• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Artificial intelligence and machine learning in cardiovascular computed tomography

    2021-11-02 08:55:46KarthikSeetharamPremilaBhatMaxineOrrisHejmadiPrabhuJilanShahDeepakAstiPreetyChawlaTanveerMir
    World Journal of Cardiology 2021年10期

    Karthik Seetharam,Premila Bhat,Maxine Orris,Hejmadi Prabhu,Jilan Shah,Deepak Asti,Preety Chawla,Tanveer Mir

    Karthik Seetharam,Department of Cardiology,West Virgina University,Morgan Town,NY 26501,United States

    Premila Bhat,Maxine Orris,Jilan Shah,Department of Medicine,Wyckoff Heights Medical Center,Brooklyn,NY 11237,United States

    Hejmadi Prabhu,Deepak Asti,Preety Chawla,Department of Cardiology,Wyckoff Heights Medical Center,Brooklyn,NY 11237,United States

    Tanveer Mir,Department of Internal Medicine,Wyckoff Heights Medical Center,Brooklyn,NY 11237,United States

    Abstract Computed tomography (CT) is emerging as a prominent diagnostic modality in the field of cardiovascular imaging.Artificial intelligence (AI) is making significant strides in the field of information technology,the commercial industry,and health care.Machine learning (ML),a branch of AI,can optimize the performance of CT and augment the assessment of coronary artery disease.These ML platforms can automate multiple tasks,perform calculations,and integrate information from a variety of data sources.In this review article,we explore the ML in CT imaging.

    Key Words:Computed tomography;Machine learning;Artificial intelligence;Cardiovascular imaging

    INTRODUCTION

    In this digital era,distance is no longer a limiting factor and information is emanating from a variety of devices and sources[1].These technological innovations have considerably transformed our perception,culture,and our daily lifestyles[2].Similarly,many of these changes have trickled downwards in healthcare and are especially apparent in the field of cardiovascular imaging.Over the last 10 years,the field of computed tomography (CT) has expanded tremendously with significant changes in diagnostic performance and prognostic implications in coronary artery disease[3,4].Coronary CT angiography (CTA) is now heralded as an established diagnostic modality in the evaluation of coronary artery disease (CAD)[4,5].With each year,data arising from each imaging scan is increasing exponentially in intricacy and size[6].As we approach this technological ceiling,the sheer complexity of this information will supersede the analytic capabilities of conventional statistical software[7].

    Artificial Intelligence (AI) refers to a set of actions that can mimic human cognitive thinking and decision making[8].Machine learning (ML),a branch of AI,can extrapolate hidden characteristics or relationships present in vast expanses of data[2].It can analyze data from a multitude of sources and link the information in userfriendly approaches[9].In addition,it can automate several processes and perform many calculations[10].With the application of ML algorithms in CT for cardiology,it can elevate the modality to unprecedented new heights which can improve the quality of patient care.In our review,we evaluate recent advances and progression of ML in cardiac CT over recent years.

    BROAD CLASSIFICATION OF ML

    ML is an aggregate term which collectively encompasses a wide variety of analytical algorithms[11].They can be simply divided into supervised learning,unsupervised learning,semi-supervised learning,deep learning and reinforcement learning[12,13](Figure 1 and Table 1).Supervised learning requires labeled datasets or domains within the dataset to perform analytical actions[14].Unsupervised learning does not require labels within a dataset and can analyze information in a very independent manner.For discussion purposes,it can be referred to as agnostic[2,15].Hierarchical clustering,a type of unsupervised learning,can identify and distinguish new phenotypes within various cardiac diseases[2].It has gained significant traction recently.Semi-supervised learning is a hybrid approach that utilizes properties present within supervised and unsupervised learning[16].Reinforcement learning uses definitive reward conditions for the ML architecture to perform certain functions.Nevertheless,frequently not used in the field of cardiology[7].Multiple studies have been documented to show the potential of ML in CT and CTA (Table 2).

    Figure 1 Brief overview of the progression of machine learning.

    Table 1 Type of machine learning

    Table 2 Machine learning studies in computed tomography

    Among all the available ML algorithms,deep learning is considered to have the most revolutionary potential[17].In various sectors of commerce and industry,deep learning is being heavily utilized to unravel information within large troves of data[18].From voice recognition software in Siri or Alexa to self-driving cars in google,deep learning is garnering significant interest[12].The architecture of deep learning algorithms is similar to the arrangement of a human neuron[19,20].It is structured in a series of layers,there is significant communication between the preceding and subsequent layers.It processes information in multiple layers and is more independent compared to other ML algorithms.As the complexity and size of the dataset increase,the performance of the algorithm improves significantly[21,22].

