• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hyperspectral imaging and remote trace detection of cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5 d] imidazole (BCHMX) compared with traditional explosives using laser induced fluorescence

    2021-11-03 13:23:34HnyAyouAshrfElSherifAhmedEleih
    Defence Technology 2021年5期

    Hny S.Ayou ,Ashrf F.El-Sherif ,Ahmed Eleih

    a Department of Physics,Faculty of Science,Cairo University,Egypt

    b Laser Photonics Research Center,Engineering Physics Department,Military Technical College,Cairo,Egypt

    c Explosives Department,Military Technical College,Kobry Elkobbah,Cairo,Egypt

    Keywords: Hyperspectral imaging Remote trace detection BCHMX Laser induced fluorescence

    ABSTRACT cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d] imidazole (BCHMX) is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current literature for this material,we performed hyper-spectral imaging and laser induced fluorescence (LIF) to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems.For this purpose,an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives,HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),RDX (1,3,5-trinitro-1,3,5-triazacyclohexane),PETN (2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate).The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm.When light source was replaced by a 405 nm laser diode illuminator,a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm2.Finally,we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 μg/cm2.? 2020 China Ordnance Society.Publishing services by Elsevier B.V.on behalf of KeAi Communications Co.Ltd.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    The growth in the explosives researches is to find out high performance low sensitive explosives [1-3].Due to its superior performance,BCHMX (cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d] imidazole),is considered as one of the most advanced energetic materials [4,5].BCHMX was easily prepared by two step method for its synthesis [6].It has been studied as a plastic explosive for replacement of Composition C-4 [7].In addition,its application as energetic filler for different shaped charges was also studied [8,9].Sensitivity,stability and detonation properties were sufficiently presented in different publications [10-13].Its melt cast composition with TNT (2,4,6-Trinitrotoluene) was studied in comparison with Composition B(60%RDX/40%TNT by wt.)[14,15].The results of the performance and the thermal stability proved that BCHMX-TNT could be a candidate to replace composition B in different applications [14].A similar security measures update in airports and similar critical entities should take place by including remote trace detection facilities for this material [16-18].Several publications reported the different methods used for detection of high energy materials.As reported by Wang [19],X-ray Fluorescence can be used to identify and detect explosive materials.Gulia et al.discussed the importance of Raman spectroscopy to detect traces of explosive at distance reached 5 m[20].In addition,Klapec et al.summarized the different detection techniques and explosive residue characterization in his review manuscript [21].Unfortunately,no specific non-contact remote detection method approved for BCHMX has been reported in literatures.Hence,this study presents the efficiency of hyperspectral imaging and LIF in trace detection of BCHMX as non-destructive,non-contact remote detection technique.Moreover,the optimum excitation and detection LIF wavelength were observed and the trace detection limit of such technique was determined.In this context,hyperspectral imaging technology has various applications[22],it makes possible to perform spectrometry on remote target image,such that a cube hyperspectral image file format contains a cluster of photos[22],each one shows target luminance and irradiance features at narrow spectral bandwidth within 5 nm.Merging between hyperspectral imaging and laser target illumination allows remote detection of target fluorescence (LIF) and irradiance at low laser fluence condition to improve the detection of energetic materials residues and traces in addition to prevent bulk fragments from photodecomposition.The hyperspectral detection of trace energetic materials was studied in previous works [23].Also LIF of nitramines was treated by several publications using deep ultraviolet above photodecomposition level [24,25].But there is on information in literature about merging the two techniques for trace detection in the same case study.For the sake of comparison,It has been decided to perform our tests on BCHMX,which is a white powder material,and simultaneously on similar color traditional energetic materials namely,HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) [26],PETN (penta-erythritol tetranitrate)[27] and RDX (1,3,5-trinitro-1,3,5-triazacyclohexane) [28].As shown in Fig.1,these materials are different in their molecular structure.BCHMX is bicyclic aliphatic nitramine molecule with four nitro groups,RDX and HMX are monocyclic aliphatic nitramine molecules with different nitro groups,while PETN is a nitrate ester explosive which is used mainly as explosive filler in the detonating cords and several plastic explosives.

