• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mathematical analysis and its experimental comparisons for the accumulative roll bonding(ARB)process with different superimposed layers

    2021-11-04 23:41:32HipengZhengRuizhiWuLegnHouJinghuiZhngMilinZhng
    Journal of Magnesium and Alloys 2021年5期

    Hipeng Zheng,Ruizhi Wu,b,*,Legn Hou,Jinghui Zhng,Milin Zhng,b

    a Key Laboratory of Superlight Materials and Surface Technology,Ministry of Education,Harbin Engineering University,No.145 Nantong Street Nangang District,Harbin 150001,China

    b College of Science,Heihe University,Heihe 164300,PR China

    Abstract Based on the traditional two-layer accumulative roll bonding(TARB),the geometrical variations and mathematical relationship during the four-layer accumulative roll bonding(FARB)were derived and summarized.Furthermore,the multi-layer accumulative roll bonding(MARB)technology was proposed and the geometrical variations and mathematical relationship of MARB were simultaneously derived and summarized.Experimentally,Mg-14Li-3Al-2Gd(LAGd1432)sheets were fabricated by TARB and FARB,respectively.Compared with the TARB,the FARB has a higher accumulative efficien y in terms of accumulative layers,total number of interfaces,interface spacing,total deformation and equivalent strain.Therefore,the FARB-processed sheets in lower cycles have the similar microstructure and mechanical properties of the TARB-processed sheets in higher cycles.In addition,FARB process can further break through the deformation limit of TARB process in a single cycle through adopting two-step rolling in one cycle with 50% deformation in one pass and 75% accumulative deformation in one cycle,which can effectively solve the problem of poor interface bonding of the latest interface brought by the last cycle,and thus significantl improve the phenomenon of unstable performance of the ARB-processed sheets.? 2020 Chongqing University.Publishing services provided by Elsevier B.V.on behalf of KeAi Communications Co.Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer review under responsibility of Chongqing University

    Keywords:ARB;Mathematical relationship;Equivalent strain;Strengthening mechanism.

    1.Introduction

    Mg-Li alloy possesses the smallest density among engineering metallic materials,which is an ideal engineering material for energy saving and environmental protection in future[1-4].Recently,the development of Mg-Li alloys in composition design,strengthening mechanism,potential performance and new severe plastic deformation(SPD)were summarized in detail by Wu et al.[5-9].However,due to the drawback of low strength,wide application of Mg-Li alloys is restricted.Therefore,the improvement of the mechanical properties of Mg-Li alloy has become an urgent problem to be solved.Severe plastic deformation(SPD)is regarded as one of ideal technologies to address the poor mechanical properties of Mg-Li alloy[8].Furui et al.studied the superplastic properties of a two-phase Mg-8Li alloy processed by equal channel angular pressing(ECAP)where grains are significantl refine and the Mg-8Li alloy exhibited excellent superplastic properties with the deformation temperature of 473K and the initial strain rate of 1.0×10?4s?1[10].Hou et al.studied the microstructure and mechanical properties of ARBprocessed Mg-5Li-1Al sheets(α-phase)where nanocrystals were achieved and the strengthening mechanisms were strain hardening and grain refinement which significantl improved the mechanical properties[8].Su et al.studied the microstructural evolution and mechanical properties of Mg-9Li-1Zn alloy processed by high-pressure torsion(HPT)where significan grain refinemen was achieved after HPT processing with an average grain size reducing from 30μm to approximately 230nm through 10 turns and the alloy exhibited excellent mechanical properties[11].

    Among SPD processes,ARB breaks the limitation of low reduction of traditional rolling and can continuously fabricate ultra-fin grain metal materials of thin sheets.Therefore,ARB is considered to be the promising deformation process to fabricate bulk ultra-fin grain metal material[11-14].However,although ARB process is widely used in the preparation of metal sheet,the research and application of ARB process in Mg-Li alloy is still rarely involved.The research about Mg-Li alloy processed by ARB in recent years is summarized in detail by Wu et al.[8,15-17].At present,the application of ARB in Mg-Li alloy is mainly concentrated inαphase andα+βphase Mg-Li alloy,while the research and application of ARB inβphase Mg-Li alloy with high Li content are rarely reported.At the same time,the current ARB process applied to Mg-Li alloy is almost based on the conventional two-layer accumulative roll bonding(TARB),rarely to optimize the traditional ARB process to improve the microstructure and properties of Mg-Li alloy.The traditional ARB process adopts double-layer and one-step rolling in one cycle[18],which has excessive workload and low efficien y of accumulated strain,and the most critical problem is the poor interface bonding of the latest interface brought by the last cycle,which makes the strengthening effect of the ARB process is limited.In addition,although there are some researches on the three/four-layer accumulative roll bonding at present,they are mainly focused on the composite rolling of dissimilar metal.The main research direction is the change of the microstructure and properties of different metals after composite compared with single metal,but the influenc of different superimposed layers and different accumulative effi ciency under different ARB processes on the microstructure and properties of the alloy in the ARB process are rarely involved.

    In this paper,the ARB process was systematically optimized.Firstly,the conventional two-layer accumulative roll bonding(TARB)was extended to four-layer accumulative roll bonding(FARB)and multi-layer accumulative roll bonding(MARB)by optimizing the conventional accumulative roll bonding process.Based on the disadvantages of the conventional two-layer accumulative roll bonding(TARB),we adopt the four-layer accumulative roll bonding(FARB)process with two-step rolling in one cycle to optimize the traditional ARB process,and then multi-layer accumulative roll bonding(MARB)technology is proposed.At the same time,the relevant mathematical relations were obtained by the derivation from the change rule of geometric size and strain rate in the process of FARB and MARB.Secondly,based on the theoretic analysis,the effects of different ARB processes on the microstructure and mechanical properties of the Mg-14Li-3Al-2Gd alloy(βphase Mg-Li alloy)were compared and analyzed.Finally,the relationship between the accumulative efficien y and the evolution of microstructure and properties were established.

