• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hyperspectral imaging and remote trace detection of cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5 d] imidazole (BCHMX) compared with traditional explosives using laser induced fluorescence

    2021-11-03 13:23:34HnyAyouAshrfElSherifAhmedEleih
    Defence Technology 2021年5期

    Hny S.Ayou ,Ashrf F.El-Sherif ,Ahmed Eleih

    a Department of Physics,Faculty of Science,Cairo University,Egypt

    b Laser Photonics Research Center,Engineering Physics Department,Military Technical College,Cairo,Egypt

    c Explosives Department,Military Technical College,Kobry Elkobbah,Cairo,Egypt

    Keywords: Hyperspectral imaging Remote trace detection BCHMX Laser induced fluorescence

    ABSTRACT cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d] imidazole (BCHMX) is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current literature for this material,we performed hyper-spectral imaging and laser induced fluorescence (LIF) to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems.For this purpose,an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives,HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),RDX (1,3,5-trinitro-1,3,5-triazacyclohexane),PETN (2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate).The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm.When light source was replaced by a 405 nm laser diode illuminator,a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm2.Finally,we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 μg/cm2.? 2020 China Ordnance Society.Publishing services by Elsevier B.V.on behalf of KeAi Communications Co.Ltd.This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

    1.Introduction

    The growth in the explosives researches is to find out high performance low sensitive explosives [1-3].Due to its superior performance,BCHMX (cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d] imidazole),is considered as one of the most advanced energetic materials [4,5].BCHMX was easily prepared by two step method for its synthesis [6].It has been studied as a plastic explosive for replacement of Composition C-4 [7].In addition,its application as energetic filler for different shaped charges was also studied [8,9].Sensitivity,stability and detonation properties were sufficiently presented in different publications [10-13].Its melt cast composition with TNT (2,4,6-Trinitrotoluene) was studied in comparison with Composition B(60%RDX/40%TNT by wt.)[14,15].The results of the performance and the thermal stability proved that BCHMX-TNT could be a candidate to replace composition B in different applications [14].A similar security measures update in airports and similar critical entities should take place by including remote trace detection facilities for this material [16-18].Several publications reported the different methods used for detection of high energy materials.As reported by Wang [19],X-ray Fluorescence can be used to identify and detect explosive materials.Gulia et al.discussed the importance of Raman spectroscopy to detect traces of explosive at distance reached 5 m[20].In addition,Klapec et al.summarized the different detection techniques and explosive residue characterization in his review manuscript [21].Unfortunately,no specific non-contact remote detection method approved for BCHMX has been reported in literatures.Hence,this study presents the efficiency of hyperspectral imaging and LIF in trace detection of BCHMX as non-destructive,non-contact remote detection technique.Moreover,the optimum excitation and detection LIF wavelength were observed and the trace detection limit of such technique was determined.In this context,hyperspectral imaging technology has various applications[22],it makes possible to perform spectrometry on remote target image,such that a cube hyperspectral image file format contains a cluster of photos[22],each one shows target luminance and irradiance features at narrow spectral bandwidth within 5 nm.Merging between hyperspectral imaging and laser target illumination allows remote detection of target fluorescence (LIF) and irradiance at low laser fluence condition to improve the detection of energetic materials residues and traces in addition to prevent bulk fragments from photodecomposition.The hyperspectral detection of trace energetic materials was studied in previous works [23].Also LIF of nitramines was treated by several publications using deep ultraviolet above photodecomposition level [24,25].But there is on information in literature about merging the two techniques for trace detection in the same case study.For the sake of comparison,It has been decided to perform our tests on BCHMX,which is a white powder material,and simultaneously on similar color traditional energetic materials namely,HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) [26],PETN (penta-erythritol tetranitrate)[27] and RDX (1,3,5-trinitro-1,3,5-triazacyclohexane) [28].As shown in Fig.1,these materials are different in their molecular structure.BCHMX is bicyclic aliphatic nitramine molecule with four nitro groups,RDX and HMX are monocyclic aliphatic nitramine molecules with different nitro groups,while PETN is a nitrate ester explosive which is used mainly as explosive filler in the detonating cords and several plastic explosives.