    One remarkable advantage of hyperspectral imaging and spectroscopy beside the low detection level,is the fact that there is no need for extensive sample preparation,such as dissolving the material in a proper solvent that may quench any relevant fluorescence[29,30].Furthermore,the hyperspectral camera can perform remote stand-off detection of trace and residues from distance ranges from 1 m up to 30 m depending on the used optical zooming system[16,18].In this work,we decided to identify the best laser wavelength suitable for inducing the BCHMX sample to fluorescence,first by illuminating the samples using broad spectrum halogen lamp,imaging these samples by hyperspectral camera and using comparative contrast visualization over different wavelength narrow band pass digital filter to detect the spectral absorption bands of the sample.The sample was illuminated by a low fluence laser beam which has a wavelength close to that of the BCHMX absorption and it was possible to induce sample fluorescence with a better yield and without driving the samples to photodecomposition.

    2.Experimental samples preparation

    PETN,HMX and RDX are products of Heliopolis Company,Cairo,Egypt.These explosives were recrystallized in our laboratories.BCHMX sample was prepared according to the method presented in patent [31],using a two stage synthetic process.Table 1 simplifies samples physical properties.

    Table 1 Physical properties of the samples.

    1 g of each sample was placed in a clear glass cuvette with high optical transmission grade.As shown in Fig.2,the four sample cuvettes were mounted next to each other to a holder with a highly reflective white Lambertian background material,made of polytetrafluoroethytene (PTFE),to enhance samples-background contrast differentiation.

    Fig.1.BCHMX molecular structure compared to RDX,HMX and PETN.

    Fig.2.Experimental samples,(a) Holder montage illustration (b) Samples visual appearance.

    3.Experimental work

    Experimental tests on the prepared samples were performed on three steps,the first was to identify the absorption wavelengths of BCHMX over the visible-near infrared spectrum (in comparison with other samples) using hyperspectral imaging and wide spectrum illumination from a minimum distance of only 1 m.The second step was illuminating the samples with a laser beam,having a wavelength that lies in the absorption bandwidth,and to detect any yielding LIF using hyperspectral imaging from the same distance as in the first step.The last step was testing of the detection possibility of BCHMX finger print trace,using hyperspectral camera with optical zooming system,and to find out the sensitivity of the technique as well as its detection limit.

    4.Results and discussion

    4.1.Identification of BCHMX characteristic absorption

    The setup of this test consists of a hyperspectral camera type SOC710,with resolution of 696 lines per cube at 520 pixels per line,equipped with Scheneider-Kreuznach (1.9/35) CCTV lens,interfaced to windows XP (service pack 2) compatible SOC710 Acquisition Software,hyperspectral analysis toolkit v3.0 software for cube image analysis as shown in Fig.3.

    The hyperspectral camera was placed 1 m apart from the samples.A halogen lamp illuminator type Newport 780 was placed oblique to the sample to avoid camera saturation with direct reflections.The lamp temperature was adjusted to 3200 K to provide a broad spectrum illumination in the range from 200 nm to 3.5 μm.The diaphragm of the lamp head was controlled to change sample irradiance.We performed hyperspectral imaging for the samples subjected to 50 lux of light intensity as measured by luxmetre.

    As shown in Fig.4,the analysis of resultant cube image reveals strong absorption of BCHMX sample in the spectral range from 400 to 410 nm,but no fluorescence was seen due to strong samples irradiance under broad spectrum lighting.Unlike BCHMX,other samples didn’t show any absorption at this wavelength band as shown in Fig.5,neither in the rest of the imaging spectral range of the camera that is limited between 375 nm and 1050 nm.As a result of this finding,we decided to proceed in LIF testing using a laser source with wavelength of 405 nm which is the median of the characteristic absorption spectrum of BCHMX sample.

    4.2.Identification of BCHMX characteristic LIF

    Fig.3.Experimental setup to test visual contrast differentiation of BCHMX under broad spectrum illumination,(a) setup illustration (b) experimental setup.

    Fig.4.Selected frames from the hyperspectral cube image of samples under broad spectrum illumination.

    Fig.5.Visual dark contrast differentiation of BCHMX sample using broad spectrum halogen lamp illumination at hyperspectral filter in the range from 400 to 410 nm.

    Fig.6.Experimental setup to test visual contrast differentiation of BCHMX using 405 nm LIF,(a) setup illustration (b) experimental setup.

    In this test,the halogen lamp has been replaced by 10 W,405 nm laser diode module manufactured by Changchun New Industries Optoelectronics Tech Co.Ltd.A 10x Thorlabs BE10M-A beam expander was placed in front of the laser diode to control the divergence of the laser beam as shown in Fig.6.The laser fluence was adjusted at the samples side such that it does not exceed 0.1 mJ/cm2,which 1/500 of the photodecomposition threshold of nitramines.For this purpose we used energy meter type Gentec-EO.We performed hyperspectral imaging for the samples under laser irradiance.