    2.Geometrical changes and mathematical analysis for TARB,FARB and MARB

    At present,the traditional accumulative roll bonding is mainly two-layer accumulative roll bonding(TARB)with double-layer and one-step rolling in one cycle.The schematic illustration of TARB and FARB is shown in Fig.1.The surface treatment process and TARB process were described in detail by Wang et al.[16].In the process of FARB,after surface treatment,four equal-sized sheets are stacked together.Before rolling,the stacked sheets are heated at 473K for 15min.Then,the stacked sheets are rolled with a reduction of 50%.After annealing at 473K for 20min,the sheets are further rolled with a reduction of 50%.Then,the sheets are water-cooled.Finally,the roll-bonded sheets are cut into four equal-sized sheets for the next rolling cycle.

    The geometrical variations and mathematical relationship of TARB are summarized in Table 1[18,19].The total layer number,total interface number,and thickness of individual layer of TARB after n cycles can be calculated from Eqs.(1)-(3),respectively.

    wheref(l)T,f(i)T,andf(t)Trepresent the total layer number,total interface number,and fina thickness of individual layer of TARB afterncycles,respectively.h0andnrepresent the initial thickness of individual sheet and the number of cycles,respectively.Therefore,the total reductionf(r)Tafterncycles can be expressed by the Eq.(4)as follow:

    Assuming von Mises yield criterion and plane strain condition,the equivalent strain of TARB afterncycles is expressed by the Eq.(5)as follow[18]:

    whereεTandnrepresent the equivalent strain and the number of cycles,respectively.

    The FARB adopts the four-layer and two-step rolling in one cycle and the geometrical variations and mathematical relationship are summarized in Table 2.

    Table 1Geometrical changes and mathematical relationship of the TARB at different cycles.

    Table 2Geometrical changes and mathematical relationship of the FARB at different cycles.

    The total layer number,total interface number,thickness of individual layer,total reduction,and equivalent strain of FARB after n cycles can be expressed by the Eqs.(6)-(10):

    wheref(l)F,f(i)F,f(t)F,f(r)F,andεFrepresent the total layer number,total interface number,thickness of individual layer,total reduction,and equivalent strain of FARB afterncycles,respectively.h0and n represent the initial thickness of individual sheet and the number of cycles,respectively.

    Fig.1.Schematic illustration of TARB and FARB process:(a)TARB,(b)FARB.

    Comparing the Eqs.(1)-(5)and Eqs.(6)-(10),it can be concluded that the accumulative efficien y of FARB is significantl higher than that of TARB in terms of equivalent strain.If the superimposed number of sheets ism,that is to say multi-layer accumulative roll bonding(MARB),the geometrical changes and mathematical relationship can be derived

    Fig.2.The accumulative layers and equivalent strain after n cycles under different superimposed layers in MARB process:(a)superimposed layers-cycleaccumulative layers,(b)superimposed layers-cycle-equivalent strain.

    wheref(l)M,f(i)M,f(t)M,andf(r)Mrepresent the total layer number,total interface number,thickness of individual layer,and total reduction of MARB sheets afterncycles,respectively.h0,m,andnrepresent the initial thickness of individual sheet,the number of superimposed sheets,and the number of cycles,respectively.

    Assuming plane strain condition and von Mises yield criterion,the equivalent strain of superimposed m-layers after n cycles is expressed by the Eq.(15):

    In order to intuitively depict the variation in the number of layers and the equivalent strain of MARB with the different number of superimposed sheets(m)after n cycles,the calculated curves are shown in Fig.2.Fig.2(a)shows the accumulative layers of the MARB with the different number of superimposed sheets(m)after n cycles.Fig.2(b)is the three-dimensional relationship diagram of the superimposed sheets(m)-the number of cycles(n)-the equivalent strain(ε).

    With the increase of cycles,the accumulative number of layers increases sharply,which is especially noticeable in high cycles.With the increase of superimposed sheets(m),the accumulative efficien y of total layer number has a significan improvement,which results in a sharp decrease in the layer interval and a significan increase in the alternating rate of interfaces generation and disappearance.Theoretically,the number of interfaces can be calculated by Eq.(12).

    In Fig.2(b),the equivalent strain of MARB by increasing m and n is visually shown.In the same number of rolling cycles(n),with the increase of superimposed sheets(m),the accumulative efficien y of total equivalent strain increases sharply,which leads to a significan increase in strain strengthening for the mechanical properties of the alloy.

    3.Experimental

    To manifest the advantages of MARB,we choose Mg-Li-Al-Gd alloy and FARB processing for experiments.TARB is also conducted for comparison.

    The raw materials used in this paper include commercial pure(CP)Mg ingot(99.9 wt%),CP Li ingot(purity 99.9 wt%),CP Al ingot(99.9 wt%)and the master alloy of Mg-20%Gd.Mg-14Li-3Al-2Gd alloy is designed for alloy composition.They were melted in a graphite crucible in a vacuum induction furnace at argon atmosphere.The melt was poured into a permanent mold to obtain as-cast ingot.In order to eliminate component segregation and obtain uniform microstructure and properties,the as-cast ingot was homogenized at 473K for 10h.Then,the as-received ingot was cut into sheets with dimensions of 60mm×40mm×2mm,which were subsequently used for TARB and FARB processing.

    Phases of the alloys were measured with Rigaku TTRIII X-ray diffraction(XRD).LEICA DM IRM optical microscope(OM)and JSM-6480 scanning electron microscope(SEM)equipped with EDS(JED 2200)were utilized for the microstructural investigations.In order to obtain optical micrographs,2%(vol.)and 4%(vol.)nitric acid alcohol solution were used for the as-cast alloy and the ARB-processed alloy with the etching time of 3-5s and 5-10s,respectively.Rolling Direction-Normal Direction(RD-ND)plane was selected as the observation plane of the ARB-processed Mg-14Li-3Al-2Gd sheets.The tensile tests were carried out on Instron 5500R electro-universal tester machine with a strain rate of 1×10?3s?1at room temperature.The axis of the tensile test was selected parallel to RD.The gauge length was 16mm.The Vickers microhardness(HV)was measured under a loading of 50 gf and a holding time of 15s.The interface bonding strength was tested by the method in reference[8,15].