    One remarkable advantage of hyperspectral imaging and spectroscopy beside the low detection level,is the fact that there is no need for extensive sample preparation,such as dissolving the material in a proper solvent that may quench any relevant fluorescence[29,30].Furthermore,the hyperspectral camera can perform remote stand-off detection of trace and residues from distance ranges from 1 m up to 30 m depending on the used optical zooming system[16,18].In this work,we decided to identify the best laser wavelength suitable for inducing the BCHMX sample to fluorescence,first by illuminating the samples using broad spectrum halogen lamp,imaging these samples by hyperspectral camera and using comparative contrast visualization over different wavelength narrow band pass digital filter to detect the spectral absorption bands of the sample.The sample was illuminated by a low fluence laser beam which has a wavelength close to that of the BCHMX absorption and it was possible to induce sample fluorescence with a better yield and without driving the samples to photodecomposition.

    2.Experimental samples preparation

    PETN,HMX and RDX are products of Heliopolis Company,Cairo,Egypt.These explosives were recrystallized in our laboratories.BCHMX sample was prepared according to the method presented in patent [31],using a two stage synthetic process.Table 1 simplifies samples physical properties.

    Table 1 Physical properties of the samples.

    1 g of each sample was placed in a clear glass cuvette with high optical transmission grade.As shown in Fig.2,the four sample cuvettes were mounted next to each other to a holder with a highly reflective white Lambertian background material,made of polytetrafluoroethytene (PTFE),to enhance samples-background contrast differentiation.

    Fig.1.BCHMX molecular structure compared to RDX,HMX and PETN.

    Fig.2.Experimental samples,(a) Holder montage illustration (b) Samples visual appearance.

    3.Experimental work

    Experimental tests on the prepared samples were performed on three steps,the first was to identify the absorption wavelengths of BCHMX over the visible-near infrared spectrum (in comparison with other samples) using hyperspectral imaging and wide spectrum illumination from a minimum distance of only 1 m.The second step was illuminating the samples with a laser beam,having a wavelength that lies in the absorption bandwidth,and to detect any yielding LIF using hyperspectral imaging from the same distance as in the first step.The last step was testing of the detection possibility of BCHMX finger print trace,using hyperspectral camera with optical zooming system,and to find out the sensitivity of the technique as well as its detection limit.

    4.Results and discussion

    4.1.Identification of BCHMX characteristic absorption

    The setup of this test consists of a hyperspectral camera type SOC710,with resolution of 696 lines per cube at 520 pixels per line,equipped with Scheneider-Kreuznach (1.9/35) CCTV lens,interfaced to windows XP (service pack 2) compatible SOC710 Acquisition Software,hyperspectral analysis toolkit v3.0 software for cube image analysis as shown in Fig.3.

    The hyperspectral camera was placed 1 m apart from the samples.A halogen lamp illuminator type Newport 780 was placed oblique to the sample to avoid camera saturation with direct reflections.The lamp temperature was adjusted to 3200 K to provide a broad spectrum illumination in the range from 200 nm to 3.5 μm.The diaphragm of the lamp head was controlled to change sample irradiance.We performed hyperspectral imaging for the samples subjected to 50 lux of light intensity as measured by luxmetre.

    As shown in Fig.4,the analysis of resultant cube image reveals strong absorption of BCHMX sample in the spectral range from 400 to 410 nm,but no fluorescence was seen due to strong samples irradiance under broad spectrum lighting.Unlike BCHMX,other samples didn’t show any absorption at this wavelength band as shown in Fig.5,neither in the rest of the imaging spectral range of the camera that is limited between 375 nm and 1050 nm.As a result of this finding,we decided to proceed in LIF testing using a laser source with wavelength of 405 nm which is the median of the characteristic absorption spectrum of BCHMX sample.

    4.2.Identification of BCHMX characteristic LIF

    Fig.3.Experimental setup to test visual contrast differentiation of BCHMX under broad spectrum illumination,(a) setup illustration (b) experimental setup.

    Fig.4.Selected frames from the hyperspectral cube image of samples under broad spectrum illumination.

    Fig.5.Visual dark contrast differentiation of BCHMX sample using broad spectrum halogen lamp illumination at hyperspectral filter in the range from 400 to 410 nm.

    Fig.6.Experimental setup to test visual contrast differentiation of BCHMX using 405 nm LIF,(a) setup illustration (b) experimental setup.

    In this test,the halogen lamp has been replaced by 10 W,405 nm laser diode module manufactured by Changchun New Industries Optoelectronics Tech Co.Ltd.A 10x Thorlabs BE10M-A beam expander was placed in front of the laser diode to control the divergence of the laser beam as shown in Fig.6.The laser fluence was adjusted at the samples side such that it does not exceed 0.1 mJ/cm2,which 1/500 of the photodecomposition threshold of nitramines.For this purpose we used energy meter type Gentec-EO.We performed hyperspectral imaging for the samples under laser irradiance.

