• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Controllability and Exact Observability of Descriptor Infinite Dimensional Systems

    2021-11-07 02:23:14ZhaoqiangGe
    IEEE/CAA Journal of Automatica Sinica 2021年12期

    Zhaoqiang Ge

    Abstract—Necessary and sufficient conditions for the exact controllability and exact observability of a descriptor infinite dimensional system are obtained in the sense of distributional solution.These general results are used to examine the exact controllability and exact observability of the Dzektser equation in the theory of seepage and the exact controllability of wave equation.

    I.INTRODUCTION

    DESCRIPTOR infinite dimensional system is an important aspect of research for control theory (e.g.,[1]–[15]).It appears in the study of temperature distribution in a composite heat conductor,voltage distribution in electromagnetically coupled superconductive circuits,signal propagation in a system of electrical cables (e.g.,[11]–[14]).There is an essential distinction between descriptor and ordinary infinite dimensional systems (e.g.,[2],[13]–[17]).Under disturbance,not only descriptor infinite dimensional systems lose stability,but also great changes take place in their structure,such as leading to impulsive behavior.

    One of the most important problems for the study of descriptor infinite dimensional systems is controllability.Many important results for the controllability of infinite dimensional systems have been obtained (e.g.,[16,Ch.4],[17,Ch.11]).At the same time,many results have been obtained on the controllability of descriptor finite dimensional systems (e.g.,[18],[19],[20,Ch.2],[21,Ch.4]).But the results for the controllability of descriptor infinite dimensional systems are very little.The approximate controllability,exact controllability,and exact null controllability for descriptor infinite systems were studied in [8],[10],[22]–[25],respectively,in the sense of mild solution.The results show that the controllability of descriptor infinite dimensional systems is quite different from ordinary infinite dimensional systems.For example,in the case of infinite dimensional systems,exact controllability is a dual of exact observability.However,according to the direct extensions of the corresponding concepts of ordinary infinite dimensional systems,exact controllability is not necessarily the dual of the exact observability to descriptor infinite dimensional systems in the sense of mild solution.For a descriptor infinite dimensional system,impulse behavior may exist at initial time(e.g.,[2]) which may reduce system performance and even damage the system.In addition,due to the needs of some optimal control problems,the controllability of such systems must be studied.Therefore,we have to deal with the controllability of descriptor infinite dimensional systems in the sense of distributional solution.

    In [7],we have discussed the approximate controllability and approximate observability of a class of descriptor infinite dimensional systems in the sense of distributional solution.On the basis of [7],in this paper,the exact controllability and exact observability of a class of descriptor infinite dimensional systems are studied in the sense of distributional solution.Some necessary and sufficient conditions are obtained and dual principle is proved to be true for these two concepts.These general results are used to examine the exact controllability and exact observability of the Dzektser equation in the theory of seepage and the exact controllability of wave equation.Compared with the approximate controllability and the approximate observability,the conditions for the exact controllability and the exact observability are stronger.The research methods of the relevant conclusions are totally different from the approximate controllability and the approximate observability,which need to be solved by new methods.

    The descriptor infinite dimensional system

    is an abstract form of various partial differential equations and systems,whereL∈L(H1,H2),M∈CD(H1,H2),K∈L(H3,H2),ξ(t) and ζ(t) are state vector and control vector,respectively.Such system generally appears in temperature distribution in a composite heat conductor,voltage distribution in electromagnetically coupled superconductive circuits,signal propagation in a system of electrical cables,motion of ground waters with a free surface,diffusive-convective system with limited manipulating variables,physically meaningful constraints,etc.(see,e.g.,[2],[11]–[14],[26]–[28]).

    For convenience of discussion,the following definition is introduced.In the sense of this definition,we will clearly see the essential difference between descriptor and ordinary infinite dimensional systems.

    Definition 1:Descriptor infinite dimensional system (1) is called the regular descriptor infinite dimensional system with orderh(positive integer) if there exist Hilbert spacesH21,H22andF∈L(H2,H21×H22),G∈L(H21×H22,H1),whereFandGare bijective,such that

    Under these circumstances,operatorsFandGtransfer descriptor infinite dimensional system (1) into the following decoupled descriptor infinite dimensional system on Hilbert spaceH21×H22

    From [14,pp.135–138],we obtain that if,Mis a strong(L,q)-radial operator in (1),then descriptor infinite dimensional system (1) is regular descriptor infinite dimensional system with finite orderh,andh≤q+1.

    For convenience,here we recall the definitions of (L,q)-radial and strongly (L,q)-radial operators,respectively.