    Fig.7.Selected frames from the hyperspectral cube image of samples performing 405 nm LIF.

    By analyzing the resultant cube image as shown in Fig.7,BCHMX sample reveals strong absorption for the 405 nm laser radiations(Fig.8a),with strong fluorescence starting from 425 nm,peaking at 580 nm and ending at 700 nm.No fluorescence zone was detected at the wavelength range from 410 nm to near 425 nm(Fig.8b).As expected,the other samples did not show any significant fluorescence (Fig.8c).

    As a result of the previous observation,the third step was proceeded to investigate the capability of hyperspectral camera to perform BCHMX trace stand-of detection.

    4.3.BCHMX remote trace detection

    To perform remote detection of BCHMX traces,the hyperspectral camera and the 405 nm laser projection system are aligned in front of 5 × 7 cm white cellulose fabric,at variable distances ranging from 1 to 20 m as shown in Fig.9a.1 μg BCHMX was deposed on the cellulose fabric using fingertip to create a white finger print trace that is invisible relative to the hosting surface(only a minimum of 1 μg BCHMX powder was sufficient for mechanical deposition by fingertip to form a detectable hyperspectral image fingerprint trace).We replaced the 35 mm hyperspectral camera zoom lens with a 117 mm Fujinon D16×7.3B-S41 TV-Z lens and equipped with a Fujion remote control box type CRD-2A zoom control system (Fig.9b).As recommended by manufacturer,the hyperspectral camera was subject to three steps standard calibration procedure including dark level correction,spectral mapping and pixels gain uniformity correction(The calibration procedure is explained in details in the SOC-710 and HSAnalysis2XL user’s manual).We adjusted the laser fluence at each hyperspectral shot at every imaging distance using the same method as in the second test.We perform imaging in low lux ambient conditions ranging from 0.01 lux to 1 lux at daylight illumination (Fig.10a).

    After several imaging trials with variable optical zoom (at constant pixels number),wherein we have changed the distance to the target from 1 m to 20 m,we succeeded in detecting the BCHMX trace finger print,at a maximum distance of 15 m with good contrast at mesopic illumination level(0.001-1 m-2).We enhanced the image contrast using DADiSP digital image processing software version 4.1,by superimposing the irradiance image (Fig.10b) and the fluorescence image (Fig.10c),then performing edge detection on the superimposed image (Fig.10d).At distances greater than 15 m,the contrast of the trace was visible,but not as sharp as required to perform digital enhancement.

    By comparing the results of all the studied samples,it is obvious that BCHMX has high LIF intensity at different wavelengths as shown in Fig.11.In addition,RDX and HMX have very close LIF intensities in comparison with each other.The reason of this difference is the molecular structure of the studied samples which leads to different LIF behavior.The stretching modes of NO2lead to the characteristic absorption frequencies which are regular to the organic explosives containing nitro-group.Each sample has variable bond lengths and vibrancy states.According to Refs.[24],RDX and HMX has no conjugated π orbital system,even the π orbitals of the nitro group are so close in energy to those of σ,n orbitals in the aliphatic nitraimine molecules,so that no photoluminescence can be observed before photodecomposition [33].In the case of PETN,the situation is different because the aliphatic nitrate ester molecule has a strong π π* transition state and a characteristicn,π*triplet level that may cause phosphorescence rather than fluorescence.BCHMX molecule showed a strong fluorescence in the visible band because it possess both conjugated π orbital system and σ,n*orbital transition.The presence of carbon-carbon bond in common position between the two cycles might lead to hyperspectral differentiation of BCHMX among other nitramines in analogy with the case of slight and extensive aromatic systems of nitroarene [33].Also Klasovity et al.studied the NMR spectra of BCHMX and proved that its molecule is isochronous and has dihedral inter-nuclear angle in its molecule [6].BCHMX has the longest nitrogennitrogen bond length compared with the other nitramines which caused increasing of its sensitivity to the limit of PETN[34,35].Also BCHMX has non-binding interatomic distances of oxygen atoms in all of the nitro groups in its molecule which are shorter than those corresponding to the intermolecular contact radii for oxygen in carbonyl or other nitro groups [6].According to the mentioned data,it was predicted that BCHMX could have different LIF spectra compared with the studied nitramines.On the other side,BCHMX has heat of detonation and impact sensitivity very close to PETN[34]which might be the reason of some similarity on the behavior of both of them.

    Fig.8.Visual contrast differentiation of BCHMX sample using 405 nm LIF with different filters,(a) BCHMX sample appears dark at 405 nn filter due to absorbtion (b) all samples appears dark at 410-425 nm filter,(c) BCHMX sample appears of bright contrast due to fluorescence at 425-700 nm filter.