    Fig.7.Selected frames from the hyperspectral cube image of samples performing 405 nm LIF.

    By analyzing the resultant cube image as shown in Fig.7,BCHMX sample reveals strong absorption for the 405 nm laser radiations(Fig.8a),with strong fluorescence starting from 425 nm,peaking at 580 nm and ending at 700 nm.No fluorescence zone was detected at the wavelength range from 410 nm to near 425 nm(Fig.8b).As expected,the other samples did not show any significant fluorescence (Fig.8c).

    As a result of the previous observation,the third step was proceeded to investigate the capability of hyperspectral camera to perform BCHMX trace stand-of detection.

    4.3.BCHMX remote trace detection

    To perform remote detection of BCHMX traces,the hyperspectral camera and the 405 nm laser projection system are aligned in front of 5 × 7 cm white cellulose fabric,at variable distances ranging from 1 to 20 m as shown in Fig.9a.1 μg BCHMX was deposed on the cellulose fabric using fingertip to create a white finger print trace that is invisible relative to the hosting surface(only a minimum of 1 μg BCHMX powder was sufficient for mechanical deposition by fingertip to form a detectable hyperspectral image fingerprint trace).We replaced the 35 mm hyperspectral camera zoom lens with a 117 mm Fujinon D16×7.3B-S41 TV-Z lens and equipped with a Fujion remote control box type CRD-2A zoom control system (Fig.9b).As recommended by manufacturer,the hyperspectral camera was subject to three steps standard calibration procedure including dark level correction,spectral mapping and pixels gain uniformity correction(The calibration procedure is explained in details in the SOC-710 and HSAnalysis2XL user’s manual).We adjusted the laser fluence at each hyperspectral shot at every imaging distance using the same method as in the second test.We perform imaging in low lux ambient conditions ranging from 0.01 lux to 1 lux at daylight illumination (Fig.10a).

    After several imaging trials with variable optical zoom (at constant pixels number),wherein we have changed the distance to the target from 1 m to 20 m,we succeeded in detecting the BCHMX trace finger print,at a maximum distance of 15 m with good contrast at mesopic illumination level(0.001-1 m-2).We enhanced the image contrast using DADiSP digital image processing software version 4.1,by superimposing the irradiance image (Fig.10b) and the fluorescence image (Fig.10c),then performing edge detection on the superimposed image (Fig.10d).At distances greater than 15 m,the contrast of the trace was visible,but not as sharp as required to perform digital enhancement.

    By comparing the results of all the studied samples,it is obvious that BCHMX has high LIF intensity at different wavelengths as shown in Fig.11.In addition,RDX and HMX have very close LIF intensities in comparison with each other.The reason of this difference is the molecular structure of the studied samples which leads to different LIF behavior.The stretching modes of NO2lead to the characteristic absorption frequencies which are regular to the organic explosives containing nitro-group.Each sample has variable bond lengths and vibrancy states.According to Refs.[24],RDX and HMX has no conjugated π orbital system,even the π orbitals of the nitro group are so close in energy to those of σ,n orbitals in the aliphatic nitraimine molecules,so that no photoluminescence can be observed before photodecomposition [33].In the case of PETN,the situation is different because the aliphatic nitrate ester molecule has a strong π π* transition state and a characteristicn,π*triplet level that may cause phosphorescence rather than fluorescence.BCHMX molecule showed a strong fluorescence in the visible band because it possess both conjugated π orbital system and σ,n*orbital transition.The presence of carbon-carbon bond in common position between the two cycles might lead to hyperspectral differentiation of BCHMX among other nitramines in analogy with the case of slight and extensive aromatic systems of nitroarene [33].Also Klasovity et al.studied the NMR spectra of BCHMX and proved that its molecule is isochronous and has dihedral inter-nuclear angle in its molecule [6].BCHMX has the longest nitrogennitrogen bond length compared with the other nitramines which caused increasing of its sensitivity to the limit of PETN[34,35].Also BCHMX has non-binding interatomic distances of oxygen atoms in all of the nitro groups in its molecule which are shorter than those corresponding to the intermolecular contact radii for oxygen in carbonyl or other nitro groups [6].According to the mentioned data,it was predicted that BCHMX could have different LIF spectra compared with the studied nitramines.On the other side,BCHMX has heat of detonation and impact sensitivity very close to PETN[34]which might be the reason of some similarity on the behavior of both of them.

    Fig.8.Visual contrast differentiation of BCHMX sample using 405 nm LIF with different filters,(a) BCHMX sample appears dark at 405 nn filter due to absorbtion (b) all samples appears dark at 410-425 nm filter,(c) BCHMX sample appears of bright contrast due to fluorescence at 425-700 nm filter.