    An operatorMis called (L,q)-radial if

    In addition,from [14,pp.119–138],we see that many descriptor infinite dimensional systems are regular.Infinite dimensional subsystem (2) is a classical infinite dimensional system in control theory.The properties of descriptor system(3) determine the peculiarities of descriptor infinite dimensional system (1).For example,it is known that controls from the classCh?1([0,+∞),H3) must be used to solve descriptor system (3) in the weak sense (e.g.,[25]).This paper investigates the exact controllability of descriptor infinite dimensional system (1) under some additional hypotheses,or,equivalently,of descriptor infinite dimensional system (2)–(3)and corresponding exact observability.In Section II,the definition of exact controllability of descriptor infinite dimensional system (2)–(3) is introduced.Some necessary and sufficient conditions concerning the exact controllability of descriptor infinite dimensional system (2)–(3) are given by operator theory.In Section III,the concept of exact observability of descriptor infinite dimensional system (2)–(3)is introduced.Some necessary and sufficient conditions concerning this concept are obtained by operator theory.The dual principle of exact controllability and exact observability of the descriptor infinite dimensional system (2)–(3) are given by operator theory in Section IV.In Section V,the general results obtained are used to examine the exact controllability and exact observability of the Dzektser equation in the theory of seepage and the exact controllability of wave equation.Finally,in the last section we summarize our results.

    Here we give several auxiliary results.The exact controllability is invariant under system equivalence.Note that every regular descriptor infinite dimensional system is equivalent to descriptor infinite dimensional system (2)–(3),without loss of generality,in the following,we assume that descriptor infinite dimensional system (1) is of the form(2)–(3).

    Theorem 1 [2]:Suppose that descriptor infinite dimensional system (2)–(3) is the standard form of a regular descriptor infinite dimensional system with orderh,ζ ∈Ch?1([0,+∞),H3),and there exist constantsc>0,d>0 such that

    where exp(Vt) denotes the strongly continuous semigroup generated byV,

    where δ(t) is the Dirac function,δ(k)(t) is thek-th derivative of δ(t).For more details of Dirac function,see [29].

    It is well known that a mild solution ξ1(t) of infinite dimensional system (2) is expressible forξ10∈H2,ζ∈L2((0,τ),H3)by the formula

    where the integral is understood in the sense of Bochner ([16,pp.104]).

    Note that the first line of the matrix in (4),which gives a solution of descriptor infinite dimensional system (2)–(3),is a mild solution of infinite dimensional system (2),while the second line,which is a sum overi,is a distributional solution of descriptor system (3),and

    Remark 1:The significant feature of solution (4) of descriptor infinite dimensional system (2)–(3) is that it contains the impulse terms driven by both the initial value of the state ξ and the initial values of the control vector ζ as well as its derivatives even if ζ is sufficiently smooth.For ordinary infinite dimensional systems,this is not possible.

    Remark 2:There are strict differences between the mild solution [25]and the distributional solution of system (2)–(3).The main difference is in the expression ofξ2(t).For ξ2(0)∈H22,ζ ∈Ch?1([0,τ],H3),regard the function

    as a mild solution of (3).It follows from this that (3) is solvable in the sense of mild solution if and only if the compatibility condition between the right-hand side and the initial data

    is satisfied.Therefore,the mild solution of (3) is continuous on [0,τ],while the distributional solution of (3) is discontinuous on [0,τ].

    The following is discussed in the sense of distributional solution.

    Definition 2:A numberb∈Cis called theL-eigenvalue of the operatorMif there exists a vector ξ ≠0 such thatbLξ=Mξ.Such a vector ξis called theL-eigenvector of the operatorMcorresponding to theL-eigenvaluebof the operatorM.

    It is easily verified that theL-eigenvectors of the operatorMcorresponding to sameL-eigenvalue of the operatorMform a subspace ofH1.

    II.EXACT CONTROLLABILITY

    Consider the descriptor infinite dimensional system described by (2)–(3).The extension of the concept of exact controllability from infinite dimensional systems to descriptor infinite dimensional systems is as follows.

    Definition 3:Descriptor infinite dimensional system (2)–(3)is called exactly controllable on [0,τ](for some finite τ>0)if,for any state ξτ∈H21×H22and any initial state ξ0∈H21×H22,there exists a control ζ ∈Ch?1([0,τ],H3) such that the solution ξ(t)∈H21×H22of the descriptor infinite dimensional system (2)–(3) satisfies ξ(τ)=ξτ.

    Our purpose here is to establish necessary and sufficient conditions for the exact controllability of descriptor infinite dimensional system (2)–(3) with bounded operatorsK1andK2.

    As for the exact controllability of infinite dimensional system (2),we have the following results.

    Theorem 2 [16,pp.148]:Infinite dimensional subsystem (2)is exactly controllable on [0,τ]if and only if the following condition holds for somecτ>0 and for all ξ∈H21:

    According to Theorem 2,we obtain the following theorem.

    Theorem 3:Infinite dimensional subsystem (2) is exactly controllable on [0,τ]if and only if the following condition holds for somecτ>0 and for all ξ∈H21:

    g(t)=th(t?τ)h

    where .In this case

    has bounded inverse.

    Proof:Sufficiency.Since,by (8),we have that

    Therefore (7) is true.By Theorem 2,system (2) is exactly controllable on [0,τ].

