• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrical-Mechanical Coupling Behaviors and Thermal-Resistance Effects of 3D Braided Composites

    2021-11-02 03:12:38BAILeiXUEYousong薛有松SUNBaozhong孫寶忠GUBohong顧伯洪HUMeiqi胡美琪

    BAI Lei(白 雷), XUE Yousong(薛有松), SUN Baozhong(孫寶忠), GU Bohong(顧伯洪), HU Meiqi(胡美琪)

    College of Textiles, Donghua University, Shanghai 201620, China

    Abstract: Electrical-mechanical coupling behaviors and thermal-resistance effects of 3D braided composites under external loads are important for structural health monitoring(SHM). Electrical conductivity and electrical-mechanical coupling behaviors of 3D braided carbon fiber/epoxy composites under uniaxial tension were reported. It was found that the transverse resistance decreased and the axial resistance increased with the increasing braiding angle. The fractional change in resistance increased linearly as the strain was below 1.0%, and the nonlinearity appeared when the strain exceeded 1.0%. The negative temperature coefficient(NTC) effect was observed before the glass transition temperature Tg of epoxy resin, while there was a positive temperature coefficient(PTC) effect after Tg.

    Key words: 3D braided composite; braided angle; electrical property; thermal analysis

    Introduction

    3D braided composites have been widely used in aerospace, vessels, and other industrial fields[1-3]. Considering the potential damages caused by external loads, electrical-based structural health monitoring(SHM) technique for damage detection has attracted great attention in the past few decades[4-8]. The resistance changes under external loads are investigated to reveal the composite damages and achieve the SHM purpose[9-11].

    Carbon fiber tows have good conductivity, while epoxy resin can be regarded as an insulator. The electrical conductivity of carbon fiber reinforced composites highly depends on the conductive network formed by carbon fiber tows[12-13]. The conductive network undergoes disruption and reorganization under external loads, resulting in resistance changes at the macroscopic level[4, 14].

    In previous studies, the resistance change of laminated composites was reported under both static and cyclic tensile loading[11, 15], compression[16-17], flexure[6, 18], impact[19-20], and thermal loads[21-23]. Chenetal.[15]studied the stress dependency of conductivity under monotonic and cyclic loading, which proved that the damage occurring inside material could be monitored in real time by measuring the change in resistance during loading and unloading. Zhu and Chung[18]provided an analytical model of the piezoresistive phenomenon of carbon fiber-polymer matrix composites under flexure, which attributed the surface resistance change to the degree of current penetration. Swaitetal.[20]investigated location, spacing and orientation of the contacts in laminate to optimize the SHM system for improved sensitivity and accuracy. Chung[21]provided information on structural transitions, residual stress, composite interfaces, composite fabrication process, and thermal damage with the resistance measurement method. However, few papers were published to reveal the resistance changes in 3D textile structural composites, especially for 3D braided composites.

    Here we investigated axial resistivity and transverse resistivity of 3D braided composites with the four-probe method and the two-probe method, respectively. The electrical-mechanical coupling behaviors were studied to explore the damages under tensile loading. The thermal-resistance effects were also investigated during heating and cooling in the temperature range from 35 ℃ to 150 ℃.

    1 Experiments

    1.1 Sample preparation

    The 3D carbon fiber(T700-12k, Zhongfu Shenying Carbon Fiber Co., Ltd., Lianyungang, China) braided preforms were fabricated with 1 × 1 four-step braiding technique. The epoxy resin(JC-02A, Changshu Jiafa Co., Ltd., Changshu, China) was injected into the preforms with vacuum-assisted resin transfer molding(VARTM) technique. Mechanical and electrical parameters of carbon fiber and epoxy resin were listed in Table 1. The braiding angleαused in this paper refers to the surface braiding angle, which is described as

    Table 1 Mechanical and electrical parameters of carbon fiber and epoxy resin

    (1)

    whereWis the width of the specimen,nis the number of main yarns along the width, andhis the knot height.