    Fig.9.Experimental setup to test visual contrast differentiation of BCHMX using 405 nm LIF,(a) setup illustration (b) experimental setup.

    Fig.10.Hyperspectral visualization of BCHMX finger print trace on a white cellulose fabric using 405 nm LIF from a distance of 15 m,(a) visual image (b) 405 nm hyperspectral irradiance filter (c) 580 nm hyperspectral fluorescence filter (d) Digitally enhaced edge detected irradiance-fluorescence superimposed image.

    Fig.11.405 nm LIF spectra of the experimental samples as acquired from the hyperspectral cube images.

    5.Conclusion

    BCHMX is a new energetic material belongs to the nitramines family.It has several distinct spectroscopic characteristics other than traditional monocyclic aliphatic nitramines similar to HMX and RDX,but it shows some relevance to the behavior of PETN as non-cyclic aliphatic nitrate ester.Remote detection of BCHMX trace was successfully achieved using a novel method based on hyperspectral imaging and LIF techniques.BCHMX traces subjected to 405 nm laser illumination showed a strong photoemission in the spectral range from 425 nm to 700 nm.The trace detection limit of BCHMX using this technique was found to be 1 μg/cm2at laser fluence of 0.1 mJ/cm2and a distance of 15 m we expected that the detection limit of BCHMX may decrease according to hyperspectral camera sensitivity and optical collimation system specifications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    The authors are very grateful to the members of Physics Department,Faculty of Science,Cairo University and Laser Research Technology Center,Engineering Physics Department,Military Technical College,Cairo,Egypt for their encouragement,support and helpful suggestions.