    Fig.9.Experimental setup to test visual contrast differentiation of BCHMX using 405 nm LIF,(a) setup illustration (b) experimental setup.

    Fig.10.Hyperspectral visualization of BCHMX finger print trace on a white cellulose fabric using 405 nm LIF from a distance of 15 m,(a) visual image (b) 405 nm hyperspectral irradiance filter (c) 580 nm hyperspectral fluorescence filter (d) Digitally enhaced edge detected irradiance-fluorescence superimposed image.

    Fig.11.405 nm LIF spectra of the experimental samples as acquired from the hyperspectral cube images.

    5.Conclusion

    BCHMX is a new energetic material belongs to the nitramines family.It has several distinct spectroscopic characteristics other than traditional monocyclic aliphatic nitramines similar to HMX and RDX,but it shows some relevance to the behavior of PETN as non-cyclic aliphatic nitrate ester.Remote detection of BCHMX trace was successfully achieved using a novel method based on hyperspectral imaging and LIF techniques.BCHMX traces subjected to 405 nm laser illumination showed a strong photoemission in the spectral range from 425 nm to 700 nm.The trace detection limit of BCHMX using this technique was found to be 1 μg/cm2at laser fluence of 0.1 mJ/cm2and a distance of 15 m we expected that the detection limit of BCHMX may decrease according to hyperspectral camera sensitivity and optical collimation system specifications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    The authors are very grateful to the members of Physics Department,Faculty of Science,Cairo University and Laser Research Technology Center,Engineering Physics Department,Military Technical College,Cairo,Egypt for their encouragement,support and helpful suggestions.