    Figure 1 presents the 3D braided composites with the braiding angles of 18°, 30°, and 42°. Table 2 lists the fiber volume fractions of samples with different braiding angles.

    Table 2 Fiber volume fraction of composites with different braiding angles

    1.2 Tests

    The samples with a size of 7 mm×50 mm×70 mm were used for transverse resistivity measurement. The transverse resistivity was measured with the two-probe method. As shown in Fig.2, two copper electrodes were configured at the sample surface in the transverse direction for both current introduction and voltage measurement.

    Fig. 1 3D braided composites with different braiding angles

    Fig.2 Sketch of transverse resistivity measurement

    The axial resistivity of composites was tested with the four-probe method. Samples with a size of 200 mm × 150 mm × 5 mm were prepared. As shown in Fig.3, two copper electrodes were configured at the ends of the sample, while another two copper electrodes were placed at the ends of the test region. The two outer probes were used to introduce current, and the two inner probes were used for voltage measurement.

    Uniaxial tensile tests were conducted with the material test system(MTS) at a loading speed of 2 mm/min as shown in Fig. 4. During the loading process, the electric current of 100 mA was introduced into the sample. The axial resistance changes were measured with the four-probe method. Two strain gauges were pasted on the axial surface of the sample and their average value was taken as the strain. An Agilent demodulator was used to demodulate the voltage and strain in real time.

    Fig. 3 Sketch of axial resistivity measurement

    Fig. 4 Electrical-mechanical coupling test system

    The axial resistivity was also measured during a thermal cycle from 35 ℃ to 150 ℃. The whole testing process was conducted in an oven and a thermocouple was attached to the sample surface for temperature signal collection. An Agilent demodulator was used to decouple the temperature signal and record voltage simultaneously.

    2 Results and Discussion

    2.1 Electrical properties

    Figure 5(a) shows the voltage-current relationships of the 3D braided composites with current introduced in the transverse direction. The voltage increases linearly with the increase of current, showing typical ohmic behavior under a steady direct current(DC) electric field within the current range from 0 to 1.0 A. The transverse electrical resistivity decreases with the increasing braiding angle as shown in Fig. 5(b).

    As shown in Fig.6(a), the axial voltage-current curves of 3D braided composites exhibit similar regularity to that of the transverse ones,i.e., the voltage increases linearly within the current range from 0 to 1.0 A. Figure 6(b) shows the axial resistivity of samples with the braiding angles of 18°, 30°, and 42°. The axial electrical resistivity increases with the increasing braiding angle.

    Fig. 5 Transverse properties: (a) transverse voltage-current curve; (b) transverse resistivity

    Fig. 6 Axial conductivity: (a) axial voltage-current curve; (b) axial resistivity

    Fig. 7 Stress-strain curve

    Fig. 8 Electrical response of samples with different braiding angles under quasi-static tensile loading: (a) 18°; (b) 30°; (c) 42°

    In 3D braided composites, the conductive network is formed by continuous carbon fiber tows and the contacts between the fibers. The axial electrical conductivity depends on the conductive path formed by continuous carbon fiber tows in the braiding direction, while the transverse conductivity depends on the contact between the carbon fiber tows. The conductive network of 3D braided composites is related to the braiding angle. The larger the braiding angle, the more severely the fibers buckled. The buckled fibers lead to an increase in contact. In this case, the transverse resistivity decreases with the increasing braiding angle. The buckled fibers also increase the length of the conductive path, increasing the axial resistivity.

    2.2 Electrical-mechanical behaviors under tensile loading

    2.2.1Tensilebehaviors

    Figure 7 shows the stress-strain curves of 3D braided composites with the braiding angles of 18°, 30°, and 42°. The failure stresses are 853.8, 501.8, and 333.5 MPa and the fracture strains are 3.0%, 3.2%, and 4.0%, respectively. For the sample with a braiding angle of 18°, the tensile behavior depends on the carbon fiber tows, whose excellent mechanical properties result in high modulus and strength. For the samples with braiding angles of 30° and 42°, the carbon fiber tows buckle and the influence of epoxy resin on the mechanical behaviors becomes apparent. Ductile failure occurs in the tensile tests, resulting in an increase of fracture strain[1].