    欧美激情国产日韩精品一区| 伦精品一区二区三区| 美女脱内裤让男人舔精品视频| 自拍偷自拍亚洲精品老妇| 一级a做视频免费观看| 美女内射精品一级片tv| 精品久久久久久成人av| 亚洲成色77777| 亚洲成人精品中文字幕电影| 久久99热这里只频精品6学生| 国产精品一区www在线观看| 国产色爽女视频免费观看| 国内精品一区二区在线观看| 久久国产乱子免费精品| 日本av手机在线免费观看| 国产人妻一区二区三区在| 又黄又爽又刺激的免费视频.| 精品不卡国产一区二区三区| 久久99热这里只有精品18| 成人午夜高清在线视频| 久久草成人影院| 国产伦理片在线播放av一区| 亚洲精品乱码久久久久久按摩| 国产 亚洲一区二区三区 | 一级二级三级毛片免费看| 少妇人妻精品综合一区二区| 国产成人一区二区在线| 26uuu在线亚洲综合色| 国产精品女同一区二区软件| 日韩一区二区三区影片| 国产精品99久久久久久久久| 又大又黄又爽视频免费| 一个人免费在线观看电影| 午夜激情福利司机影院| 国产精品人妻久久久久久| 日韩av不卡免费在线播放| 国产成人精品婷婷| 狂野欧美白嫩少妇大欣赏| 成年女人在线观看亚洲视频 | 我的女老师完整版在线观看| 大香蕉97超碰在线| 亚洲精品成人av观看孕妇| 日韩精品有码人妻一区| 国产永久视频网站| 日韩精品有码人妻一区| 我的女老师完整版在线观看| 国产精品三级大全| 舔av片在线| 国模一区二区三区四区视频| 久久久久性生活片| 国产乱人偷精品视频| 国产伦精品一区二区三区四那| 欧美激情久久久久久爽电影| 精品国产露脸久久av麻豆 | 国产成人免费观看mmmm| 丰满乱子伦码专区| 啦啦啦中文免费视频观看日本| 一区二区三区四区激情视频| 日本欧美国产在线视频| 婷婷色av中文字幕| 国产大屁股一区二区在线视频| 小蜜桃在线观看免费完整版高清| 伊人久久精品亚洲午夜| 国产免费福利视频在线观看| 亚洲欧美日韩无卡精品| 亚洲精品色激情综合| 99九九线精品视频在线观看视频| 性插视频无遮挡在线免费观看| 男人爽女人下面视频在线观看| 久久草成人影院| 欧美潮喷喷水| 成人亚洲欧美一区二区av| 天天躁夜夜躁狠狠久久av| 日韩不卡一区二区三区视频在线| 亚洲国产精品sss在线观看| 亚州av有码| 国产黄色小视频在线观看| 亚洲四区av| 国产精品久久久久久久久免| 欧美潮喷喷水| 成人高潮视频无遮挡免费网站| 中文字幕av在线有码专区| 18+在线观看网站| 亚洲性久久影院| 久久鲁丝午夜福利片| 在线a可以看的网站| 永久免费av网站大全| 一区二区三区高清视频在线| 黄片无遮挡物在线观看| 免费电影在线观看免费观看| 免费大片18禁| 午夜精品在线福利| 亚洲av不卡在线观看| 小蜜桃在线观看免费完整版高清| 成人亚洲欧美一区二区av| 日韩av在线大香蕉| 午夜福利视频精品| 99热6这里只有精品| 高清毛片免费看| 久久亚洲国产成人精品v| av.在线天堂| 免费观看a级毛片全部| 国产精品三级大全| 插阴视频在线观看视频| 国产一级毛片在线| av专区在线播放| 最近中文字幕2019免费版| 亚洲成人精品中文字幕电影| 床上黄色一级片| 亚洲高清免费不卡视频| 国产精品国产三级国产专区5o| 国产成人精品一,二区| 伦理电影大哥的女人| 亚洲精品日韩在线中文字幕| 亚洲国产精品专区欧美| 美女xxoo啪啪120秒动态图| 99久国产av精品国产电影| 九九爱精品视频在线观看| 日日摸夜夜添夜夜添av毛片| 寂寞人妻少妇视频99o| 男人舔女人下体高潮全视频| 91久久精品国产一区二区三区| av卡一久久| 亚洲精品456在线播放app| 天堂av国产一区二区熟女人妻| 亚洲成人av在线免费| 国产 一区精品| 97在线视频观看| 性色avwww在线观看| 晚上一个人看的免费电影| 少妇的逼水好多| 欧美三级亚洲精品| 热99在线观看视频| 天美传媒精品一区二区| 少妇人妻精品综合一区二区| 亚洲在线观看片| 免费av不卡在线播放| 国产精品无大码| 亚洲精品国产成人久久av| 午夜免费激情av| 熟妇人妻不卡中文字幕| 晚上一个人看的免费电影| 18禁动态无遮挡网站| 久久人人爽人人片av| 老女人水多毛片| 欧美+日韩+精品| 国产黄色免费在线视频| 久久人人爽人人爽人人片va| 大片免费播放器 马上看| 麻豆av噜噜一区二区三区| 可以在线观看毛片的网站| 夫妻性生交免费视频一级片| av网站免费在线观看视频 | 一级毛片久久久久久久久女| 最后的刺客免费高清国语| 