    嫩草影视91久久| 别揉我奶头~嗯~啊~动态视频| 亚洲熟妇熟女久久| 色播亚洲综合网| 禁无遮挡网站| 亚洲中文字幕日韩| 精品99又大又爽又粗少妇毛片 | 99在线视频只有这里精品首页| 久久精品人妻少妇| 午夜福利成人在线免费观看| 丰满人妻一区二区三区视频av | 九色成人免费人妻av| 日韩欧美在线乱码| 搡老妇女老女人老熟妇| 亚洲国产精品合色在线| 欧美一区二区国产精品久久精品| 一本综合久久免费| 亚洲精品国产精品久久久不卡| 搞女人的毛片| 一个人观看的视频www高清免费观看 | 国产高清视频在线播放一区| 黄片大片在线免费观看| 亚洲人成网站在线播放欧美日韩| 国产美女午夜福利| 一a级毛片在线观看| 欧美最黄视频在线播放免费| 亚洲五月婷婷丁香| 亚洲av成人不卡在线观看播放网| 日本三级黄在线观看| 99国产综合亚洲精品| 成人特级黄色片久久久久久久| 欧美极品一区二区三区四区| 狠狠狠狠99中文字幕| 此物有八面人人有两片| 亚洲国产精品久久男人天堂| 久久中文字幕人妻熟女| 动漫黄色视频在线观看| 亚洲avbb在线观看| 亚洲性夜色夜夜综合| 欧美激情久久久久久爽电影| 色视频www国产| 99久久99久久久精品蜜桃| 久久久成人免费电影| 波多野结衣巨乳人妻| 十八禁人妻一区二区| 亚洲自拍偷在线| 丁香六月欧美| 国模一区二区三区四区视频 | 亚洲国产欧美人成| 在线a可以看的网站| x7x7x7水蜜桃| 久久精品国产亚洲av香蕉五月| 中文字幕av在线有码专区| 免费人成视频x8x8入口观看| 日本免费一区二区三区高清不卡| 免费观看精品视频网站| 国产伦人伦偷精品视频| 无限看片的www在线观看| 三级毛片av免费| 黄色女人牲交| 免费看光身美女| 在线播放国产精品三级| 亚洲人成伊人成综合网2020| 欧美黑人巨大hd| 国内揄拍国产精品人妻在线| 成人精品一区二区免费| 亚洲中文av在线| 国内精品美女久久久久久| 在线国产一区二区在线| 中出人妻视频一区二区| 欧美色视频一区免费| 日韩 欧美 亚洲 中文字幕| 日韩国内少妇激情av| 成年女人毛片免费观看观看9| 舔av片在线| 精华霜和精华液先用哪个| 久久香蕉精品热| 欧美国产日韩亚洲一区| 亚洲av熟女| 国产一区在线观看成人免费| 亚洲中文字幕一区二区三区有码在线看 | 欧美日韩亚洲国产一区二区在线观看| 一级作爱视频免费观看| 九九热线精品视视频播放| 国产精品久久久人人做人人爽| 亚洲熟女毛片儿| 曰老女人黄片| 亚洲国产欧美网| svipshipincom国产片| 亚洲欧美激情综合另类| 久久精品91无色码中文字幕| 免费看美女性在线毛片视频| 国产精品,欧美在线| 男女午夜视频在线观看| 免费在线观看影片大全网站| 欧美绝顶高潮抽搐喷水| 特大巨黑吊av在线直播| 亚洲欧美精品综合久久99| 国产成人欧美在线观看| 毛片女人毛片| 俄罗斯特黄特色一大片| 国产av不卡久久| 九九久久精品国产亚洲av麻豆 | 成年女人永久免费观看视频| 国产精品一区二区三区四区久久| 香蕉av资源在线| 99久久久亚洲精品蜜臀av| 又黄又爽又免费观看的视频| 欧美绝顶高潮抽搐喷水| 最新美女视频免费是黄的| 首页视频小说图片口味搜索| 麻豆av在线久日| 一个人免费在线观看电影 | 人妻丰满熟妇av一区二区三区| 99久久成人亚洲精品观看| 成熟少妇高潮喷水视频| 国产精品亚洲av一区麻豆| 亚洲人成伊人成综合网2020| 午夜激情福利司机影院| 别揉我奶头~嗯~啊~动态视频| 男插女下体视频免费在线播放| 老鸭窝网址在线观看| 精品免费久久久久久久清纯| 亚洲av电影在线进入| 免费高清视频大片| 国产乱人视频| 国产精品99久久久久久久久| 午夜精品一区二区三区免费看| 久久国产精品人妻蜜桃| 欧美成人免费av一区二区三区| 99热6这里只有精品| 久久久久九九精品影院| 亚洲成人久久爱视频| 午夜免费激情av| 嫁个100分男人电影在线观看| tocl精华| 国产亚洲精品久久久com| 日韩高清综合在线| 色精品久久人妻99蜜桃| 久久久久久国产a免费观看| 欧美日韩中文字幕国产精品一区二区三区| 俄罗斯特黄特色一大片| 久久精品综合一区二区三区| 久久久国产欧美日韩av| 国语自产精品视频在线第100页| 9191精品国产免费久久| 高清在线国产一区| 又黄又粗又硬又大视频| netflix在线观看网站| 一本综合久久免费| 精品电影一区二区在线| 国产不卡一卡二| 国产高清视频在线观看网站| cao死你这个sao货| 久久这里只有精品19| 