    Fig.3.Microstructure,XRD pattern and EDS of the as-cast Mg-14Li-3Al-2Gd alloy(a)optical micrographs,(b)SEM morphology of the second phase at grain boundary,(c)the EDS of the marked spots in(b),and(d)XRD pattern.

    4.Experimental results and discussion

    4.1.Microstructure and phase analysis of the as-cast alloy

    The microstructure,XRD pattern,and the EDS of the ascast Mg-14Li-3Al-2Gd alloy are shown in Fig.3.The matrix of the Mg-14Li-3Al-2Gd alloy isβ-Li phase with coarse grains.The average grain size of as-cast Mg-14Li-3Al-2Gd alloy is 245.8μm,which is measured and calculated by intercept method.There are some secondary phases existing at grain boundary.The morphology and size of these second phases are shown in Fig.3(b).From the results of EDS and XRD pattern,it can be concluded that it is Al2Gd phase.

    4.2.Microstructure of the TARB-processed and FARB-processed Mg-14Li-3Al-2Gd sheets

    Figs.4 and 5 show the optical micrographs of rolling direction-transverse direction(RD-TD)plane of the TARB-processed and FARB-processed sheets.As shown in Figs.4 and 5,after ARB,the grains of Mg-14Li-3Al-2Gd sheets present irregular multilateral morphology,but there is no strong rolling microstructure,which indicates that the severe plastic deformation causes strong dynamic recrystallization of Mg-14Li-3Al-2Gd alloy.At the same time,ARB process can effectively refin the grain of Mg-14Li-3Al-2Gd alloy.TARB6 and FARB4 sheets have the smallest grain sizes in their respective processes with the average grain size are about 14.5μm and 5.3μm,respectively.

    It is difficul to observe the effect of the interface on the number,size and morphology of the grains because of the deformed morphology of the rolled sheets where grain boundary and interface are mutually doped.Therefore,we characterize and describe this by the morphology of annealed sheets.Figs.6 and 7 show the optical micrographs of rolling direction-normal direction(RD-ND)plane of the TARBprocessed and FARB-processed sheets annealed at 300°C for 30min.With the increase of cycles,the grain size of the annealed TARB and FARB sheets is continuously refined The TARB6 and FARB4 sheets possess the smallest grain size,about 15~30μm and 6~9μm,respectively.

    Combined with the Figs.6 and 7,microstructure has different evolutions between low and high cycles.In low cycles,the thickness of the single layer is relatively large with the evolution of the microstructure only existing in the individual layer.Recrystallization occurs sufficientl in the individual layer and the grains hardly grow across the interface,as shown in Figs.6(a),(b),(c)and 7(a),(b).At this stage,the grains in the individual layer are still large.Due to the higher accumulative efficien y of FARB,in the same cycle,the specimens under FARB have fewer and smaller grains in the individual layer compared to TARB.In high cycles,the thickness of the individual layer is small,which has a great influenc on the size and morphology of the grains.At this stage,with the decrease of the thickness of individual layer,the number of grains in the individual layer decreases rapidly and the morphology of the grains also gradually changes from equiaxed grains to similar rectangles elongated along the RD,as shown in Figs.6(d),(e),(f)and 7(c),(d).The recrystallization occurs across the layer and the grains grow across the interface,which leads to the disappearance of the previous interface.The disappearance of the interface is the key factor for ARB-processed material to achieve excellent quality,and the higher accumulative efficien y of FARB greatly accelerates the occurrence of this behavior,which is a great improvement of FARB relative to TARB.

    Fig.4.Optical micrographs of the TARB-processed Mg-14Li-3Al-2Gd sheets(RD-TD plane)(a)TARB1,(b)TARB2,(c)TARB3,(d)TARB4,(e)TARB5,and(f)TARB6.

    Based on the above analysis,the layer interval(individual layer spacing)determines the fina grain refinemen and morphology of the grain,and the refinemen rate is controlled by accumulative efficien y,as shown in Fig.8.In the same way,the interface should have the similar effect on the unannealed microstructure.

    4.3.Mechanical properties

    4.3.1.Strength and elongation

    Fig.9 shows the strength,elongation and hardness of the as-cast,TARB-processed and FARB-processed Mg-14Li-3Al-2Gd sheets.The as-cast alloy only possesses the yield strength(YS),ultimate tensile strength(UTS),elongation(EL),and hardness value of 96.2±4.6MPa,128.6±4.8MPa,36.2%,and 40.9±0.8 HV,respectively.Compared to the as-cast Mg-14Li-3Al-2Gd sheets,the YS and UTS of the ARB-processed Mg-14Li-3Al-2Gd sheets are significantl improved.The TARB6 and FARB4 sheets possess the YS of 201.6±4.7MPa and 231.6±3.8MPa,209.6% and 240.7%higher than that of the as-cast Mg-14Li-3Al-2Gd alloy,respectively.As shown in Fig.9(a),the strength improvement efficien y of FARB is significantl higher than that of TARB.Additionally,the elongation values of TARB and FARB have the same trend,firs decreasing and then increasing,which is mainly governed by the strengthening effect and the interface bonding quality.Compared to TARB,the plasticity of FARB is better maintained,as shown in Fig.9(b).Hardness test plane in Fig.9(b)was rolling direction-transverse direction(RD-TD)plane.With the increase of cycles,the hardness values of TARB-processed and FARB-processed Mg-14Li-3Al-2Gd sheets continue to increase.The TARB6 and FARB4 sheets possess the hardness of 73.2±0.9 HV0.05and 76.6±0.7 HV0.05,171.63% and 187.29% higher than that of the as-cast Mg-14Li-3Al-2Gd alloy,respectively.In the same number of cycles,compared to TARB,the higher accumulative efficien y of FARB makes the samples always possess relatively better mechanical properties.