    Necessity.Assume (7).If (8) is false,then for any positive integerm,there exists ξm∈H21and ‖ξm‖H21=1,such that

    Sinceg2(t) is an increasing function,whent∈[0,τ/2]andg2(t)is a decreasing function,whent∈[τ/2,τ],we have thatg2(t)≥(1/m)1/2[(1/m)1/(4h)?τ]2h,

    By (9),we get that

    From (7),we obtain that

    Asm→+∞,we have that 0 ≥τ2h cτ>0.This contradiction indicates that (8) is true.By [16,Example A.4.2],the inverseis bounded.

    As for the exact controllability of descriptor system (3),we have the following theorem.

    Theorem 4:Descriptor system (3) is exactly controllable on[0,τ]if and only if

    Proof:Necessity.Exact controllability of descriptor system(3) on [0,τ]implies that for any state ξ2τ∈H22and any initial state ξ20∈H22,there exists a control ζ ∈Ch?1([0,τ],H3) such that the solution given by (6) satisfies ξ2(τ)=ξ2τ.Therefore(10) is true.

    Sufficiency.Since (10) holds,for any state ξ2τ∈H22and any initial state ξ20∈H22,there existai∈H3,i=0,1,...,h?1,such that.By(6),it follows that,for anyt>0,the corresponding solution is determined only by the value ζ(i)(t),i=0,1,...,h?1.Therefore if a controlζ(t)satisfies

    Now,we discuss the exact controllability of descriptor infinite dimensional system (2)–(3).

    Theorem 5:Descriptor infinite dimensional system (2)–(3)is exactly controllable on [0,τ]if and only if both infinite dimensional system (2) and descriptor system (3) are exactly controllable on [0,τ].

    Proof:The necessity is obvious.We only need to prove the sufficiency.Assume ξ10,ξ1τ∈H21and ξ20,ξ2τ∈H22.We have to find ζ∈Ch?1([0,τ],H3) such that

    Thus,(12)is true.Therefore descriptor infinite dimensional system (2)–(3)is exactly controllable on [0,τ].

    III.EXACT OBSERVABILITY

    In this section,we introduce the dual concept-exact observability.Exact observability is concerned with the ability to reconstruct the state from the system output.Therefore,different from Section II,in this section,the descriptor infinite dimensional system to be considered is following form:

    whereF1andF2are bounded linear operators fromH21andH22to Hilbert spaceH4,respectively.The two subsystems of(15) are assumed to be

    Definition 4 [16,pp.154]:1) Infinite dimensional subsystem(16) is called exactly observable on [0,τ](for some finite τ>0) if the initial condition ξ1(0) can be uniquely and continuously determined from the output data η1(t) inL2((0,τ),H4).

    2) Descriptor subsystem (17) is called exactly observable on[0,τ](for some finite τ>0) if

    3) Descriptor infinite dimensional system (15) is called exactly observable on [0,τ](for some finite τ>0) if both infinite dimensional system (16) and descriptor system (17)are exactly observable on [0,τ].

    Clearly,Definition 4 reduces to the exact observability in infinite dimensional system theory when the descriptor infinite dimensional system (15) is an infinite dimensional system.By Definition 4,we can obtain the following theorem.

    Theorem 6:Let infinite dimensional system (16) and descriptor system (17) be two subsystems of the regular descriptor infinite dimensional system (15).

    4) ([16,Corollary 4.1.14]) Infinite dimensional subsystem(16) is exactly observable on [0,τ]if and only if the following c∫ondition holds for somecτ>0 and for all ξ ∈H21:.

    5) If descriptor subsystem (17) is exactly observable on[0,τ],then the initial state ξ2(0) can be uniquely determined from the output data η2(t),t∈[0,τ].

    6) If descriptor infinite dimensional system (15) is exactly observable on [0,τ],then the initial state ξ(0) can be uniquely determined from the output data η(t),t∈[0,τ].

    Proof:Proof of conclusion 5).According to (4),we have

    From the linear independencies ofδ(i?1)(t)(i=1,2,...,h?1),we obtain that

    if and only ifF2Piξ2(0)=0(i=0,1,2,...,h?1).According to[16,Theorem A.3.61]and (18),we have

    Therefore ξ2(0)=0.

    Proof of conclusion 6).From (4),we obtain that

    By forms of η1(t)and η2(t),we have that η(t)≡0,t∈[0,τ]if and only if η1(t)≡0and η2(t)≡0,t∈[0,τ].Therefore,by proofs of conclusions 4) and 5) of the theorem,ifF1eVtξ1(0)=0 on[0,τ]and (18) is true,thenξ1(0)=0 and ξ2(0)=0,respectively.Hence,the third conclusion holds.

    IV.THE DUAL PRINCIPLE

    In this section,we deal with the dual principle for regular descriptor infinite dimensional system.Let us first introduce the dual system of a regular descriptor infinite dimensional system in the form of

    The two subsystems of descriptor infinite dimensional system (19) are

    Definition 5:The following descriptor infinite dimensional system

    is called the dual system of descriptor infinite dimensional system (19).

    If descriptor infinite dimensional system (22) is the dual system of descriptor infinite dimensional system (19),then the two subsystems of descriptor infinite dimensional system (22)

    are the dual systems of infinite dimensional system (20) and descriptor system (21),respectively.