    AUGMENTED CORONARY CALCIUM ASSESSMENT

    Coronary artery calcium (CAC) measurement is heralded as a fundamental metric in coronary CT because it serves as a pivotal predictor of mortality and cardiac complications[23].The Agatston scoring method is the conventional approach utilized to quantify CAC in coronary CT[19].Furthermore,the CAC plays a diagnostic role in medical management,the CAC scores can be used to stratify patients and monitor medical therapy.However,CAC measurement can be quite tedious due to underlying artifacts,image noise,an abundance of calcifications,interobserver variability,and other factors[24].The application of ML can significantly elevate the potential of CAC in CT.

    Al'Arefet al[24] applied an ML architecture incorporating clinical factors in the CONFIRM registry with CAC for calculating the probability of CAD with CTA in a total of 35821 patients.It clearly showcased excellent AUC for ML and (CAC) (0.881) to other conventional approaches in their study [ML independently (0.773),updated Diamond- Forrester Score (0.682) coronary calcium (0.886)].Houet al[25] assessed the role of supervised ML to evaluate pretest likelihood of CAD in CTA with 6274 individuals.Their ML algorithm demonstrated superior discriminative capacity for CAD occlusion in comparison to traditional scoring metrics such as Modified Diamond Forester scores and CAD consortium score (P< 0.001).Tescheet al[26]exhibited superior performance of ML derived CT fractional flow reserve (FFR) in comparison to CTA with CAC,substantial distinctions in capability were noted and with propionate increases in Agatston scores (P< 0.001).Kayet al[27] integrated various algorithmic frameworks with radiomics for identifying new phenotypic characteristics regarding left ventricular hypertrophy (LVH) severity in CT with(CAC) assessment.As a result,ML frameworks are found to be efficacious in identification of LVH.

    APPLICATION OF MACHINE LEARNING FOR CT FRACTIONAL FLOW RESERVE

    Although CTA enables visual evaluation of a stenotic lesion,it lags behind invasive FFR for assessing the hemodynamic significance of coronary stenosis[28].Coronary fractional flow reserve (CT-FFR) has become a suitable non-invasive modality for evaluating ischemic heart disease and chest pain[29].Furthermore,it can perform this task without the requirement of additional medications or imaging.It provides functional and anatomic evaluation,this approach is steadily gaining momentum in CT imaging[30].ML algorithms can calculate FFR in the absence of computational fluid dynamics and yield additional prognostic information[3].It can substantially expand the arena of CT-FFR in CT imaging.

    Zhouet al[31] evaluated CT fractional flow reserve (CT FFR) for estimating myocardial bridge formation by integrating several algorithms.Interestingly,the framework chose properties which contained superior AUC (0.75 ± 0.04) in comparison to clinical attributes (0.53 ± 0.09,P< 0.0001),or CT- FFR prosperities (0.62± 0.06,P=0.0127).Tanget al[32] demonstrated that CT FFR with computational fluid dynamics was superior CTA and invasive angiography for detecting vessel-specific ischemia.This was particularly seen in intermediate lesions (P< 0.001 for all).Coenenet al[33] demonstrated excellent correlation between ML based CT FFR and deep learning in CAD (r=0.997).

    PLAQUE CHARACTERIZATION AND SEGMENTATION IN CAD

    ML algorithms can provide additional insight regarding plaque characteristics in CAD and augment our understanding[2].Deyet al[34] utilized a logitboost algorithm to produce an ML-derived risk score from plaque characteristics in CTA for 254 patients.The ML algorithm displayed a higher AUC (0.84) than individual CTA parameters including stenosis (0.76),total plaque volume (0.74),and low likelihood of CAD (P<0.0006) (0.63).Hellet al[35] investigated the role of ML algorithms to predict cardiac death from coronary CTA through the utilization of plaque features in 2748 patients.The non-calcified plaque > 146 mm3(P=0.027),low density non-calcified plaque (P=0.025),total plaque volume > 179 mm3,and CDD > 35% in any vessel were significantly associated with elevated risk of future cardiac death.

    ML AUGMENTED EVALUATION OF EPICARDIAL AND THORACIC ADIPOSE TISSUE

    Cardiac CT is deemed as the gold standard for evaluation of epicardial adipose tissue(EAT) quantification and assessment.EAT is a layer of adipose surrounding the heart and the accompanying coronary arteries.In addition,EAT is significantly linked with various cardiovascular risk factors,atherosclerosis of the coronary arteries,and CAD[36,37].The application of ML algorithms can automate the quantification of EAT and greatly reduce the time of manual measurements.This can translate into greater clinical implementation in coronary CT.