    Fig.5.Optical micrographs of the FARB-processed Mg-14Li-3Al-2Gd sheets(RD-TD plane)(a)FARB1,(b)FARB2,(c)FARB3,and(d)FARB4.

    The strengthening mechanism of the Mg-Li alloy during traditional accumulative roll bonding processes is mainly classifie into strain hardening and grain refinemen strengthening[20,21].Strain strengthening plays a significan role in the strengthening mechanism of severe plastic deformation(SPD.)Wu and Zhou[22]studied the strain-hardening behavior of Mg-6Li-1Zn alloy thin sheets at elevated temperatures where the principle of the strain-hardening mainly include dislocation multiplication,dislocation motion and mutual dislocation interaction.

    The strength comparison between TARB-processed and FARB-processed Mg-14Li-3Al-2Gd sheets at different cycles is shown in Fig.10(a).According to Eqs.(5)and(10),the cycle-equivalent strain curves of TARB and FARB are shown in Fig.10(b).With the increase of cycle,strength and equivalent strain both increase.In the same cycle,the strength of FARB is higher than TARB.The equivalent strain of FARB is larger than TARB,and the difference becomes larger and larger with the increase of cycles.

    From Figs.4(a)and 5(a),compared with TARB,after the firs cycle,the grain size of FARB1 is more significantl refined which causes fin grain strengthening playing a significan role in the low cycle of FARB.Meanwhile,the better interface bonding with two-step rolling in one cycle and higher equivalent strain also cause the strengthening effect of FARB1 being higher than TARB1.In the high cycle,the grain refinemen of TARB and FARB both become no longer significant The better interface bonding with two-step rolling in one cycle and higher equivalent strain become the key factor in the improvement of mechanical properties in TARB and FARB-processed Mg-14Li-3Al-2Gd sheets.

    4.3.2.Hardness fluctuatio

    From Fig.9(b),ARB can effectively improve the hardness of Mg-14Li-3Al-2Gd alloy.However,in the ARB process,the formation of interface will lead to the non-uniformity of hardness along the normal direction(ND),so the stability of hardness distribution along the ND is also an important index to measure the mechanical properties of ARB sheets.Fig.11 shows the hardness fluctuation along the ND of TARB and FARB sheets(RD-ND plane).The hardness fluc tuation of the as-cast alloy is relatively small.Although the hardness of TARB1 and FARB1 sheets have been significantl improved,the hardness values are quite unstable and fluctu ate greatly,which is mainly caused by the existence of the interface and the uneven deformation between single sheets.With the increase of cycles,on the one hand,the interface gradually breaks up and disappears,and the bonding between layers is realized;on the other hand,the interface spacing decreases rapidly,which greatly alleviates the deformation unevenness between layers.These two aspects jointly affect the hardness fluctuation Compared with TARB process,FARB process has technology advantage of four-layer and two-step rolling in one cycle,which not only improves the interface bonding through two-step rolling in one cycle,but also to further decreases the hardness fluctuatio by promoting the sharp reduction of interface spacing,which results in the more uniform and stable hardness performance of FARB sheets under the same cycle.

    Fig.6.Optical micrographs of the TARB-processed Mg-14Li-3Al-2Gd sheets annealed at 300°C for 30min(RD-ND plane):(a)TARB1,(b)TARB2,(c)TARB3,(d)TARB4,(e)TARB5,and(f)TARB6.

    4.3.3.Interface bonding performance

    For composite sheets,the interface bonding performance is an important index of its mechanical properties.To some extent,the interface bonding properties determine the mechanical properties of composite sheets.The interface bonding properties of TARB and FARB sheets are shown in Table 3.Compared with the interface bonding strength of the two ARB processes,FARB sheets have higher interface bonding strength.TARB1 and FARB1 have interface bonding strength of 24.4MPa and 36.3MPa,respectively.With the increase of cycles,the interface bonding strength increases.TARB6 and FARB4 have interface bonding strength of 29.5MPa and 39.8MPa,respectively.By comparing the relevant literature[4,8,15-17,23-28],the interface performance of TARB sheets and FARB sheets are excellent,especially FARB sheets possess much higher interface bonding strength.

    Table 3Interface shear strength of the ARB-processed Mg-14Li-3Al-2Gd sheets.

    Fig.7.Optical micrographs of the FARB-processed Mg-14Li-3Al-2Gd sheets annealed at 300°C for 30min(RD-ND plane):(a)FARB1,(b)FARB2,(c)FARB3,and(d)FARB4.

    Fig.8.Grain size and layer thickness(adjacent interface spacing)of the annealed ARB-processed Mg-14Li-3Al-2Gd sheets in different cycles.

    Fig.9.Comparison mechanical properties of the TARB-processed and FARB-processed Mg-14Li-3Al-2Gd sheets:(a)Yield Strength(YS)and Ultimate Tensile Strength(UTS),(b)Elongation(EL)and Hardness(RD-TD plane).

    Fig.10.The strength comparison and cycle?equivalent strain curve of the TARB-processed and FARB-processed Mg-14Li-3Al-2Gd sheets:(a)the strength comparison,(b)cycle-equivalent strain curve.

    Fig.11.The hardness fluctuation of the ARB-processed Mg-14Li-3Al-2Gd sheets at different distances from surface along ND(RD-ND plane):(a)TARB,(b)FARB.

    With the increase of cycles,the accumulative deformation increases gradually.The increasing positive strain of RD-ND plane and shear strain of RD-TD plane promote better bonding between the interfaces.Comparing the interface bonding performance of TARB and FARB sheets in the same cycle,FARB sheets have better interface bonding performance.In TARB process,a single pass in a single cycle possesses the deformation limitation.If the deformation reduction is too low,the interface cannot be well bonded,while if it is too high,the sheets are easy to crack.In FARB process,this drawback can be avoided through adopting two-step rolling in one cycle with 50% deformation in one pass and 75% accumulative deformation in one cycle,thus significantl improving the interface bonding performance.