    The following dual principle reveals the relation between the exact controllability (exact observability) of descriptor infinite dimensional system (19) and the exact observability(exact controllability) of its dual descriptor infinite dimensional system (22).

    Theorem 7:Descriptor infinite dimensional system (19) is exactly controllable (exactly observable) on [0,τ]if and only if its dual descriptor infinite dimensional system (22) is exactly observable (exactly controllable) on [0,τ].

    Proof:It follows from the Theorems 2,4–6 and Definition 4 that the following equivalence relations hold: The descriptor infinite dimensional system (19) is exactly controllable on[0,τ]if and only if

    if and only if the infinite dimensional subsystem (23) and descriptor subsystem (24) are exactly observable on [0,τ]if and only if the descriptor infinite dimensional system (22) is exactly observableon [0,τ].

    V.ILLUSTRATIVE EXAMPLES

    In this section,we discuss the exact controllability and exact observability of the Dzektser equation in the theory of seepage and the exact controllability of wave equation.

    Example 1:Exact controllability and exact observability of the Dzektser equation.

    Consider the Dzektser equation describing the evolution of the free surface of seepage liquid (see,e.g.,[26]),

    Then,L∈L(H1,H2),M∈CD(H1,H2) and Dzektser equation(25)–(27) can be reduced to the following descriptor infinite dimensional system

    We can check that sin(ix)is theL-eigenvector of the operatorMcorresponding toL-eigenvalue?i2(1+i2/(i2?1))of the operatorM(i=2,3,...);

    the regular standard form of descriptor infinite dimensional system (28)–(29) is

    P=0 in (32),K1ζ=a1ζandK2ζ=a2ζ.

    First of all we discuss the exact controllability of descriptor infinite dimensional system (30)–(33).

    SinceH22=ran[K2],by Theorem 4,descriptor subsystem(32) is exactly controllable on [0,τ]for any τ>0.It is obviously that the semigroup associated with infinite dimensional system (30) is given by

    Since exp(Vt)=exp(V?t),the condition for exact controllability of infinite dimensional system (30) is the existence of acτ>0,such that

    It is obviously that nocτsatisfying (34) will ever exist.Consequently,infinite dimensional subsystem (30) is never exactly controllable on [0,τ]for any τ>0.By Theorem 5,descriptor infinite dimensional system (30)–(33),i.e.,Dzektser equation (25)–(26) is not exactly controllable on[0,τ]for any τ>0.

    Now we discuss the exact observability of descriptor infinite dimensional system (30)–(33).

    Remark 3:According to the definitions of exact controllability and approximate controllability [7]of system(1),we obtain that if system (1) is exactly controllable,then it is approximate controllable.From [7],we have that Dzektser equation in the theory of seepage is approximately controllable.Example 1 shows that it is not exactly controllable.It implies that exact controllability and approximate controllability are totally different.

    Example 2:Exact controllability of wave equation.

    Consider the wave equation with a distributed controlu(·,t)∈L2((0,1),R)

    Then,the following operatorA0onL2((0,1),R) is selfadjoint,positive,and boundedly invertible (see [16,Example A.4.26]):

    A proof similar to [16,Example 4.1.8],by Theorem 5,we can obtain that wave equation is exactly controllable.

    Remark 4:In reference [22],a class of exact null controllability is introduced,and it is proved that the necessary condition for the solution of the optimal control problem of a class of descriptor infinite dimensional systems is the exact null controllability of the system.It can be seen from [30]that the study of infinite time state regulation generally requires that the system be exactly controllable or exactly null controllable ([25],which is different from the exact null controllability in [22]).Therefore,different optimal control problems have different controllability requirements for the system.

    VI.CONCLUSIONS

    We have defined exact controllability,exact observability and proved corresponding necessary and sufficient conditions for descriptor infinite dimensional systems.The obtained results are very important and convenient for studying the exact controllabilities and exact observabilities of descriptor infinite dimensional systems.Two examples have been given to illustrate the effectivenesses of Theorems 5 and 6.For a specific descriptor infinite dimensional system,appropriate controllability can be defined according to the needs of various optimal control problems.