亚洲一区高清亚洲精品| av专区在线播放| 国内精品美女久久久久久| 亚洲国产av新网站| 嫩草影院新地址| 午夜激情福利司机影院| 久久精品熟女亚洲av麻豆精品 | 麻豆国产97在线/欧美| 午夜福利视频1000在线观看| 欧美成人午夜免费资源| 国产探花极品一区二区| 国产精品福利在线免费观看| 久久精品综合一区二区三区| 免费观看的影片在线观看| 国产在线一区二区三区精| 搞女人的毛片| 国产av在哪里看| 一级a做视频免费观看| 在现免费观看毛片| 中文字幕人妻熟人妻熟丝袜美| 色综合色国产| 免费观看a级毛片全部| 超碰av人人做人人爽久久| 狂野欧美白嫩少妇大欣赏| 可以在线观看毛片的网站| 精品熟女少妇av免费看| 美女国产视频在线观看| 亚洲婷婷狠狠爱综合网| 中文字幕制服av| 少妇熟女aⅴ在线视频| 街头女战士在线观看网站| 一级毛片电影观看| 成人av在线播放网站| av在线老鸭窝| 国产熟女欧美一区二区| 亚洲怡红院男人天堂| 国产免费视频播放在线视频 | 久久精品人妻少妇| 九色成人免费人妻av| 免费观看的影片在线观看| 国产大屁股一区二区在线视频| 大陆偷拍与自拍| 亚洲经典国产精华液单| 自拍偷自拍亚洲精品老妇| 综合色av麻豆| 成人av在线播放网站| 国产免费又黄又爽又色| av.在线天堂| 亚州av有码| 2021少妇久久久久久久久久久| 亚洲精品一区蜜桃| 欧美不卡视频在线免费观看| 看非洲黑人一级黄片| 亚洲欧美日韩卡通动漫| 91精品国产九色| 日韩国内少妇激情av| 美女大奶头视频| 国产精品女同一区二区软件| 色视频www国产| 尾随美女入室| 午夜福利在线在线| 日韩三级伦理在线观看| 一级毛片我不卡| 亚洲av在线观看美女高潮| 亚洲色图av天堂| 欧美bdsm另类| 国产av国产精品国产| 亚洲精品国产av蜜桃| 少妇熟女aⅴ在线视频| 97人妻精品一区二区三区麻豆| 免费观看性生交大片5| 亚洲精品456在线播放app| 伊人久久精品亚洲午夜| 五月伊人婷婷丁香| 国产av国产精品国产| 中文字幕免费在线视频6| 免费大片黄手机在线观看| 国产不卡一卡二| 欧美zozozo另类| 精品久久久久久成人av| 成人亚洲精品一区在线观看 | 日韩一区二区三区影片| 91狼人影院| 免费看a级黄色片| 免费看美女性在线毛片视频| 三级国产精品片| 日日摸夜夜添夜夜添av毛片| 亚洲精品,欧美精品| 一级毛片久久久久久久久女| 久久精品久久久久久久性| 伊人久久精品亚洲午夜| 欧美日韩精品成人综合77777| 一二三四中文在线观看免费高清| 亚洲av不卡在线观看| 亚洲av二区三区四区| 99久久中文字幕三级久久日本| 国语对白做爰xxxⅹ性视频网站| 十八禁国产超污无遮挡网站| 全区人妻精品视频| 国产成年人精品一区二区| 亚洲av免费高清在线观看| 成人美女网站在线观看视频| 身体一侧抽搐| 久久久国产一区二区| 国产麻豆成人av免费视频| 少妇的逼水好多| 中文欧美无线码| 欧美zozozo另类| 老师上课跳d突然被开到最大视频| 日本黄大片高清| 国产成人福利小说| 非洲黑人性xxxx精品又粗又长| 国产伦在线观看视频一区| 免费观看a级毛片全部| 亚洲精品影视一区二区三区av| 亚洲精品一区蜜桃| av在线蜜桃| 我要看日韩黄色一级片| 国产精品蜜桃在线观看| 亚洲成人av在线免费| 国产成人福利小说| 三级国产精品片| 国产成人freesex在线| 亚洲精品日韩av片在线观看| av卡一久久| 亚洲av成人精品一区久久| 中文天堂在线官网| 国产视频首页在线观看| 欧美3d第一页| 黄色一级大片看看| 国产精品久久久久久精品电影| 一区二区三区免费毛片| 国产色爽女视频免费观看| 午夜福利网站1000一区二区三区| 亚洲欧洲日产国产| 成年免费大片在线观看| 国产探花极品一区二区| 热99在线观看视频| 男插女下体视频免费在线播放| 精品国内亚洲2022精品成人| 人人妻人人澡欧美一区二区| 欧美一区二区亚洲| 亚洲久久久久久中文字幕| av天堂中文字幕网| 精品午夜福利在线看| 亚洲欧美一区二区三区国产| 久久久久免费精品人妻一区二区| 亚洲熟女精品中文字幕| 一区二区三区免费毛片| 国产色婷婷99| 国产极品天堂在线| 一个人免费在线观看电影| 日本三级黄在线观看| 天堂中文最新版在线下载 | 久久这里只有精品中国| 精品欧美国产一区二区三| 国产成人午夜福利电影在线观看| 国产 一区精品| 97热精品久久久久久| 波多野结衣巨乳人妻| 精品久久久久久久久亚洲| 禁无遮挡网站| 91精品一卡2卡3卡4卡| 亚洲av成人精品一二三区| 国产精品嫩草影院av在线观看| 中国美白少妇内射xxxbb| 草草在线视频免费看| 国产精品嫩草影院av在线观看| 日韩成人伦理影院| 99久久精品热视频| 午夜精品在线福利| 国产午夜精品论理片| 草草在线视频免费看| 午夜爱爱视频在线播放| 国产一区二区三区综合在线观看 | freevideosex欧美| 日本免费a在线| 亚洲精品一区蜜桃| 两个人的视频大全免费| 久久综合国产亚洲精品| 伊人久久国产一区二区| 男的添女的下面高潮视频| 日本爱情动作片www.