亚洲精品456在线播放app | 精品国产超薄肉色丝袜足j| 亚洲自偷自拍图片 自拍| 欧美大码av| 国产aⅴ精品一区二区三区波| svipshipincom国产片| 亚洲国产精品久久男人天堂| xxxwww97欧美| 最新在线观看一区二区三区| 午夜精品久久久久久毛片777| 久久久水蜜桃国产精品网| 91av网站免费观看| 变态另类丝袜制服| 波多野结衣高清无吗| 天天一区二区日本电影三级| av天堂中文字幕网| 国产爱豆传媒在线观看| 搡老岳熟女国产| 欧美午夜高清在线| 热99在线观看视频| 91av网一区二区| 亚洲自拍偷在线| 色吧在线观看| 亚洲熟妇中文字幕五十中出| АⅤ资源中文在线天堂| 亚洲av成人av| 国产欧美日韩精品亚洲av| 亚洲18禁久久av| 国产精品久久久av美女十八| 亚洲国产精品sss在线观看| av国产免费在线观看| 九九久久精品国产亚洲av麻豆 | 欧美午夜高清在线| 丁香欧美五月| 婷婷丁香在线五月| 首页视频小说图片口味搜索| 亚洲精品乱码久久久v下载方式 | 亚洲av免费在线观看| 中文字幕人妻丝袜一区二区| 欧美性猛交╳xxx乱大交人| 国产精品女同一区二区软件 | 天天添夜夜摸| 黄频高清免费视频| 欧美成人一区二区免费高清观看 | 搡老熟女国产l中国老女人| 特级一级黄色大片| 好看av亚洲va欧美ⅴa在| 婷婷亚洲欧美| 又黄又爽又免费观看的视频| 国产精品一区二区三区四区免费观看 | av在线蜜桃| 午夜视频精品福利| 99re在线观看精品视频| 色吧在线观看| 淫秽高清视频在线观看| 亚洲七黄色美女视频| 精品久久久久久久末码| 成人av在线播放网站| 中文字幕精品亚洲无线码一区| 亚洲精品456在线播放app | 少妇的丰满在线观看| 欧美色欧美亚洲另类二区| 欧美3d第一页| 久久热在线av| 超碰成人久久| 国产99白浆流出| 五月伊人婷婷丁香| 久久久久久国产a免费观看| 99国产精品一区二区蜜桃av| 一本久久中文字幕| 三级毛片av免费| 国产精品久久电影中文字幕| 91老司机精品| 搡老熟女国产l中国老女人| 熟妇人妻久久中文字幕3abv| 国语自产精品视频在线第100页| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久av美女十八| 国产欧美日韩一区二区精品| 国产成人aa在线观看| 老司机福利观看| 国产激情偷乱视频一区二区| 亚洲av成人一区二区三| 在线a可以看的网站| 91av网一区二区| 欧美性猛交黑人性爽| 久久久国产精品麻豆| 国产精华一区二区三区| 久久久久性生活片| 国产精品久久电影中文字幕| 久久热在线av| 欧美大码av| 国产成人精品久久二区二区免费| 曰老女人黄片| 色哟哟哟哟哟哟| 久久久国产欧美日韩av| 他把我摸到了高潮在线观看| 亚洲国产欧美人成| 91在线精品国自产拍蜜月 | 国产精品久久久久久人妻精品电影| 一本一本综合久久| 日本撒尿小便嘘嘘汇集6| 日本在线视频免费播放| 一级毛片精品| 黄色日韩在线| 日韩欧美国产一区二区入口| 亚洲美女视频黄频| 成年女人永久免费观看视频| 高清毛片免费观看视频网站| 国产精品亚洲av一区麻豆| 最新美女视频免费是黄的| 亚洲午夜理论影院| 黑人巨大精品欧美一区二区mp4| 久久人人精品亚洲av| 日韩欧美一区二区三区在线观看| 成人特级av手机在线观看| 我要搜黄色片| 香蕉国产在线看| 成熟少妇高潮喷水视频| 精品国产乱子伦一区二区三区| 亚洲成av人片在线播放无| 国产精品99久久99久久久不卡| 91字幕亚洲| 国产私拍福利视频在线观看| 两个人视频免费观看高清| 日本 欧美在线| 色视频www国产| 日日夜夜操网爽| 悠悠久久av| 久久天堂一区二区三区四区| 欧美性猛交黑人性爽| 俺也久久电影网| 亚洲欧美精品综合久久99| 中文字幕久久专区| 三级国产精品欧美在线观看 | 亚洲欧美一区二区三区黑人| 欧美性猛交黑人性爽| 这个男人来自地球电影免费观看| 成人三级做爰电影| 小蜜桃在线观看免费完整版高清| 国产精品亚洲一级av第二区| 少妇人妻一区二区三区视频| 成人特级av手机在线观看| 真人一进一出gif抽搐免费| 国产单亲对白刺激| 国产激情偷乱视频一区二区| 熟女电影av网| 日韩成人在线观看一区二区三区| АⅤ资源中文在线天堂| 给我免费播放毛片高清在线观看| 又爽又黄无遮挡网站| 日日摸夜夜添夜夜添小说| 成人特级黄色片久久久久久久| 欧美+亚洲+日韩+国产| 日韩欧美三级三区| 99久久无色码亚洲精品果冻| 精品无人区乱码1区二区| 一级毛片高清免费大全| 99国产极品粉嫩在线观看| 色综合站精品国产| 午夜激情福利司机影院| 91老司机精品| 黄色日韩在线| 长腿黑丝高跟| x7x7x7水蜜桃| 国产熟女xx| 久久国产乱子伦精品免费另类| 亚洲性夜色夜夜综合| 亚洲成a人片在线一区二区| 亚洲一区二区三区不卡视频| 久久欧美精品欧美久久欧美| 俄罗斯特黄特色一大片| 久久久久性生活片| 欧美绝顶高潮抽搐喷水| 中文字幕人成人乱码亚洲影| 亚洲精品中文字幕一二三四区| www.