    亚洲国产欧美一区二区综合| 人妻丰满熟妇av一区二区三区| 最近最新中文字幕大全电影3 | 欧美 亚洲 国产 日韩一| 老熟妇仑乱视频hdxx| 美女免费视频网站| 国产欧美日韩一区二区三| 国产精品自产拍在线观看55亚洲| 国产成人av教育| 色av中文字幕| 手机成人av网站| 黑人巨大精品欧美一区二区mp4| 国产真人三级小视频在线观看| 免费高清在线观看日韩| 在线看三级毛片| 日日摸夜夜添夜夜添小说| 国产99白浆流出| 香蕉av资源在线| 欧美黑人巨大hd| 精品欧美一区二区三区在线| 欧美 亚洲 国产 日韩一| 2021天堂中文幕一二区在线观 | 色老头精品视频在线观看| 亚洲自拍偷在线| 亚洲无线在线观看| 琪琪午夜伦伦电影理论片6080| 精品福利观看| 亚洲午夜理论影院| 国产精品乱码一区二三区的特点| 亚洲中文日韩欧美视频| netflix在线观看网站| 一本大道久久a久久精品| 色播在线永久视频| 欧美绝顶高潮抽搐喷水| 色老头精品视频在线观看| 侵犯人妻中文字幕一二三四区| 亚洲国产欧美网| 精品高清国产在线一区| 久久婷婷成人综合色麻豆| 国产精品国产高清国产av| 亚洲 欧美 日韩 在线 免费| 国产又色又爽无遮挡免费看| 人人妻,人人澡人人爽秒播| 精品电影一区二区在线| 变态另类成人亚洲欧美熟女| 亚洲av五月六月丁香网| 久久久久久久久免费视频了| 91老司机精品| 免费一级毛片在线播放高清视频| 91九色精品人成在线观看| 亚洲自偷自拍图片 自拍| 成年版毛片免费区| av免费在线观看网站| 国产aⅴ精品一区二区三区波| 久久久久精品国产欧美久久久| 91大片在线观看| 久久久久久久久中文| 国产激情欧美一区二区| 欧美激情久久久久久爽电影| 久久久久久人人人人人| www日本黄色视频网| 亚洲人成77777在线视频| 很黄的视频免费| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 欧美性猛交╳xxx乱大交人| 日本撒尿小便嘘嘘汇集6| 在线观看舔阴道视频| 精品人妻1区二区| 午夜福利免费观看在线| 色av中文字幕| 国产精品1区2区在线观看.| 国产主播在线观看一区二区| a在线观看视频网站| 天堂影院成人在线观看| 亚洲一区二区三区色噜噜| 免费高清视频大片| 欧美人与性动交α欧美精品济南到| 人妻丰满熟妇av一区二区三区| 黄色 视频免费看| 天堂√8在线中文| 在线观看免费午夜福利视频| 久久精品亚洲精品国产色婷小说| 欧美黑人精品巨大| 久久午夜亚洲精品久久| 精品国产国语对白av| 亚洲精品一区av在线观看| 久久中文字幕一级| 国产区一区二久久| 国产片内射在线| 亚洲国产中文字幕在线视频| 国产视频内射| 久99久视频精品免费| 亚洲一区高清亚洲精品| 国内久久婷婷六月综合欲色啪| 日韩欧美国产在线观看| 国产精品电影一区二区三区| 亚洲av成人一区二区三| 亚洲国产精品合色在线| 亚洲精品在线美女| 在线观看66精品国产| 亚洲成人免费电影在线观看| 国产精品亚洲一级av第二区| 午夜免费成人在线视频| 十八禁网站免费在线| 国产高清有码在线观看视频 | 精品一区二区三区四区五区乱码| 久久久久国产精品人妻aⅴ院| 国产高清激情床上av| 亚洲av熟女| 国产成人啪精品午夜网站| 一二三四在线观看免费中文在| 91麻豆精品激情在线观看国产| 男人操女人黄网站| 国产伦在线观看视频一区| 亚洲第一av免费看| 嫁个100分男人电影在线观看| 国产成人av激情在线播放| 亚洲全国av大片| av在线天堂中文字幕| 婷婷丁香在线五月| 久久精品91蜜桃| АⅤ资源中文在线天堂| aaaaa片日本免费| 欧美 亚洲 国产 日韩一| 午夜福利一区二区在线看| 91国产中文字幕| 真人做人爱边吃奶动态| 啦啦啦免费观看视频1| 亚洲五月天丁香| 黄色a级毛片大全视频| 男人舔奶头视频| 香蕉丝袜av| 欧美中文综合在线视频| 欧美一区二区精品小视频在线| 19禁男女啪啪无遮挡网站| 成年免费大片在线观看| 欧美成人午夜精品| 黄色视频不卡| 99久久综合精品五月天人人| 丝袜在线中文字幕| 亚洲九九香蕉| 中文字幕最新亚洲高清| 99国产极品粉嫩在线观看| cao死你这个sao货| 夜夜躁狠狠躁天天躁| 自线自在国产av| 国产黄色小视频在线观看| 亚洲国产精品久久男人天堂| 国产爱豆传媒在线观看 | 国产v大片淫在线免费观看| 久热爱精品视频在线9| 长腿黑丝高跟| 校园春色视频在线观看| 久久精品人妻少妇| 