在线观看| 精品人妻一区二区三区麻豆| 男女边摸边吃奶| 免费看美女性在线毛片视频| 高清毛片免费看| 边亲边吃奶的免费视频| 视频中文字幕在线观看| 日韩欧美国产在线观看| 男女边摸边吃奶| 久久韩国三级中文字幕| 青春草视频在线免费观看| 免费看a级黄色片| 久久久亚洲精品成人影院| 国产精品女同一区二区软件| 别揉我奶头 嗯啊视频| 麻豆久久精品国产亚洲av| 中国国产av一级| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩一区二区视频在线观看视频在线 | 成人亚洲精品av一区二区| 亚洲精品日韩在线中文字幕| 国产精品一二三区在线看| 久久99精品国语久久久| 国产一级毛片在线| 亚洲精品成人久久久久久| 亚洲精品456在线播放app| 91aial.com中文字幕在线观看| 99热全是精品| 国产精品福利在线免费观看| 如何舔出高潮| 欧美日韩精品成人综合77777| 蜜桃亚洲精品一区二区三区| 少妇丰满av| 成年av动漫网址| 国产 一区精品| 嘟嘟电影网在线观看| 97人妻精品一区二区三区麻豆| 国产精品久久久久久久久免| 亚洲av成人精品一二三区| 国产久久久一区二区三区| 成人国产麻豆网| 日本三级黄在线观看| 久久这里只有精品中国| 国产在视频线在精品| 国产成人免费观看mmmm| 国产成人a区在线观看| av免费在线看不卡| 国产免费又黄又爽又色| 男女国产视频网站| 内射极品少妇av片p| 91在线精品国自产拍蜜月| 国产成人精品福利久久| 午夜老司机福利剧场| 国产av码专区亚洲av| 久久国内精品自在自线图片| 人体艺术视频欧美日本| 中文乱码字字幕精品一区二区三区 | 亚洲欧美日韩卡通动漫| 精品酒店卫生间| 成人午夜高清在线视频| 人体艺术视频欧美日本| 久久久久精品性色| 人人妻人人澡欧美一区二区| 中文字幕亚洲精品专区| 国产成人91sexporn| 乱码一卡2卡4卡精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产色婷婷99| 国产高清国产精品国产三级 | 国产欧美日韩精品一区二区| 听说在线观看完整版免费高清| 欧美+日韩+精品| 女人十人毛片免费观看3o分钟| 一个人看的www免费观看视频| 亚洲国产最新在线播放| 日本免费在线观看一区| 成人av在线播放网站| 婷婷色麻豆天堂久久| 青春草国产在线视频| 亚洲欧美精品专区久久| 午夜精品国产一区二区电影 | 一边亲一边摸免费视频| 久久亚洲国产成人精品v| 国产黄片视频在线免费观看| 成人亚洲精品一区在线观看 | 亚洲国产欧美在线一区| 欧美变态另类bdsm刘玥| 亚洲av电影在线观看一区二区三区 | 免费av不卡在线播放| 男插女下体视频免费在线播放| 成人毛片60女人毛片免费| 亚洲精品第二区| 亚洲精品日韩av片在线观看| 又爽又黄a免费视频| 国产男人的电影天堂91| 亚洲国产日韩欧美精品在线观看| 少妇裸体淫交视频免费看高清| 人妻一区二区av| 亚洲aⅴ乱码一区二区在线播放| 国产高清不卡午夜福利| 在线免费十八禁| 2022亚洲国产成人精品| 狠狠精品人妻久久久久久综合| 七月丁香在线播放| 国产伦精品一区二区三区四那| 久久久精品欧美日韩精品| 十八禁网站网址无遮挡 | 在线天堂最新版资源| av女优亚洲男人天堂| 亚洲av日韩在线播放| 少妇人妻精品综合一区二区| 国产一区二区在线观看日韩| 国产精品麻豆人妻色哟哟久久 | 天天一区二区日本电影三级| videossex国产| 1000部很黄的大片| 超碰97精品在线观看| 国产高清不卡午夜福利| 青春草亚洲视频在线观看| 亚洲最大成人中文| 欧美成人一区二区免费高清观看| 亚洲精品aⅴ在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲精品日韩av片在线观看| videos熟女内射| 天堂√8在线中文| 在线播放无遮挡| 91久久精品国产一区二区成人| 亚洲经典国产精华液单| 亚洲欧美中文字幕日韩二区| 亚洲乱码一区二区免费版| 高清毛片免费看| 中文精品一卡2卡3卡4更新| 小蜜桃在线观看免费完整版高清| 国精品久久久久久国模美| 亚洲国产高清在线一区二区三| 国产美女午夜福利| 男人舔女人下体高潮全视频| 又黄又爽又刺激的免费视频.