    Rodrigueset al[38] applied ML algorithms for segmenting and differentiating types of fat in CT.The ML platform was able to achieve 98.4% mean accuracy and a DICE similarity index of 96.8%.Commandeuret al[39] utilized a deep learning algorithm for quantifying EAT in coronary CT.Strong agreement was observed between automatic and expert manual quantification with a mean DICE score coefficient of 0.823 and an excellent correlation of 0.923 with EAT volume.Otakiet al[40] utilized a boost ensemble machine learning algorithm for assessing the association of epicardial fat volume from myocardial flow reserve (MFR) in non- contrast CT in positive emission tomography (PET).The ML composite risk score substantially increased risk reclassification of impaired MFR to EAT volume or coronary calcium score (IDI=0.19 andP=0.007,IDI=0.22 andP=0.002).

    MISCELLANEOUS APPLICATIONS OF ML

    In CT,ML has been applied in a variety of different situations with overwhelmingly positive results.Baskaranet al[41] assessed deep learning for assessing cardiovascular structures for CTA in 166 patients.The ML architecture corroborated in parallel to manual annotation in CTA for left ventricular volume (r=0.98),right ventricular volume (r=0.97) (P< 0.05).Al'Arefet al[42] utilized ML in CTA to detect precursor culprit lesion from patients with CAD.It exhibited a superior AUC for discriminating lesions in comparison to other ML derived frameworks (P< 0.01).Beecyet al[43] on CT for detecting acute ischemic stroke events.Interestingly,their AUC was 0.91 for automatic detection of infarction and had a 93% accuracy with interpretation of experienced physicians.Oikonomouet al[44] examined the capability of the random forest ML architecture from the radiomic profile of CTA derived coronary perivascular adipose tissue (PVAT) for identifying cardiac risk.It exceeded traditional risk stratification metrics for MACE prediction (P< 0.001).Eisenberg used deep learning for MACE prediction with EAT and other characteristics.The EAT in CT predicted MACE effectively (HR,1.35,P< 0.01),inversely with attenuation (0.83,P=0.01)[45].

    BIG DATA UTILIZATION FOR PREDICTION OF OUTCOMES IN CT

    Big data has emerged as a valuable resource that provides significant depth and understanding and is instrumental to the growth of ML in clinical medicine (Table 3)[5].Due to size and magnitude,many important characteristics are often unnoticed by conventional approaches[6,46].The implementation of AI with these immense expanses of data can yield additional information which can aid in medical management and clinical care.

    Table 3 Big data utilization by machine learning in computed tomography

    Motwaniet al[47] evaluated an ML framework to predict CAD in 10,030 patients for five-year mortality in comparison to traditional cardiac metrics in CT.Interestingly,the ML architecture exhibited a superior AUC (0.79) than CT severity scores (SSS=0.64,SIS=0.64,DI=0.62) for five-year all-cause mortality prediction (P< 0.0001).Similarly,van Rosendaelet al[48] utilized an ML framework in CT with 8844 patients for detecting major cardiovascular events encompassing various attributes in relation to severity scores for CAD prediction.The ML derived AUC (0.771) was significantly higher in CT than conventional scoring parametric systems (0.685-0.701) for anticipating major cardiovascular events,with a notable difference (P< 0.001).Hanet al[49] assessed an ML-derived predictive capacity for all-cause mortality in 86155 patients.Notably,the AUC (0.82) noted to be higher than Framingham risk score and other traditional metrics (P< 0.05).

    EVOLVING BELIEFS AND FUTURE DIRECTIONS OF ML

    It must be emphasized with great importance that cardiovascular disease is heterogeneous in nature[50].It cannot be perceived as straightforward because disease mechanisms have intricate interactions among molecular,genetic,and environmental factors[22].The process is very dynamic,it truly reflects the essence of ML algorithms.ML can integrate this information from multiple sources and analyze it in a variety of approaches.This can lead to the development of various genetic markers which can help guide medical management and monitor responses after therapy[6,51].Furthermore,we can tailor treatment regimens appropriate to the genetic constitutional makeup of an individual,ML algorithms will facilitate the growth of precision medicine[12].

    In current times,mobile devices,smartphone apps,and wearable devices are part and parcel of our daily lifestyles[52].Telemedicine and ML algorithms are clearly intertwined in cardiovascular imaging and CT[1].The information from these devices can be integrated with various parameters in cardiovascular imaging to yield additional insight regarding various cardiovascular diseases.In many underserved regions of the world,these devices can provide medical care and help direct patients towards appropriate intervention[1,53].ML algorithms can analyze this information in real-time and help expedite this process[1].These algorithms can serve as a bridge between different types of technology and cardiovascular imaging.