日本 欧美在线| 欧美最黄视频在线播放免费| 男女下面进入的视频免费午夜 | 在线十欧美十亚洲十日本专区| 欧洲精品卡2卡3卡4卡5卡区| 精品国产超薄肉色丝袜足j| 国产精品爽爽va在线观看网站 | 亚洲精品一区av在线观看| 色播亚洲综合网| 黄片播放在线免费| 亚洲全国av大片| 日韩欧美免费精品| 亚洲在线自拍视频| 午夜福利欧美成人| 一进一出抽搐动态| 精品少妇一区二区三区视频日本电影| 露出奶头的视频| 国产激情久久老熟女| 少妇 在线观看| 日韩三级视频一区二区三区| 午夜福利成人在线免费观看| 久久精品91蜜桃| 国产精品自产拍在线观看55亚洲| 久久人妻av系列| 国产精品久久久久久亚洲av鲁大| 免费人成视频x8x8入口观看| 国产成人av激情在线播放| 色在线成人网| tocl精华| 不卡av一区二区三区| 黄片小视频在线播放| xxxwww97欧美| 亚洲中文字幕日韩| 国产精品av久久久久免费| 成人18禁在线播放| 无遮挡黄片免费观看| 国产成人影院久久av| 一级毛片女人18水好多| 久久精品夜夜夜夜夜久久蜜豆 | 久久久国产成人精品二区| 国产亚洲av高清不卡| 90打野战视频偷拍视频| 91大片在线观看| 午夜免费成人在线视频| 嫁个100分男人电影在线观看| 91在线观看av| 久久亚洲精品不卡| av片东京热男人的天堂| 老司机靠b影院| 国产黄色小视频在线观看| 黑人欧美特级aaaaaa片| 91成人精品电影| 十八禁人妻一区二区| 女人爽到高潮嗷嗷叫在线视频| 男女下面进入的视频免费午夜 | 久久人妻av系列| 黄色视频,在线免费观看| 国产精品av久久久久免费| 久久性视频一级片| 老司机福利观看| 国产亚洲精品一区二区www| 国内少妇人妻偷人精品xxx网站 | 两个人看的免费小视频| 国产精品1区2区在线观看.| 午夜福利欧美成人| 国产伦人伦偷精品视频| 国产成人一区二区三区免费视频网站| 午夜免费鲁丝| 一边摸一边做爽爽视频免费| 宅男免费午夜| 69av精品久久久久久| 亚洲第一欧美日韩一区二区三区| 国产熟女xx| 国产又爽黄色视频| 日韩av在线大香蕉| 国产人伦9x9x在线观看| 国产野战对白在线观看| 操出白浆在线播放| 亚洲精品国产区一区二| av超薄肉色丝袜交足视频| 精品久久久久久久人妻蜜臀av| 少妇被粗大的猛进出69影院| 在线av久久热| 91字幕亚洲| 丝袜人妻中文字幕| 老司机在亚洲福利影院| 俄罗斯特黄特色一大片| 免费一级毛片在线播放高清视频| 亚洲激情在线av| 国产区一区二久久| 嫩草影视91久久| 丝袜人妻中文字幕| 欧美日韩精品网址| 国产精品精品国产色婷婷| 亚洲人成网站高清观看| 日韩精品免费视频一区二区三区| e午夜精品久久久久久久| 妹子高潮喷水视频| 亚洲国产精品成人综合色| 久久 成人 亚洲| 一进一出好大好爽视频| 老司机福利观看| 97碰自拍视频| 麻豆国产av国片精品| 国产精品99久久99久久久不卡| av在线天堂中文字幕| 亚洲欧洲精品一区二区精品久久久| 日韩中文字幕欧美一区二区| 伊人久久大香线蕉亚洲五| 免费一级毛片在线播放高清视频| 亚洲 欧美 日韩 在线 免费| 啦啦啦 在线观看视频| 99久久国产精品久久久| 看免费av毛片| 国产在线观看jvid| 一边摸一边抽搐一进一小说| 欧美另类亚洲清纯唯美| 老司机在亚洲福利影院| 在线免费观看的www视频| 午夜精品在线福利| 久久久久久久久免费视频了| 国产亚洲av高清不卡| 国产免费av片在线观看野外av| 99久久无色码亚洲精品果冻| 亚洲avbb在线观看| 777久久人妻少妇嫩草av网站| 午夜a级毛片| 日韩高清综合在线| 中文在线观看免费www的网站 | 亚洲国产精品合色在线| 日韩欧美一区视频在线观看| 欧美成人一区二区免费高清观看 | 欧美成人一区二区免费高清观看 | 亚洲中文av在线| bbb黄色大片| 亚洲成人免费电影在线观看| 免费看十八禁软件| 精品福利观看| 男女视频在线观看网站免费 | 美女大奶头视频| bbb黄色大片| 正在播放国产对白刺激| 久久国产乱子伦精品免费另类| 在线观看免费午夜福利视频| 久久久久久免费高清国产稀缺| 国产精品 国内视频| 超碰成人久久| 免费观看人在逋| 在线国产一区二区在线| 露出奶头的视频| 窝窝影院91人妻| 亚洲男人天堂网一区| 日本在线视频免费播放| 婷婷六月久久综合丁香| 特大巨黑吊av在线直播 | 欧美国产日韩亚洲一区| 欧美黑人精品巨大| 久久伊人香网站| 国产真人三级小视频在线观看| 