| 成人特级av手机在线观看| 天天一区二区日本电影三级| 免费观看的影片在线观看| 午夜日本视频在线| 内地一区二区视频在线| 国产国拍精品亚洲av在线观看| 人人妻人人看人人澡| 久久人人爽人人爽人人片va| 精品久久久久久久久久久久久| 男人舔女人下体高潮全视频| 如何舔出高潮| 自拍偷自拍亚洲精品老妇| 欧美xxxx性猛交bbbb| 一区二区三区高清视频在线| 日本一二三区视频观看| av天堂中文字幕网| 在线观看免费高清a一片| 午夜免费男女啪啪视频观看| 亚洲精品乱久久久久久| 尤物成人国产欧美一区二区三区| 日韩精品有码人妻一区| 99久国产av精品| 国产一区二区三区av在线| 国产视频内射| 久久热精品热| 国产精品一区www在线观看| 精品熟女少妇av免费看| 秋霞在线观看毛片| 久久这里只有精品中国| 精品久久久久久久人妻蜜臀av| 欧美激情在线99| 我的老师免费观看完整版| 婷婷色av中文字幕| 黑人高潮一二区| 国产精品不卡视频一区二区| 一区二区三区免费毛片| freevideosex欧美| 精品人妻一区二区三区麻豆| 亚洲欧洲日产国产| 大香蕉久久网| 精品人妻熟女av久视频| 少妇被粗大猛烈的视频| 成人综合一区亚洲| 久久97久久精品| 国产午夜福利久久久久久| 人妻系列 视频| 美女国产视频在线观看| 欧美日本视频| 亚洲精品国产av成人精品| 国产亚洲5aaaaa淫片| 中文字幕人妻熟人妻熟丝袜美| 欧美另类一区| 久久久久久久久久久免费av| 欧美xxxx性猛交bbbb| 国产精品av视频在线免费观看| 成年女人在线观看亚洲视频 | 女人被狂操c到高潮| 美女黄网站色视频| 99re6热这里在线精品视频| 国产精品久久视频播放| 国产av在哪里看| 在线观看人妻少妇| 少妇裸体淫交视频免费看高清| 亚洲电影在线观看av| 成人鲁丝片一二三区免费| 国产 亚洲一区二区三区 | 午夜免费男女啪啪视频观看| 欧美xxxx黑人xx丫x性爽| 日韩精品青青久久久久久| 国产91av在线免费观看| 国产精品三级大全| 免费av不卡在线播放| 99热6这里只有精品| 久久久久久伊人网av| 欧美日本视频| 毛片女人毛片| 深夜a级毛片| 国产探花在线观看一区二区| 少妇猛男粗大的猛烈进出视频 | 最近视频中文字幕2019在线8| 欧美区成人在线视频| 国产亚洲一区二区精品| 国产精品人妻久久久影院| 日韩,欧美,国产一区二区三区| 亚洲国产精品成人久久小说| 亚洲美女视频黄频| 91精品一卡2卡3卡4卡| 禁无遮挡网站| 国产一区二区在线观看日韩| 精品久久久久久久人妻蜜臀av| 精品久久久久久久末码| 蜜臀久久99精品久久宅男| 国产精品麻豆人妻色哟哟久久 | 国产免费福利视频在线观看| 欧美极品一区二区三区四区| 亚洲国产欧美人成| av天堂中文字幕网| 女人被狂操c到高潮| 天堂√8在线中文| h日本视频在线播放| 麻豆精品久久久久久蜜桃| 国产成年人精品一区二区| www.av在线官网国产| 国产麻豆成人av免费视频| 国产精品一及| 国产成人freesex在线| 乱系列少妇在线播放| 亚洲av成人精品一二三区| 国产精品不卡视频一区二区| 亚洲av免费高清在线观看| 又大又黄又爽视频免费| 91精品一卡2卡3卡4卡| 男人和女人高潮做爰伦理| 精品久久久久久久久亚洲| 赤兔流量卡办理| 久久久久九九精品影院| av免费观看日本| 波多野结衣巨乳人妻| 男插女下体视频免费在线播放| 精品久久久久久久久亚洲| 国产午夜精品一二区理论片| 99久久精品国产国产毛片| 少妇丰满av| 中国美白少妇内射xxxbb| 中文乱码字字幕精品一区二区三区 | 免费在线观看成人毛片| 国产精品人妻久久久影院| 三级经典国产精品| 三级国产精品片| 久久久国产一区二区| 国产高清不卡午夜福利| 蜜桃亚洲精品一区二区三区| 成人特级av手机在线观看| 亚洲第一区二区三区不卡| 欧美高清性xxxxhd video| 一级毛片久久久久久久久女| 国内少妇人妻偷人精品xxx网站| 国产综合懂色| 亚洲国产精品成人综合色|