人看的免费小视频| 香蕉丝袜av| 在线观看66精品国产| 免费在线观看黄色视频的| 国产真人三级小视频在线观看| 亚洲人成网站高清观看| 制服丝袜大香蕉在线| 中文亚洲av片在线观看爽| 99热6这里只有精品| 久久精品aⅴ一区二区三区四区| 窝窝影院91人妻| 黄频高清免费视频| 日本黄大片高清| 成年免费大片在线观看| 丰满人妻一区二区三区视频av | 免费在线观看成人毛片| 国产精品久久久人人做人人爽| 看片在线看免费视频| 国产成人精品无人区| 精品一区二区三区视频在线观看免费| 久久久久久亚洲精品国产蜜桃av| 亚洲成人国产一区在线观看| 国产熟女xx| 国产成人影院久久av| 伊人久久大香线蕉亚洲五| 亚洲国产中文字幕在线视频| 国产三级黄色录像| 777久久人妻少妇嫩草av网站| 亚洲成人久久爱视频| av欧美777| 日日摸夜夜添夜夜添小说| а√天堂www在线а√下载| 色哟哟哟哟哟哟| 99久久综合精品五月天人人| АⅤ资源中文在线天堂| 日韩精品中文字幕看吧| 99在线视频只有这里精品首页| www日本黄色视频网| 一级毛片女人18水好多| 51午夜福利影视在线观看| 亚洲精品中文字幕在线视频| 亚洲欧美精品综合久久99| 国产av不卡久久| 国产精品国产高清国产av| 在线观看免费午夜福利视频| 亚洲美女视频黄频| 99久久99久久久精品蜜桃| 日韩高清综合在线| 无遮挡黄片免费观看| 精品一区二区三区av网在线观看| 51午夜福利影视在线观看| 久久婷婷成人综合色麻豆| 色av中文字幕| 亚洲av日韩精品久久久久久密| 白带黄色成豆腐渣| 国产成人av教育| 精品国产美女av久久久久小说| 中文字幕高清在线视频| 18禁裸乳无遮挡免费网站照片| 亚洲美女黄片视频| 高潮久久久久久久久久久不卡| 国产高清有码在线观看视频 | 男人的好看免费观看在线视频 | 欧美久久黑人一区二区| 香蕉丝袜av| 老汉色∧v一级毛片| 91麻豆av在线| 黄色视频不卡| 变态另类成人亚洲欧美熟女| 很黄的视频免费| 国产欧美日韩一区二区三| 香蕉久久夜色| 在线观看午夜福利视频| 精品久久久久久,| 精品国内亚洲2022精品成人| 大型av网站在线播放| 欧美+亚洲+日韩+国产| 中文字幕最新亚洲高清| 日本免费a在线| 一进一出抽搐gif免费好疼| 色尼玛亚洲综合影院| 一个人免费在线观看的高清视频| 日韩中文字幕欧美一区二区| 99久久综合精品五月天人人| 久久久久久国产a免费观看| 精品少妇一区二区三区视频日本电影| 亚洲一区高清亚洲精品| 亚洲精品美女久久av网站| 亚洲一区中文字幕在线| 中文字幕精品亚洲无线码一区| 美女黄网站色视频| 欧美激情久久久久久爽电影| 99热6这里只有精品| 国产成年人精品一区二区| 亚洲欧美日韩东京热| 午夜老司机福利片| 国产精品一及| 搞女人的毛片| 一进一出抽搐动态| 黄片小视频在线播放| 岛国在线观看网站| 无人区码免费观看不卡| 午夜免费观看网址| www日本在线高清视频| 99热6这里只有精品| 亚洲18禁久久av| 国产精品98久久久久久宅男小说| 久久久久久亚洲精品国产蜜桃av| 哪里可以看免费的av片| 又紧又爽又黄一区二区| 亚洲第一欧美日韩一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲成人免费电影在线观看|