    Although several algorithms have significant potential in computed tomography,deep learning has the most overwhelming potential[54].It captures information through hierarchical levels of abstraction.As the computational prowess of graphical processing units (GPUs) continue to progressively evolve in conjunction with big data,the relevance of deep learning in computed tomography is becoming imminent.It is very effective in robust tasks such as image classification,image segmentation,and identification of various cardiovascular structures in CT,CTA,and cardiovascular imaging[20].Furthermore,it does not require extensive training.The accuracy can be achieved by elevating the capability of the network or increasing the training set.This is a stark distinction in comparison to other ML algorithms[55].Other algorithms entail a significant number of observations,computations,manual labor,and training to achieve optimal efficiency.

    Randomized clinical trials (RCTs) are the gold standard in clinical research.The integration of ML algorithms could prove to be exceeding useful if implemented appropriately.Numerous RCTs fail to reach completion due to several factors which could include improper study design,inadequate number of participants,or lack of funding[56].The integration of ML algorithms during the early or intermediate stage of an RCT could provide an outlook of different outcomes[5].This information could be used to restructure the RCT to obtain more successful outcomes.In addition,ML algorithms can enhance the randomization process in RCT[56].

    LIMITATIONS OF ML

    Though ML algorithms offer a significant promise for the future,it is far from straightforward.Several issues need to be resolved for successful implementation in clinical medicine.The potential of false discovery can occur with small databases,there is not enough information to properly train the algorithm[55].Unfortunately,AI lacks a moral compass[57].In addition,several unintentional biases can emerge during the process and could alter interpretation.The “black box” nature has always been an enigmatic property of ML algorithms,this has impeded its adoption in the medical field[2].Investigators must have a proper research concept and plan before embarking on any ML-related task.As a result,engineers,physicians,and other members of a research team must play an active role in every stage of the ML algorithm[15,58].Adjustments can be made to the algorithm to deliver clinically relevant information.

    For any ML algorithm to thrive and grow,large information or databases is mandatory[15].Obtaining this information can be complex and tedious.Data needs to be shared among institutions to allow training of the ML model[15].This might require multiple IRB approvals.Information also needs to be de-identified before it can be shared.Many of these tasks can be time-consuming.Many types of imaging systems are frequently used for storing cardiovascular images.Nevertheless,each institution has their own unique protocols and there are differences in the acquisition process as well[2].Some form of data standardization is required to facilitate data sharing and ML algorithm growth.If more information can be publicly available,it would be beneficial.

    CONCLUSION

    ML algorithms will have limitless potential in cardiovascular imaging,this has been evidenced in the field of CT.It will cause multiple paradigm shifts which will have a revolutionary impact in the field of medicine.These frameworks will automate several tasks,perform calculations,and aid as a supplementary tool for medical diagnosis and prognostication.By performing multiple tasks,physicians will have more time to spend with patients and be more focused on proper medical management.ML will serve as a long-lasting bridge between physicians and technology in clinical medicine.