    In the ARB process,the interface bonding state directly affects the interface bonding.The interface bonding of the ARB-processed Mg-14Li-3Al-2Gd alloy is carried out in four stages.I stage:Physical contact,that is,surface layer fractures and nascent metal surface forms;II stage:Chemical action,that is,the deformation energy overcomes the energy barrier of metallurgical bonding,and activates the nascent metal surface and realizes the bonding of metallic bond;III stage:Dislocation behavior in the interface region,that is,the nascent metal surface evolves into the dislocation wall,then the grain boundary-interface structure is formed through the dynamic recrystallization behavior of the interface[16].VI stage:Dynamic recrystallization homogenization,that is,dynamic recrystallization occurs in the whole area of the combined sheet,the straight grain boundary-interface structure is replaced by the secondary dynamic recrystallization structure,and finall the homogeneous structure with the grain across the original interface is formed.Pressure bonding and metallurgical bonding provide physical basis and energy conditions for the fina dynamic recrystallization bonding[8,16].

    5.Conclusion

    1.Mg-14Li-3Al-2Gd sheets were fabricated by TARB and FARB,respectively.Compared with the TARB,the FARB has a higher accumulative efficien y in terms of accumulative layers,total number of interfaces,interface spacing,total deformation and equivalent strain,which leads to the excellent performance of FARB under low cycles.

    2.The ARB process efficientl refine the grains of Mg-14Li-3Al-2Gd alloy.TARB6 and FARB4 sheets have the smallest grain sizes in their respective processes with the average grain size are about 14.5μm and 5.3μm,respectively.The number of accumulated layers and interfaces have a significan effect on grain size and morphology,which is especially noticeable in high cycles.Meanwhile,the layer interval(single layer thickness)determines the fina grain size and the refinemen rate is controlled by accumulative efficien y.

    3.With the increase of cycles,the strength and hardness of TARB-processed and FARB-processed Mg-14Li-3Al-2Gd sheets continue to increase.The TARB6 and FARB4 sheets possess the YS of 201.6MPa and 231.6MPa,respectively,which are 209.6% and 240.7% higher than the as-cast alloy.The hardness of TARB6 and FARB4 sheets are 73.2 HV and 76.6 HV,respectively,which are 171.63% and 187.29% higher than the as-cast alloy.At the same time,compared with the TARB sheets,the FARB sheets present better hardness stability.

    4.With the increase of cycles,the interface shear strength gradually increases,and the interfacial bonding ability is significantl enhanced.The subsequent cycles are helpful to further improve the bonding effect of the previous interface.Compared with the TARB sheets,the FARB sheets have higher interface bonding strength,which significantl improves the performance stability of the composite sheets.

    Declaration of Competing Interest

    The authors declare that they have no known competing financia interests or personal relationships that could have appeared to influenc the work reported in this paper.

    Acknowledgments

    This paper was supported by Natural Science Foundation of China(51771060,51871068,51971071,52011530025),Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118),the Fundamental Research Funds for the Central Universities(3072020CFT1006).