国产区一区二久久| 无遮挡黄片免费观看| 99热6这里只有精品| 亚洲一区二区三区色噜噜| 视频在线观看一区二区三区| 国产精品免费视频内射| 亚洲精华国产精华精| 欧美激情久久久久久爽电影| 亚洲国产精品成人综合色| 99国产精品一区二区三区| 久久中文字幕一级| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品影院6| xxx96com| 亚洲精品美女久久久久99蜜臀| 级片在线观看| 免费在线观看完整版高清| 国产av一区在线观看免费| 日韩精品免费视频一区二区三区| 国产精品 欧美亚洲| 18禁黄网站禁片免费观看直播| 女人被狂操c到高潮| 国产男靠女视频免费网站| 操出白浆在线播放| 韩国精品一区二区三区| 久久久精品国产亚洲av高清涩受| 精品人妻1区二区| 99热6这里只有精品| 好男人电影高清在线观看| av福利片在线| 日韩欧美国产一区二区入口| av片东京热男人的天堂| 天天躁狠狠躁夜夜躁狠狠躁| www国产在线视频色| 村上凉子中文字幕在线| 欧美黄色淫秽网站| 搡老岳熟女国产| 可以免费在线观看a视频的电影网站| 国产野战对白在线观看| 欧美一级毛片孕妇| av欧美777| 亚洲男人的天堂狠狠| 一a级毛片在线观看| 国产亚洲欧美精品永久| 久久亚洲精品不卡| 校园春色视频在线观看| 午夜福利一区二区在线看| 国产久久久一区二区三区| 男人舔女人下体高潮全视频| 亚洲第一电影网av| 日韩 欧美 亚洲 中文字幕| 日韩有码中文字幕| 欧美 亚洲 国产 日韩一| 精品国产一区二区三区四区第35| 国产精品久久久久久人妻精品电影| 精品久久久久久久人妻蜜臀av| av在线播放免费不卡| 好男人在线观看高清免费视频 | 大型av网站在线播放| 成人18禁高潮啪啪吃奶动态图| 妹子高潮喷水视频| 日韩欧美免费精品| 欧美一级a爱片免费观看看 | 少妇被粗大的猛进出69影院| 在线观看免费午夜福利视频| 国产精品1区2区在线观看.| a级毛片a级免费在线| 最新美女视频免费是黄的| 国产亚洲精品第一综合不卡| 给我免费播放毛片高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩精品亚洲av| www.精华液| 久久久国产欧美日韩av| 久久香蕉激情| 精品福利观看| 久久中文字幕一级| 成人一区二区视频在线观看| 久久婷婷人人爽人人干人人爱| 成年免费大片在线观看| 老熟妇仑乱视频hdxx| 亚洲精品久久国产高清桃花| 日韩国内少妇激情av| 久久精品影院6| 精品第一国产精品| 日韩三级视频一区二区三区| 久久精品国产综合久久久| 黑丝袜美女国产一区| 无限看片的www在线观看| 午夜亚洲福利在线播放| 国产乱人伦免费视频| 久久精品成人免费网站| 国产一级毛片七仙女欲春2 | 国产主播在线观看一区二区| 最新美女视频免费是黄的| 男女床上黄色一级片免费看| 男男h啪啪无遮挡| 99国产综合亚洲精品| 一本大道久久a久久精品| 大型av网站在线播放| 黄色成人免费大全| 精品欧美国产一区二区三| 免费在线观看影片大全网站| 日本撒尿小便嘘嘘汇集6| 成人三级黄色视频| 成人18禁在线播放| 国产欧美日韩精品亚洲av| 精品高清国产在线一区| 日本a在线网址| 国语自产精品视频在线第100页| 一边摸一边抽搐一进一小说| 一区二区三区高清视频在线| e午夜精品久久久久久久| 亚洲第一av免费看| 午夜久久久久精精品| 亚洲国产欧洲综合997久久, | 欧美日韩乱码在线| 亚洲专区国产一区二区| 欧美人与性动交α欧美精品济南到| 男人舔奶头视频| 少妇的丰满在线观看| 一区二区日韩欧美中文字幕| 欧美一级a爱片免费观看看 | 女人被狂操c到高潮| 国产精品香港三级国产av潘金莲| 午夜久久久久精精品| 久久精品影院6| 色播在线永久视频| 人成视频在线观看免费观看| 国产99白浆流出| 国产成人一区二区三区免费视频网站| 18禁黄网站禁片免费观看直播| 亚洲第一电影网av| 国产午夜精品久久久久久| netflix在线观看网站| 亚洲一码二码三码区别大吗| 欧美精品啪啪一区二区三区| 亚洲欧美一区二区三区黑人| 熟女电影av网| 可以在线观看的亚洲视频| 午夜福利18| 国产久久久一区二区三区| 男女床上黄色一级片免费看| 国产亚洲精品av在线| 欧美成人性av电影在线观看| 午夜两性在线视频| 18禁黄网站禁片午夜丰满| 亚洲国产精品sss在线观看| 国内久久婷婷六月综合欲色啪| 亚洲精品美女久久久久99蜜臀| 