熟女人妻精品国产| 亚洲熟女毛片儿| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 国产亚洲精品综合一区在线观看| 久久久国产欧美日韩av| 狠狠狠狠99中文字幕| 欧美另类亚洲清纯唯美| av天堂中文字幕网| 国产乱人视频| 男人舔奶头视频| 国产欧美日韩精品亚洲av| 国产亚洲精品久久久com| 免费在线观看日本一区| 少妇的逼水好多| 日韩免费av在线播放| 亚洲av中文字字幕乱码综合| 一级黄色大片毛片| 99re在线观看精品视频| 嫩草影院入口| 真人做人爱边吃奶动态| 999久久久国产精品视频| or卡值多少钱| 久久久久性生活片| 熟妇人妻久久中文字幕3abv| 精品国产三级普通话版| av视频在线观看入口| 夜夜夜夜夜久久久久| 在线观看舔阴道视频| 精品电影一区二区在线| 哪里可以看免费的av片| xxxwww97欧美| 老熟妇乱子伦视频在线观看| 精品国产美女av久久久久小说| 99在线视频只有这里精品首页| 美女被艹到高潮喷水动态| 亚洲av成人不卡在线观看播放网| 丰满人妻一区二区三区视频av | 日韩人妻高清精品专区| 极品教师在线免费播放| 熟女少妇亚洲综合色aaa.| 日本黄色视频三级网站网址| 精品乱码久久久久久99久播| 两个人看的免费小视频| 99在线视频只有这里精品首页| 亚洲在线观看片| 亚洲中文字幕一区二区三区有码在线看 | 综合色av麻豆| 亚洲成a人片在线一区二区| 亚洲自偷自拍图片 自拍| 91av网一区二区| 久久性视频一级片| 黑人操中国人逼视频| 久久精品aⅴ一区二区三区四区| 国产一区二区在线av高清观看| 亚洲人成电影免费在线| 成人精品一区二区免费| 在线视频色国产色| av女优亚洲男人天堂 | 国产蜜桃级精品一区二区三区| 久久久色成人| 国产熟女xx| 国产成人系列免费观看| 黄色视频,在线免费观看| 成熟少妇高潮喷水视频| 国语自产精品视频在线第100页| 国产精品一及| 在线观看免费午夜福利视频| 99久久99久久久精品蜜桃| 国产精品影院久久| 我要搜黄色片| 国产高清videossex| 一本综合久久免费| 人人妻,人人澡人人爽秒播| 国产精品爽爽va在线观看网站| av片东京热男人的天堂| 欧美国产日韩亚洲一区| 免费无遮挡裸体视频| 亚洲国产欧洲综合997久久,| 黄色片一级片一级黄色片| 亚洲av中文字字幕乱码综合| 亚洲电影在线观看av| 日韩欧美三级三区| 国产亚洲av嫩草精品影院| 天堂网av新在线| 日本免费一区二区三区高清不卡| 90打野战视频偷拍视频| 国产精品亚洲av一区麻豆| 欧美日韩精品网址| 久久国产乱子伦精品免费另类| 91av网站免费观看| 欧美色欧美亚洲另类二区| 白带黄色成豆腐渣| 床上黄色一级片| 91麻豆av在线| 手机成人av网站| 精品乱码久久久久久99久播| 99在线视频只有这里精品首页| 91老司机精品| 亚洲成人精品中文字幕电影| 99久久无色码亚洲精品果冻| 最新美女视频免费是黄的| 午夜福利18| а√天堂www在线а√下载| 淫妇啪啪啪对白视频| 婷婷精品国产亚洲av在线| 99国产综合亚洲精品| 亚洲男人的天堂狠狠| 三级国产精品欧美在线观看 | 国产人伦9x9x在线观看| 999精品在线视频| 国产精品女同一区二区软件 | 99久国产av精品| 成人国产综合亚洲| 亚洲片人在线观看| 精品一区二区三区四区五区乱码| 亚洲av五月六月丁香网| 国产一区二区在线av高清观看| 国产精品亚洲av一区麻豆| 亚洲精品一卡2卡三卡4卡5卡| 一个人免费在线观看电影 | 男人舔女人下体高潮全视频| 国产成人av教育| 日本黄色视频三级网站网址| 免费大片18禁| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久亚洲av鲁大| 老鸭窝网址在线观看| 精品国内亚洲2022精品成人| 亚洲欧美日韩无卡精品| 精品电影一区二区在线| 黑人操中国人逼视频| 一进一出好大好爽视频| 