    久久精品国产a三级三级三级| 正在播放国产对白刺激| 一边摸一边抽搐一进一小说 | 悠悠久久av| 国产精品免费视频内射| 在线 av 中文字幕| 国产99久久九九免费精品| 在线播放国产精品三级| 国产成人免费观看mmmm| 欧美日韩福利视频一区二区| 午夜精品久久久久久毛片777| 最近最新免费中文字幕在线| 日韩大码丰满熟妇| 国产精品久久久久久人妻精品电影 | 欧美黄色片欧美黄色片| 亚洲精品一二三| www.999成人在线观看| 亚洲久久久国产精品| 亚洲精品粉嫩美女一区| 久久久水蜜桃国产精品网| 欧美老熟妇乱子伦牲交| 欧美激情极品国产一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲国产毛片av蜜桃av| 久久久精品免费免费高清| 99精品欧美一区二区三区四区| 深夜精品福利| 人妻一区二区av| 国产一区二区激情短视频| 啦啦啦 在线观看视频| 亚洲精品粉嫩美女一区| 叶爱在线成人免费视频播放| 91av网站免费观看| 国产成人精品无人区| 男女边摸边吃奶| a在线观看视频网站| 久久久国产成人免费| 性少妇av在线| 老司机福利观看| 日本av手机在线免费观看| 建设人人有责人人尽责人人享有的| 欧美黑人精品巨大| 亚洲人成电影观看| 国产99久久九九免费精品| 另类精品久久| 欧美日韩中文字幕国产精品一区二区三区 | 日本撒尿小便嘘嘘汇集6| 一级毛片精品| 涩涩av久久男人的天堂| 一夜夜www| 亚洲精品乱久久久久久| 欧美日韩av久久| 精品一品国产午夜福利视频| 亚洲五月婷婷丁香| 国产免费视频播放在线视频| 天天躁夜夜躁狠狠躁躁| 一个人免费在线观看的高清视频| 大码成人一级视频| 亚洲一区中文字幕在线| 亚洲精品一二三| 一区二区三区精品91| 最近最新中文字幕大全电影3 | 久久国产精品影院| 午夜福利,免费看| 黄片大片在线免费观看| 免费一级毛片在线播放高清视频 | 久久久国产一区二区| 高清欧美精品videossex| 亚洲国产毛片av蜜桃av| 这个男人来自地球电影免费观看| 中文字幕最新亚洲高清| 日韩一区二区三区影片| 欧美日韩中文字幕国产精品一区二区三区 | 黄色怎么调成土黄色| 久久久久久免费高清国产稀缺| 亚洲男人天堂网一区| 在线观看免费日韩欧美大片| 精品高清国产在线一区| av天堂在线播放| 极品教师在线免费播放| 一进一出抽搐动态| 亚洲欧洲精品一区二区精品久久久| xxxhd国产人妻xxx| 欧美激情久久久久久爽电影 | 另类精品久久| 日本五十路高清| 人妻 亚洲 视频| 亚洲精品粉嫩美女一区| 夜夜爽天天搞| 十八禁人妻一区二区| 国产精品秋霞免费鲁丝片| 国产97色在线日韩免费| 在线播放国产精品三级| 99久久99久久久精品蜜桃| 亚洲五月色婷婷综合| 黄色 视频免费看| 精品亚洲乱码少妇综合久久| 人妻 亚洲 视频| 亚洲成av片中文字幕在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 伊人久久大香线蕉亚洲五| 免费看a级黄色片| 在线永久观看黄色视频| 久久久国产精品麻豆| 十八禁人妻一区二区| 欧美黄色淫秽网站| 国产99久久九九免费精品| 女性被躁到高潮视频| 久久久久久人人人人人| 欧美激情 高清一区二区三区| 女性生殖器流出的白浆| 久久人妻福利社区极品人妻图片| 亚洲精品自拍成人| 美女主播在线视频| 国产成人啪精品午夜网站| 国产亚洲欧美精品永久| 黄片播放在线免费| 99国产精品99久久久久| av免费在线观看网站| 免费看a级黄色片| 一个人免费看片子| 亚洲成人国产一区在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久九九热精品免费| 国产精品 欧美亚洲| 一边摸一边做爽爽视频免费| 成人免费观看视频高清| 国产av国产精品国产| www日本在线高清视频| avwww免费| 男女边摸边吃奶| 国产在线精品亚洲第一网站| 极品少妇高潮喷水抽搐| a在线观看视频网站| 看免费av毛片| 丁香六月天网| 高清毛片免费观看视频网站 | 制服诱惑二区| 欧美人与性动交α欧美软件| a级片在线免费高清观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久久成人av| 久久久精品免费免费高清| 欧美日韩视频精品一区| 亚洲自偷自拍图片 自拍| 一区二区日韩欧美中文字幕| 热99re8久久精品国产| 无限看片的www在线观看| 日韩欧美一区视频在线观看| 国产精品秋霞免费鲁丝片| 五月天丁香电影| 亚洲视频免费观看视频| 三级毛片av免费| 在线十欧美十亚洲十日本专区| 两个人免费观看高清视频| 制服诱惑二区| 国产精品国产高清国产av | 一级片免费观看大全| 精品一区二区三区av网在线观看 | 久久性视频一级片| 国产精品熟女久久久久浪| 欧美老熟妇乱子伦牲交| 日韩中文字幕视频在线看片| 国产成人欧美| 肉色欧美久久久久久久蜜桃| 淫妇啪啪啪对白视频| av线在线观看网站| 高清黄色对白视频在线免费看| 国产高清videossex| 国产一区二区三区视频了| 国产男女超爽视频在线观看| 精品第一国产精品| 涩涩av久久男人的天堂| 亚洲色图 男人天堂 中文字幕| 黑人操中国人逼视频| 亚洲精品久久成人aⅴ小说| 亚洲色图 男人天堂 中文字幕| 香蕉久久夜色| 日本精品一区二区三区蜜桃| 熟女少妇亚洲综合色aaa.