    丰满饥渴人妻一区二区三| 亚洲伊人色综图| 亚洲精品一二三| 黄频高清免费视频| 可以免费在线观看a视频的电影网站| 一级毛片女人18水好多| 欧美日韩av久久| 精品亚洲成国产av| 亚洲性夜色夜夜综合| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产乱子伦一区二区三区| 黄色成人免费大全| 国产xxxxx性猛交| 欧美日韩中文字幕国产精品一区二区三区 | 午夜日韩欧美国产| 亚洲专区中文字幕在线| 亚洲男人天堂网一区| 国产精品久久久久久人妻精品电影| 精品熟女少妇八av免费久了| 啦啦啦视频在线资源免费观看| 黄色成人免费大全| 国产精品免费一区二区三区在线 | 亚洲av片天天在线观看| 日韩免费av在线播放| 另类亚洲欧美激情| 欧美精品人与动牲交sv欧美| 精品午夜福利视频在线观看一区| 免费在线观看视频国产中文字幕亚洲| 美女午夜性视频免费| 久久香蕉国产精品| x7x7x7水蜜桃| 韩国av一区二区三区四区| 纯流量卡能插随身wifi吗| 免费在线观看完整版高清| 久久天躁狠狠躁夜夜2o2o| av网站在线播放免费| 国产在视频线精品| 天天影视国产精品| 亚洲aⅴ乱码一区二区在线播放 | 国产精品国产高清国产av | 国产aⅴ精品一区二区三区波| 手机成人av网站| 亚洲国产精品sss在线观看 | 亚洲熟女精品中文字幕| 国产在线精品亚洲第一网站| 不卡一级毛片| 国产精品九九99| 波多野结衣一区麻豆| 久久影院123| 少妇 在线观看| 日韩精品免费视频一区二区三区| 在线看a的网站| 国产精品亚洲av一区麻豆| 搡老熟女国产l中国老女人| 亚洲全国av大片| 国产一区二区三区综合在线观看| bbb黄色大片| 日日夜夜操网爽| 欧美亚洲日本最大视频资源| 美女高潮到喷水免费观看| tocl精华| 丝袜美足系列| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影| www.999成人在线观看| 亚洲黑人精品在线| 国产人伦9x9x在线观看| 999久久久精品免费观看国产| 99热只有精品国产| 中文字幕人妻熟女乱码| 精品国产国语对白av| 国产精品影院久久| 18禁美女被吸乳视频| 国产亚洲欧美98| 好看av亚洲va欧美ⅴa在| 国产在线一区二区三区精| 成人免费观看视频高清| 亚洲一区高清亚洲精品| 777久久人妻少妇嫩草av网站| 国产一区在线观看成人免费| 久久天躁狠狠躁夜夜2o2o| 黄色丝袜av网址大全| 曰老女人黄片| 久久精品aⅴ一区二区三区四区| 久久99一区二区三区| 777米奇影视久久| 一本大道久久a久久精品| 村上凉子中文字幕在线| 天天操日日干夜夜撸| 高清av免费在线| 欧美精品亚洲一区二区| 少妇被粗大的猛进出69影院| 欧美色视频一区免费| 一级毛片女人18水好多| 精品亚洲成国产av| 男女下面插进去视频免费观看| 亚洲综合色网址| 老熟妇乱子伦视频在线观看| 欧美激情 高清一区二区三区| 大香蕉久久成人网| 在线观看免费高清a一片| 伊人久久大香线蕉亚洲五| 亚洲av电影在线进入| 久久久久久亚洲精品国产蜜桃av| 精品福利观看| 91精品三级在线观看| 麻豆国产av国片精品| 国产成人免费无遮挡视频| 韩国精品一区二区三区| 国产一区二区三区在线臀色熟女 | 色综合婷婷激情| 国产在线一区二区三区精| 免费观看人在逋| 欧美成人免费av一区二区三区 | 国内毛片毛片毛片毛片毛片| 免费av中文字幕在线| 久久国产精品影院| 亚洲精品美女久久久久99蜜臀| 免费在线观看黄色视频的| 精品国产国语对白av| 日韩成人在线观看一区二区三区| 久久精品91无色码中文字幕| 日日摸夜夜添夜夜添小说| 亚洲av成人不卡在线观看播放网| 亚洲av日韩在线播放| 欧美中文综合在线视频| 欧美日韩亚洲高清精品| 18禁美女被吸乳视频| 多毛熟女@视频| 久久香蕉精品热| 亚洲成av片中文字幕在线观看| 久99久视频精品免费| 精品卡一卡二卡四卡免费| 天天躁狠狠躁夜夜躁狠狠躁| 99国产精品一区二区蜜桃av | 国产一区二区三区综合在线观看| 精品久久蜜臀av无| 建设人人有责人人尽责人人享有的| 国产欧美日韩精品亚洲av| 一进一出抽搐动态| 中文字幕精品免费在线观看视频| 日韩欧美一区二区三区在线观看 | 老司机深夜福利视频在线观看| 国产精品香港三级国产av潘金莲| 欧美日韩视频精品一区| 国产免费男女视频| 亚洲av美国av| 成人国语在线视频| 久久香蕉精品热| 欧美日本中文国产一区发布| 欧美丝袜亚洲另类 | 一级毛片精品| 国产又色又爽无遮挡免费看| 如日韩欧美国产精品一区二区三区| 黄色毛片三级朝国网站| 一区二区日韩欧美中文字幕| 免费在线观看黄色视频的| av电影中文网址| 日韩精品免费视频一区二区三区| 成人手机av| 亚洲国产欧美网| 久久精品熟女亚洲av麻豆精品| 十八禁人妻一区二区| 久久午夜综合久久蜜桃| 婷婷精品国产亚洲av在线 | 国产亚洲精品久久久久久毛片 | av电影中文网址| 久热这里只有精品99| 波多野结衣一区麻豆| 香蕉久久夜色| 午夜福利,免费看| 欧美日韩福利视频一区二区| 手机成人av网站| 天堂动漫精品| 亚洲成a人片在线一区二区| 水蜜桃什么品种好| 90打野战视频偷拍视频| 高清在线国产一区| 极品少妇高潮喷水抽搐| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| tube8黄色片| 性色av乱码一区二区三区2| 国产精品 欧美亚洲| 成人av一区二区三区在线看| 天天操日日干夜夜撸| 看免费av毛片| 精品国产一区二区三区四区第35| 99香蕉大伊视频| 亚洲自偷自拍图片 自拍| avwww免费| 欧美乱妇无乱码| 99久久99久久久精品蜜桃| 久热这里只有精品99| 欧美日韩福利视频一区二区| 欧美性长视频在线观看| 十八禁网站免费在线| 精品国产一区二区久久| 精品国产亚洲在线| 最近最新中文字幕大全免费视频| 人妻丰满熟妇av一区二区三区 | 国产精品偷伦视频观看了| 国产成人精品久久二区二区免费| 国产不卡av网站在线观看| 国产精品秋霞免费鲁丝片| 一边摸一边抽搐一进一出视频| 一本一本久久a久久精品综合妖精| 久久久精品国产亚洲av高清涩受| 精品国产超薄肉色丝袜足j| 国内毛片毛片毛片毛片毛片| 久久青草综合色| 国产一区有黄有色的免费视频| 青草久久国产| 欧美精品亚洲一区二区| 91av网站免费观看| 日日夜夜操网爽| 午夜福利欧美成人| 国产成人免费观看mmmm| 女人被躁到高潮嗷嗷叫费观| 亚洲av熟女| 亚洲欧美日韩高清在线视频| 午夜福利乱码中文字幕| 99热网站在线观看| 老司机靠b影院| 亚洲av第一区精品v没综合| 高潮久久久久久久久久久不卡| 波多野结衣av一区二区av| 黄片大片在线免费观看| 欧美激情久久久久久爽电影 | 午夜免费观看网址| 91麻豆av在线| 免费看a级黄色片| 久久精品成人免费网站| 欧美性长视频在线观看| 国产成人精品在线电影| 我的亚洲天堂| 国产高清激情床上av| 久久久精品国产亚洲av高清涩受| 一级黄色大片毛片| 亚洲七黄色美女视频| 人妻丰满熟妇av一区二区三区 | av片东京热男人的天堂| 欧美日韩黄片免| 免费女性裸体啪啪无遮挡网站| 丰满迷人的少妇在线观看| 村上凉子中文字幕在线| 三级毛片av免费| 变态另类成人亚洲欧美熟女 | 中文字幕人妻丝袜一区二区| 国产片内射在线| 免费黄频网站在线观看国产| 亚洲熟女精品中文字幕| 精品午夜福利视频在线观看一区| 日韩免费高清中文字幕av| 午夜福利,免费看| 老司机福利观看| 999久久久国产精品视频| 一级片免费观看大全| 精品卡一卡二卡四卡免费| a级片在线免费高清观看视频| 免费不卡黄色视频| 老熟妇仑乱视频hdxx| 99国产精品一区二区蜜桃av | 亚洲中文av在线| 黄色丝袜av网址大全| 无遮挡黄片免费观看| 欧美日韩视频精品一区| 黄网站色视频无遮挡免费观看| 91av网站免费观看| 精品国产国语对白av| 亚洲av美国av| 国产精品一区二区在线不卡| 久热这里只有精品99| 久久久久久亚洲精品国产蜜桃av| 日韩制服丝袜自拍偷拍| 69精品国产乱码久久久| 国产亚洲一区二区精品| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区久久| videosex国产| 国产99久久九九免费精品| 日韩精品免费视频一区二区三区| 狂野欧美激情性xxxx| 国产高清视频在线播放一区| 欧美乱妇无乱码| 777久久人妻少妇嫩草av网站| 极品教师在线免费播放| 99久久99久久久精品蜜桃| 91精品三级在线观看| 男女高潮啪啪啪动态图| 巨乳人妻的诱惑在线观看| 一进一出抽搐动态| 三上悠亚av全集在线观看| 一边摸一边抽搐一进一小说 | 亚洲人成电影观看| 亚洲五月色婷婷综合| 黄频高清免费视频| 国产成+人综合+亚洲专区| 日韩欧美三级三区| 久久久久精品国产欧美久久久| 午夜福利视频在线观看免费| 极品人妻少妇av视频| 欧美亚洲日本最大视频资源| 青草久久国产| 久久久精品区二区三区| 最新的欧美精品一区二区| av不卡在线播放| 亚洲av电影在线进入| 国产99久久九九免费精品| 亚洲精品一二三| www.