精品卡一卡二卡四卡免费| 国产成人精品久久二区二区91| 日本成人三级电影网站| 一进一出抽搐动态| 一a级毛片在线观看| 日本一本二区三区精品| 露出奶头的视频| 又黄又爽又免费观看的视频| 欧美成狂野欧美在线观看| 国产精品影院久久| 国产久久久一区二区三区| 亚洲av成人av| 免费在线观看视频国产中文字幕亚洲| 欧美成人一区二区免费高清观看 | 久久香蕉精品热| 超碰成人久久| 在线观看免费日韩欧美大片| 精品人妻1区二区| 亚洲国产中文字幕在线视频| 哪里可以看免费的av片| 国产伦在线观看视频一区| 中亚洲国语对白在线视频| 欧美亚洲日本最大视频资源| 欧美黄色淫秽网站| 宅男免费午夜| 久久精品国产综合久久久| 母亲3免费完整高清在线观看| 999精品在线视频| 久久久久久亚洲精品国产蜜桃av| 国产av一区二区精品久久| 欧美最黄视频在线播放免费| 亚洲精品中文字幕一二三四区| 午夜两性在线视频| aaaaa片日本免费| 男女做爰动态图高潮gif福利片| 夜夜躁狠狠躁天天躁| 国内毛片毛片毛片毛片毛片| 变态另类成人亚洲欧美熟女| 美女 人体艺术 gogo| 国内揄拍国产精品人妻在线 | 久久精品国产清高在天天线| 亚洲中文日韩欧美视频| 国产精品久久久久久人妻精品电影| 身体一侧抽搐| 欧美一级毛片孕妇| 国产欧美日韩精品亚洲av| 亚洲自偷自拍图片 自拍| 男人的好看免费观看在线视频 | 欧美性猛交╳xxx乱大交人| 国产精品免费视频内射| 三级毛片av免费| 一区二区日韩欧美中文字幕| 亚洲av中文字字幕乱码综合 | 亚洲精品中文字幕在线视频| 首页视频小说图片口味搜索| 岛国视频午夜一区免费看| 亚洲一区二区三区不卡视频| 大香蕉久久成人网| 日韩成人在线观看一区二区三区| 久久久久久久久免费视频了| 日本免费a在线| 精品国产超薄肉色丝袜足j| 久久久久久亚洲精品国产蜜桃av| 亚洲第一青青草原| 搞女人的毛片| 后天国语完整版免费观看| 亚洲自拍偷在线| 黄片播放在线免费| 亚洲av第一区精品v没综合| 亚洲精品在线美女| 亚洲第一欧美日韩一区二区三区| 十八禁网站免费在线| 国产精品乱码一区二三区的特点| 欧美色视频一区免费| 中文字幕人成人乱码亚洲影| 窝窝影院91人妻| 国产精品久久久久久人妻精品电影| 国产爱豆传媒在线观看 | 少妇 在线观看| 免费在线观看亚洲国产| 1024香蕉在线观看| 久久精品亚洲精品国产色婷小说| 久久九九热精品免费| 美女大奶头视频| 免费观看精品视频网站| 69av精品久久久久久| 18禁观看日本| 久久久久精品国产欧美久久久| 天天添夜夜摸| 国产99白浆流出| 欧美成人免费av一区二区三区| 啦啦啦 在线观看视频| 老司机在亚洲福利影院| 精品一区二区三区四区五区乱码| 免费电影在线观看免费观看| 香蕉久久夜色| 真人一进一出gif抽搐免费| 精品国产一区二区三区四区第35| 国产激情偷乱视频一区二区| 18美女黄网站色大片免费观看| 亚洲真实伦在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美日韩乱码在线| 少妇粗大呻吟视频| svipshipincom国产片| 亚洲狠狠婷婷综合久久图片| 精品国产超薄肉色丝袜足j| 欧美一级毛片孕妇| 国产亚洲欧美在线一区二区| 在线观看免费视频日本深夜| 在线av久久热| 变态另类丝袜制服| 久热爱精品视频在线9| 亚洲免费av在线视频| 亚洲精品色激情综合| 色婷婷久久久亚洲欧美| 国产麻豆成人av免费视频| 久久精品国产清高在天天线| 亚洲自偷自拍图片 自拍| 亚洲人成电影免费在线| 精品国产美女av久久久久小说| 国产精品亚洲美女久久久| 欧美人与性动交α欧美精品济南到| 亚洲精品久久成人aⅴ小说| 热re99久久国产66热| 1024视频免费在线观看| 2021天堂中文幕一二区在线观 | 性色av乱码一区二区三区2| 国产高清视频在线播放一区| 高清在线国产一区| 免费女性裸体啪啪无遮挡网站| 丝袜在线中文字幕| 亚洲第一电影网av| 午夜亚洲福利在线播放| 亚洲专区中文字幕在线| 中文在线观看免费www的网站 | 午夜久久久在线观看| 听说在线观看完整版免费高清| 老汉色∧v一级毛片| 成人18禁在线播放| 日本免费a在线| 亚洲全国av大片| 久久热在线av| 啪啪无遮挡十八禁网站| 午夜影院日韩av| 日日摸夜夜添夜夜添小说| 一本久久中文字幕| avwww免费| 国产亚洲精品一区二区www| 在线观看日韩欧美| 亚洲激情在线av|