| 精品国产亚洲在线| 大型av网站在线播放| 人人妻人人添人人爽欧美一区卜| 国产淫语在线视频| 亚洲熟女精品中文字幕| 国产精品免费大片| 欧美日韩精品网址| 国产又色又爽无遮挡免费看| 99国产精品一区二区蜜桃av | 999精品在线视频| 久久中文字幕人妻熟女| 人人澡人人妻人| 97在线人人人人妻| 欧美日韩视频精品一区| av免费在线观看网站| 国产三级黄色录像| 国产成人啪精品午夜网站| 三上悠亚av全集在线观看| 久久精品国产亚洲av高清一级| 黄片播放在线免费| 在线观看免费视频网站a站| 亚洲人成电影免费在线| 午夜两性在线视频| 欧美在线一区亚洲| 丰满少妇做爰视频| 宅男免费午夜| 99久久精品国产亚洲精品| 水蜜桃什么品种好| 日韩欧美免费精品| 亚洲 欧美一区二区三区| 国产又爽黄色视频| 日本vs欧美在线观看视频| 一边摸一边做爽爽视频免费| 男女下面插进去视频免费观看| 一级毛片女人18水好多| 国产xxxxx性猛交| 免费观看a级毛片全部| 国产精品久久久久成人av| 亚洲成av片中文字幕在线观看| 日韩大片免费观看网站| 女人被躁到高潮嗷嗷叫费观| 久久精品成人免费网站| 大片免费播放器 马上看| 成年动漫av网址| 三级毛片av免费| 黄色成人免费大全| 精品久久久久久久毛片微露脸| www.熟女人妻精品国产| 91成人精品电影| 欧美精品一区二区免费开放| 亚洲色图av天堂| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲va日本ⅴa欧美va伊人久久| 1024香蕉在线观看| 高清av免费在线| 国产成人欧美| 国产成人影院久久av| 一区二区三区乱码不卡18| 午夜福利,免费看| 久久久久国产一级毛片高清牌| 欧美 日韩 精品 国产| 亚洲国产欧美一区二区综合| 高清欧美精品videossex| 日本黄色日本黄色录像| 搡老乐熟女国产| 无遮挡黄片免费观看| 欧美乱妇无乱码| 欧美 亚洲 国产 日韩一| 91精品三级在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲色图av天堂| 国产成人精品在线电影| 啦啦啦中文免费视频观看日本| 久久精品aⅴ一区二区三区四区| 国产成人一区二区三区免费视频网站| 老汉色∧v一级毛片| 久久亚洲真实| 超碰成人久久| 亚洲中文av在线| 国产人伦9x9x在线观看| 两个人免费观看高清视频| 最新在线观看一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 久久精品亚洲av国产电影网| 少妇 在线观看| 香蕉丝袜av| 亚洲精品av麻豆狂野| 日韩欧美一区二区三区在线观看 | 在线播放国产精品三级| avwww免费| 亚洲免费av在线视频| 蜜桃国产av成人99| 青草久久国产| 久久久久网色| 久久国产精品男人的天堂亚洲| 久久性视频一级片| 国产精品99久久99久久久不卡| 91成年电影在线观看| 国产精品亚洲av一区麻豆| 99国产精品一区二区三区| 美女高潮喷水抽搐中文字幕| 亚洲人成电影免费在线| netflix在线观看网站| 一个人免费看片子| 国产成人精品无人区| 成人18禁在线播放| 亚洲午夜精品一区,二区,三区| 黄片小视频在线播放| 国产一区二区在线观看av| 不卡av一区二区三区| 亚洲第一av免费看| 亚洲一码二码三码区别大吗| 伦理电影免费视频| 亚洲成人免费电影在线观看| 日本精品一区二区三区蜜桃| aaaaa片日本免费| 亚洲色图av天堂| 国产欧美日韩精品亚洲av| 久久这里只有精品19| 亚洲va日本ⅴa欧美va伊人久久| 他把我摸到了高潮在线观看 | 国产精品1区2区在线观看. | 国产深夜福利视频在线观看| 日本五十路高清| 九色亚洲精品在线播放| 午夜福利欧美成人| a在线观看视频网站| av国产精品久久久久影院| 精品亚洲成a人片在线观看| 在线看a的网站| 亚洲熟女精品中文字幕| 一夜夜www| 高清在线国产一区| 亚洲国产欧美日韩在线播放| 欧美激情高清一区二区三区| 国产人伦9x9x在线观看| 黑人巨大精品欧美一区二区蜜桃| 狠狠狠狠99中文字幕| 搡老乐熟女国产| 老熟女久久久| 久久亚洲真实| 99国产精品99久久久久| 老司机靠b影院| 91麻豆精品激情在线观看国产 | 久久久水蜜桃国产精品网| 波多野结衣一区麻豆| 又黄又粗又硬又大视频| 国产不卡av网站在线观看| 久久亚洲真实| 国产三级黄色录像| 成年人黄色毛片网站| 超碰成人久久| av视频免费观看在线观看| 麻豆国产av国片精品| 一区二区三区国产精品乱码| 欧美日韩亚洲高清精品| 精品国产一区二区三区久久久樱花| 777米奇影视久久| 在线观看www视频免费| 精品国产一区二区三区久久久樱花| 大片电影免费在线观看免费| 黄网站色视频无遮挡免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人啪精品午夜网站| 美女视频免费永久观看网站| 日韩三级视频一区二区三区| 18禁裸乳无遮挡动漫免费视频| av免费在线观看网站| 19禁男女啪啪无遮挡网站| 日本vs欧美在线观看视频| 午夜两性在线视频| 成在线人永久免费视频| 国产片内射在线| 女人高潮潮喷娇喘18禁视频| 久久精品91无色码中文字幕| 美女福利国产在线| 国产又色又爽无遮挡免费看| 久久久精品国产亚洲av高清涩受| 女同久久另类99精品国产91| 大陆偷拍与自拍| 99精品在免费线老司机午夜| 午夜福利,免费看| 夫妻午夜视频| 色在线成人网| 免费在线观看黄色视频的| 一级a爱视频在线免费观看| 丝袜美腿诱惑在线| 9色porny在线观看| 午夜福利欧美成人| 亚洲伊人久久精品综合| 婷婷成人精品国产| 久久久久久久久久久久大奶| 亚洲自偷自拍图片 自拍| 性高湖久久久久久久久免费观看| 最近最新中文字幕大全电影3 | 成人黄色视频免费在线看| 国产精品一区二区精品视频观看| 老司机影院毛片| 最新美女视频免费是黄的| 少妇精品久久久久久久| 麻豆国产av国片精品| 亚洲欧美日韩另类电影网站| 国产有黄有色有爽视频| 久久久久精品国产欧美久久久| 黄色a级毛片大全视频| av天堂在线播放| 最黄视频免费看| 亚洲五月色婷婷综合| 国产精品av久久久久免费| 欧美中文综合在线视频| 伊人久久大香线蕉亚洲五| 亚洲第一青青草原| 日本一区二区免费在线视频| 亚洲精品国产区一区二| 性色av乱码一区二区三区2| 成人18禁高潮啪啪吃奶动态图| 久久国产精品影院| 女人久久www免费人成看片| 亚洲免费av在线视频| 久久久久久人人人人人| 国产精品亚洲av一区麻豆| 老汉色∧v一级毛片| 国产成人影院久久av| av不卡在线播放| 