精华液| 国产在线观看jvid| 在线av久久热| 免费看a级黄色片| 中文字幕人妻熟女乱码| 女人被躁到高潮嗷嗷叫费观| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区mp4| 精品免费久久久久久久清纯 | 天天操日日干夜夜撸| 高清欧美精品videossex| 亚洲av电影在线进入| 窝窝影院91人妻| 久久中文看片网| 熟女少妇亚洲综合色aaa.| 午夜免费成人在线视频| av片东京热男人的天堂| 新久久久久国产一级毛片| 一级作爱视频免费观看| 国产精品综合久久久久久久免费 | 欧美老熟妇乱子伦牲交| 最新美女视频免费是黄的| 两个人免费观看高清视频| 亚洲综合色网址| 日韩成人在线观看一区二区三区| 国产成人欧美在线观看 | svipshipincom国产片| 在线视频色国产色| 亚洲成国产人片在线观看| 午夜免费成人在线视频| 国产成人免费观看mmmm| 久久国产乱子伦精品免费另类| 国产成人av教育| 国产欧美日韩一区二区三区在线| 99香蕉大伊视频| 不卡一级毛片| 中文字幕人妻熟女乱码| 亚洲 国产 在线| 99热国产这里只有精品6| 精品一区二区三区视频在线观看免费 | 国产亚洲欧美在线一区二区| 男男h啪啪无遮挡| 美女高潮到喷水免费观看| 国产99久久九九免费精品| 天堂动漫精品| 欧美最黄视频在线播放免费 | 一区二区三区国产精品乱码| 黄色视频不卡| 啦啦啦视频在线资源免费观看| 天堂√8在线中文| 精品久久久久久久久久免费视频 | videosex国产| 亚洲欧美一区二区三区久久| 日韩欧美免费精品| 亚洲自偷自拍图片 自拍| 免费观看人在逋| 成人永久免费在线观看视频| 日韩欧美免费精品| 女性被躁到高潮视频| 日韩欧美免费精品| www日本在线高清视频| 免费女性裸体啪啪无遮挡网站| 搡老熟女国产l中国老女人| 黑丝袜美女国产一区| 美女福利国产在线| 人人妻人人澡人人爽人人夜夜| 啦啦啦在线免费观看视频4| 亚洲成av片中文字幕在线观看| 黄片播放在线免费| 亚洲精品美女久久久久99蜜臀| 午夜免费鲁丝| 国产欧美日韩精品亚洲av| 黄片播放在线免费| 美女高潮到喷水免费观看| 在线观看免费高清a一片| 久久精品人人爽人人爽视色| 色播在线永久视频| 五月开心婷婷网| 国精品久久久久久国模美| 国产三级黄色录像| 欧美乱码精品一区二区三区| 中文字幕人妻丝袜制服| 欧美不卡视频在线免费观看 | svipshipincom国产片| 黄色女人牲交| 久久人妻av系列| 国产精品二区激情视频| 久久青草综合色| 国产一区二区激情短视频| 中文字幕av电影在线播放| 日韩熟女老妇一区二区性免费视频| 日日摸夜夜添夜夜添小说| 视频区欧美日本亚洲| netflix在线观看网站| 久久国产精品大桥未久av| 成人永久免费在线观看视频| 人成视频在线观看免费观看| 亚洲欧美激情在线| 两性夫妻黄色片| 免费在线观看影片大全网站| 国产精品美女特级片免费视频播放器 | 欧美精品av麻豆av| 中文字幕人妻丝袜一区二区| 成人精品一区二区免费| 亚洲九九香蕉| 亚洲一区中文字幕在线| 这个男人来自地球电影免费观看| 久久久精品区二区三区| 女警被强在线播放| 久久国产乱子伦精品免费另类| 自拍欧美九色日韩亚洲蝌蚪91| 国产淫语在线视频| 精品第一国产精品| 黄色视频不卡| 国产在视频线精品| 一级片免费观看大全| 国产亚洲精品久久久久久毛片 | 日本五十路高清| 国产97色在线日韩免费| 在线观看免费视频网站a站| 正在播放国产对白刺激| 99re6热这里在线精品视频| 日日爽夜夜爽网站| 99精国产麻豆久久婷婷| 女性被躁到高潮视频| 久久精品91无色码中文字幕| 亚洲国产欧美日韩在线播放| av片东京热男人的天堂| 午夜福利乱码中文字幕| 50天的宝宝边吃奶边哭怎么回事| 91成年电影在线观看| 高清欧美精品videossex| 夜夜爽天天搞| 身体一侧抽搐| 两人在一起打扑克的视频| 色在线成人网| 国产成人欧美在线观看 | 亚洲欧洲精品一区二区精品久久久| 国产蜜桃级精品一区二区三区 | 成人亚洲精品一区在线观看| 欧美国产精品va在线观看不卡| 久久亚洲真实| 亚洲国产欧美日韩在线播放| 久久久久久亚洲精品国产蜜桃av| 久久久精品免费免费高清| 国产片内射在线| 老汉色av国产亚洲站长工具| 美国免费a级毛片| 18禁美女被吸乳视频| 久久国产精品影院| 