一级作爱视频免费观看| 精品福利观看| 深夜精品福利| 色av中文字幕| 免费看a级黄色片| 欧美乱妇无乱码| 欧美不卡视频在线免费观看| 国产成人福利小说| 丰满人妻熟妇乱又伦精品不卡| 精品国产三级普通话版| 精品久久蜜臀av无| av中文乱码字幕在线| tocl精华| 亚洲欧美精品综合一区二区三区| 久久久久久国产a免费观看| 高清在线国产一区| 久久久国产欧美日韩av| 国产成人影院久久av| 久久久久免费精品人妻一区二区| 黄片小视频在线播放| 美女高潮的动态| 999精品在线视频| 性色av乱码一区二区三区2| 亚洲av成人精品一区久久| 亚洲成人精品中文字幕电影| 久久性视频一级片| 无限看片的www在线观看| 久久久久久国产a免费观看| 小蜜桃在线观看免费完整版高清| 国产成人福利小说| 婷婷丁香在线五月| 999久久久国产精品视频| 熟女人妻精品中文字幕| 国产精品1区2区在线观看.| 亚洲aⅴ乱码一区二区在线播放| 亚洲最大成人中文| 亚洲av第一区精品v没综合| 国产伦一二天堂av在线观看| 黄色视频,在线免费观看| 香蕉久久夜色| 少妇裸体淫交视频免费看高清| 黑人操中国人逼视频| 亚洲狠狠婷婷综合久久图片| 99久久精品一区二区三区| 国产av不卡久久| 亚洲人与动物交配视频| 婷婷亚洲欧美| 欧美日韩乱码在线| 日本一本二区三区精品| 九九久久精品国产亚洲av麻豆 | 淫妇啪啪啪对白视频| 国产免费av片在线观看野外av| 成人鲁丝片一二三区免费| 欧美又色又爽又黄视频| 在线免费观看不下载黄p国产 | 黄片小视频在线播放| 欧美日韩亚洲国产一区二区在线观看| www.自偷自拍.com| 美女cb高潮喷水在线观看 | 两个人视频免费观看高清| 欧美日韩国产亚洲二区| 亚洲无线在线观看| 日日摸夜夜添夜夜添小说| 88av欧美| 免费观看精品视频网站| 国产黄a三级三级三级人| 99热这里只有是精品50| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久免费视频| 国产精品免费一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产精品久久男人天堂| 久久天堂一区二区三区四区| 久久热在线av| 长腿黑丝高跟| 国产伦精品一区二区三区四那| 一个人免费在线观看的高清视频| 日韩欧美在线乱码| 在线观看美女被高潮喷水网站 | 欧美日韩瑟瑟在线播放| 亚洲七黄色美女视频| 欧美日韩国产亚洲二区| 嫩草影院精品99| 波多野结衣巨乳人妻| 国产av不卡久久| 日日夜夜操网爽| 久久久精品欧美日韩精品| 91在线观看av| 男女之事视频高清在线观看| 欧美绝顶高潮抽搐喷水| 香蕉丝袜av| 老司机深夜福利视频在线观看| 精品久久久久久久毛片微露脸| 高潮久久久久久久久久久不卡| 1024香蕉在线观看| 国产av一区在线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品456在线播放app | 国产高潮美女av| 桃红色精品国产亚洲av| 国产精品一区二区精品视频观看| 国产成人精品久久二区二区91| 亚洲自偷自拍图片 自拍| 黄色视频,在线免费观看| 久久久久久久久中文| 国产av不卡久久| 欧美一级a爱片免费观看看| 99热只有精品国产| 最新美女视频免费是黄的| 午夜免费观看网址| 性欧美人与动物交配| 可以在线观看的亚洲视频| 小说图片视频综合网站| 欧美黑人巨大hd| 成人国产综合亚洲| 欧美成人性av电影在线观看| 又黄又粗又硬又大视频| 亚洲性夜色夜夜综合| 亚洲国产日韩欧美精品在线观看 | 色吧在线观看| 国产人伦9x9x在线观看| 欧美午夜高清在线| 国产精品永久免费网站| 久久这里只有精品中国| 欧美中文综合在线视频| 一a级毛片在线观看| 香蕉久久夜色| 黄色视频,在线免费观看| 国产综合懂色| 丰满人妻一区二区三区视频av | 色播亚洲综合网| 国产精品99久久99久久久不卡| 日韩av在线大香蕉| 国产精品一区二区三区四区免费观看 | 母亲3免费完整高清在线观看| 国内精品一区二区在线观看| 日日干狠狠操夜夜爽| 亚洲国产精品合色在线| 亚洲黑人精品在线| 亚洲色图av天堂| 母亲3免费完整高清在线观看| av天堂中文字幕网| 国模一区二区三区四区视频 | 午夜亚洲福利在线播放| 成人高潮视频无遮挡免费网站| 51午夜福利影视在线观看| 少妇熟女aⅴ在线视频| 国产成人精品久久二区二区91| 成年版毛片免费区| 男女视频在线观看网站免费|