久久精品人人爽人人爽视色| 一级毛片精品| 精品国产一区二区三区四区第35| 精品国产一区二区久久| 精品一区二区三区视频在线观看免费 | 高清黄色对白视频在线免费看| 国产av国产精品国产| 国产精品二区激情视频| 可以免费在线观看a视频的电影网站| 日韩欧美国产一区二区入口| 久久性视频一级片| 水蜜桃什么品种好| 国产免费福利视频在线观看| 99九九在线精品视频| 美女高潮到喷水免费观看| 丰满人妻熟妇乱又伦精品不卡| 国产男靠女视频免费网站| 国产一区二区在线观看av| 亚洲全国av大片| 如日韩欧美国产精品一区二区三区| 欧美性长视频在线观看| 午夜福利,免费看| 可以免费在线观看a视频的电影网站| 蜜桃国产av成人99| 嫁个100分男人电影在线观看| 午夜两性在线视频| 免费人妻精品一区二区三区视频| 国产日韩一区二区三区精品不卡| 国产男靠女视频免费网站| 久9热在线精品视频| 亚洲精品一卡2卡三卡4卡5卡| 视频区欧美日本亚洲| 美女福利国产在线| 美女高潮到喷水免费观看| 久久ye,这里只有精品| 亚洲人成电影免费在线| 国产成人av教育| 国产高清视频在线播放一区| 青草久久国产| 久久婷婷成人综合色麻豆| 成人黄色视频免费在线看| 超碰97精品在线观看| 欧美乱妇无乱码| 欧美成人午夜精品| 男女边摸边吃奶| 精品福利观看| 亚洲七黄色美女视频| 久久精品国产综合久久久| 日韩三级视频一区二区三区| 久久午夜综合久久蜜桃| 一进一出好大好爽视频| 亚洲精品国产色婷婷电影| 免费看a级黄色片| e午夜精品久久久久久久| 精品亚洲成a人片在线观看| 亚洲国产av新网站| 国产高清视频在线播放一区| tocl精华| 国产精品熟女久久久久浪| 日韩三级视频一区二区三区| 黄色怎么调成土黄色| 日本精品一区二区三区蜜桃| 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 色综合欧美亚洲国产小说| 国产淫语在线视频| 国产男女内射视频| 一个人免费看片子| 久久久精品国产亚洲av高清涩受| 国产精品国产高清国产av | 亚洲,欧美精品.| 色尼玛亚洲综合影院| 另类亚洲欧美激情| 国产激情久久老熟女| 极品少妇高潮喷水抽搐| 国产麻豆69| 亚洲 国产 在线| bbb黄色大片| 亚洲伊人色综图| 国产成人av教育| 午夜精品国产一区二区电影| tocl精华| 久久婷婷成人综合色麻豆| 亚洲av国产av综合av卡| 午夜福利视频精品| 色在线成人网| 国产成人免费观看mmmm| 国产精品久久久久久精品古装| 一边摸一边抽搐一进一小说 | 美女扒开内裤让男人捅视频| 成人国产一区最新在线观看| 国产精品久久久久久人妻精品电影 | 9热在线视频观看99| 国产成人精品无人区| 又黄又粗又硬又大视频| 天堂中文最新版在线下载| 一本久久精品| 久久中文字幕人妻熟女| 夜夜骑夜夜射夜夜干| 日韩欧美免费精品| 后天国语完整版免费观看| 亚洲中文字幕日韩| 波多野结衣一区麻豆| 欧美日韩亚洲高清精品| av福利片在线| 男人舔女人的私密视频| 美女主播在线视频| 精品国产超薄肉色丝袜足j| 国产精品成人在线| 黄网站色视频无遮挡免费观看| 汤姆久久久久久久影院中文字幕| 亚洲成人免费电影在线观看| 青草久久国产| 亚洲国产欧美日韩在线播放| 69精品国产乱码久久久| 免费在线观看影片大全网站| 窝窝影院91人妻| 精品久久久精品久久久| 欧美日韩中文字幕国产精品一区二区三区 | 最近最新免费中文字幕在线| 又紧又爽又黄一区二区| 亚洲黑人精品在线| 侵犯人妻中文字幕一二三四区| 免费看十八禁软件| 久久久精品区二区三区| 欧美成狂野欧美在线观看| 999久久久精品免费观看国产| 欧美精品一区二区免费开放| 美女视频免费永久观看网站| 中文字幕人妻熟女乱码| 午夜精品国产一区二区电影| 99香蕉大伊视频| 久久久久久久国产电影| 国产欧美日韩综合在线一区二区| 波多野结衣一区麻豆| 精品一区二区三区视频在线观看免费 | 性少妇av在线| 一级黄色大片毛片| 十八禁高潮呻吟视频| 亚洲免费av在线视频| tube8黄色片| 午夜激情久久久久久久| 久热这里只有精品99| 伦理电影免费视频| 成年人免费黄色播放视频| 黄色毛片三级朝国网站| 性高湖久久久久久久久免费观看| 国产99久久九九免费精品| 91麻豆精品激情在线观看国产 | 亚洲国产毛片av蜜桃av| 日本wwww免费看| 97在线人人人人妻| 国产97色在线日韩免费| 三上悠亚av全集在线观看| 欧美日韩一级在线毛片| 久久久久久久国产电影| tocl精华| 亚洲 国产 在线| 99热国产这里只有精品6| 亚洲成人国产一区在线观看| 高清av免费在线| 欧美在线黄色| 精品久久久久久电影网| 丝袜在线中文字幕| 免费观看a级毛片全部| 亚洲熟女毛片儿| 国产av又大| 成人特级黄色片久久久久久久 | 嫁个100分男人电影在线观看| 久久国产精品影院| 久久亚洲真实| 日本黄色视频三级网站网址 | 欧美日韩成人在线一区二区| 亚洲精品成人av观看孕妇| 亚洲五月婷婷丁香| 亚洲 国产 在线| 久久久久视频综合| 久久亚洲精品不卡| 精品第一国产精品| 精品久久久久久久毛片微露脸| 欧美国产精品va在线观看不卡| 国产成人影院久久av| 精品一区二区三区视频在线观看免费 | 9色porny在线观看| 久久久国产精品麻豆| 久久久久网色| 亚洲色图 男人天堂 中文字幕| 97在线人人人人妻| 欧美另类亚洲清纯唯美| 欧美激情 高清一区二区三区| 亚洲国产欧美网| 麻豆av在线久日| 久久久久久久大尺度免费视频| 婷婷丁香在线五月| 亚洲男人天堂网一区| 黑人操中国人逼视频| 人成视频在线观看免费观看| 妹子高潮喷水视频| 日韩一卡2卡3卡4卡2021年| 精品国内亚洲2022精品成人 | 侵犯人妻中文字幕一二三四区| 久久九九热精品免费| 自线自在国产av| 一进一出抽搐动态| 国产亚洲欧美精品永久| 久久久欧美国产精品| 一级毛片电影观看| 午夜福利,免费看| 91精品国产国语对白视频| 国产亚洲精品久久久久5区| 欧美性长视频在线观看|