日韩有码中文字幕| 午夜福利视频在线观看免费| 伦理电影免费视频| 在线观看免费视频网站a站| 夜夜夜夜夜久久久久| 国产精品香港三级国产av潘金莲| 精品久久久久久久久久免费视频 | 亚洲欧美一区二区三区黑人| 变态另类成人亚洲欧美熟女 | 91av网站免费观看| 黑人巨大精品欧美一区二区mp4| 国产熟女午夜一区二区三区| 亚洲成人免费av在线播放| 夫妻午夜视频| 亚洲精品美女久久久久99蜜臀| 9191精品国产免费久久| 国产精品久久久久久人妻精品电影| 国产亚洲一区二区精品| 日本撒尿小便嘘嘘汇集6| 久久国产精品男人的天堂亚洲| av天堂久久9| 一二三四社区在线视频社区8| 91在线观看av| 1024视频免费在线观看| 999久久久精品免费观看国产| 老司机午夜十八禁免费视频| 国产高清激情床上av| 精品第一国产精品| 亚洲性夜色夜夜综合| 97人妻天天添夜夜摸| 十八禁人妻一区二区| 久久人人97超碰香蕉20202| 中出人妻视频一区二区| 深夜精品福利| 国产成+人综合+亚洲专区| 亚洲av欧美aⅴ国产| 欧美亚洲日本最大视频资源| 亚洲精品乱久久久久久| 国产欧美日韩一区二区三| 真人做人爱边吃奶动态| av网站免费在线观看视频| 美女视频免费永久观看网站| 女人精品久久久久毛片| 亚洲视频免费观看视频| 丁香六月欧美| 满18在线观看网站| 热re99久久精品国产66热6| 日本wwww免费看| 午夜福利欧美成人| 国产成人av激情在线播放| 黄色视频,在线免费观看| 777久久人妻少妇嫩草av网站| 69精品国产乱码久久久| 国产xxxxx性猛交| 淫妇啪啪啪对白视频| 国产精品av久久久久免费| 一二三四在线观看免费中文在| x7x7x7水蜜桃| 久久亚洲精品不卡| 看片在线看免费视频| 男女下面插进去视频免费观看| 欧美亚洲日本最大视频资源| 中出人妻视频一区二区| 十八禁网站免费在线| 国产精品久久久久成人av| 桃红色精品国产亚洲av| 国产野战对白在线观看| 正在播放国产对白刺激| 天天添夜夜摸| 亚洲精品成人av观看孕妇| bbb黄色大片| 午夜福利乱码中文字幕| 真人做人爱边吃奶动态| 中亚洲国语对白在线视频| 精品电影一区二区在线| √禁漫天堂资源中文www| 女人久久www免费人成看片| 手机成人av网站| 在线观看免费午夜福利视频| 在线观看免费视频网站a站| 啦啦啦视频在线资源免费观看| 国产成人精品无人区| 少妇粗大呻吟视频| 免费久久久久久久精品成人欧美视频| 天堂√8在线中文| 又黄又爽又免费观看的视频| 一级片免费观看大全| 亚洲全国av大片| 国产精品 欧美亚洲| 色94色欧美一区二区| 在线观看66精品国产| 人人妻人人澡人人看| 国产蜜桃级精品一区二区三区 | 男女免费视频国产| 午夜视频精品福利| 法律面前人人平等表现在哪些方面| av有码第一页| 少妇 在线观看| 国产国语露脸激情在线看| 国产av一区二区精品久久| 精品卡一卡二卡四卡免费| 日韩大码丰满熟妇| 国产日韩欧美亚洲二区| 久久影院123| 久久人妻熟女aⅴ| 超碰97精品在线观看| 欧美成人免费av一区二区三区 | 国产高清国产精品国产三级| 叶爱在线成人免费视频播放| 热re99久久精品国产66热6| 中出人妻视频一区二区| 国产午夜精品久久久久久| 国产精品98久久久久久宅男小说| 免费在线观看亚洲国产| 91麻豆精品激情在线观看国产 | 村上凉子中文字幕在线| 黄色怎么调成土黄色| 亚洲黑人精品在线| 亚洲伊人色综图| xxx96com| 亚洲av熟女| 久久人人97超碰香蕉20202| 正在播放国产对白刺激| 少妇裸体淫交视频免费看高清 | 波多野结衣av一区二区av| 免费观看精品视频网站| 一级片免费观看大全| 国产男靠女视频免费网站| 久久人人爽av亚洲精品天堂| 精品国产乱码久久久久久男人| 热re99久久精品国产66热6| 国产亚洲欧美精品永久| 国产精品一区二区在线观看99| 日韩中文字幕欧美一区二区| 婷婷丁香在线五月| 色94色欧美一区二区| 建设人人有责人人尽责人人享有的| 亚洲欧美激情综合另类| 国产精品二区激情视频| 老熟妇乱子伦视频在线观看| 老司机午夜十八禁免费视频| 99精品欧美一区二区三区四区| 国产精品国产高清国产av | 午夜福利乱码中文字幕| 久久精品国产综合久久久| 91国产中文字幕| 亚洲国产精品sss在线观看 | www日本在线高清视频| 三级毛片av免费| 深夜精品福利| 777久久人妻少妇嫩草av网站| 亚洲成a人片在线一区二区| 久久久久精品人妻al黑| 黄色成人免费大全| 少妇的丰满在线观看|