    2.2.2Electrical-mechanicalcouplingbehaviors

    The electrical responses depend on the deformation and damages of composites during tensile loading. The relationship of fractional change in resistance and strain is given by[24]

    (3)

    whereR0is the initial resistance, ΔRis the resitance change,ρ0is the initial resistivity, Δρis the resistivity change,εis the strain, andvis the Poisson’s ratio.

    Figure 8 shows the relationships of fractional changes in resistance and strains of samples with the braiding angles of 18°, 30°, and 42° under quasi-static tensile loading. The fractional changes in resistance increase linearly until strains reach about 1.0%. In this case, the resistance changes depend on the dimensional changes contributed by the Poisson effect. The resistance is directly proportional to the length and inversely to the cross-sectional area. During the loading process, the displacement is generated by the stretch and the width of the composites decreases, resulting in a linearly increase of change in resistance.

    With the increase of strains from 1.0% to 1.5%, the nonlinearity of the resistance change curves was observed. The buckled carbon fibers in the braiding structure are straightened gradually. The extrusion between fibers and epoxy resin leads to the cracks inside the composites, which results in the destruction and reconstruction of the conductive network. As a result, the fractional changes in resistance begin to nonlinearly increase.

    As the strains exceed 1.5%, the fractional changes in resistance increase nonlinearly to the maximum until samples breakdown. The fracture of carbon fibers causes breaks in the conductive paths, and the unbroken carbon fibers reconstruct the conductive network. The reduction in the content of continuous carbon fiber tows leads to resistance increases.

    The gage factor(GF)Kis defined as the fractional change in resistance per unit strain[24],

    (2)

    Figure 9 reports the GF of samples obtained from Fig. 8, corresponding to the strain range from 0 to 1%. The sample with the braiding angle of 18° has the largest GF value.

    2.3 Thermal-resistance effects

    The resistance-temperature curve of carbon fiber tows was measured during the heating process from 20 ℃ to 150 ℃. As shown in Fig. 10, the resistance decreases linearly with the increasing temperature, exhibiting the semiconductor feature. The resistance decreases by 3.2% from 20 ℃ to 110 ℃ and 5.2% during the entire heating process.

    Fig. 9 GF of composites with different braiding angles

    Fig. 10 Resistance-temperature curve of carbon fiber tows

    The resistivity-temperature curves of 3D braided composites with different braiding angles are exhibited in Fig. 11. The resistivity-temperature curves show an opposite trend before and after 110 ℃. The resistivity of samples with braiding angles of 18°, 30°, and 42° decreases by 3.9%, 1.5%, and 2.3% as the temperature increases from 35 ℃ to 110 ℃, and increases by 8.0%, 4.9%, and 4.5% when the temperature rises from 110 ℃ to 150 ℃. The thermal-resistance effects of carbon fiber tows(discussed in the first paragraph of section 2.3) and the thermal expansion of epoxy resin contribute to the resistance changes.

    Fig. 11 Resistivity-temperature curve of 3D braided composites with different braiding angles: (a) 18°; (b) 30°; (c) 42°

    The thermal expansion of epoxy resin has little effect on the conductive network before the temperature reaches 110 ℃(Tgof epoxy resin)[25]. The electrical conductivity of 3D braided composites mainly depends on the thermal-resistance effects of carbon fiber tows. The resistivity reduction in the carbon fiber tows causes the negative temperature coefficient(NTC) effects in the temperature range from 35 ℃ to 110 ℃. The thermal expansion of epoxy resin in the elastic region changes the conductive network as the temperature exceeds 110 ℃[26]. The carbon fiber tows are separated by the volume expansion of epoxy resin, leading to the reduction of contact. Destruction and reorganization in the conductive network increase the resistivity in the temperature range from 110 ℃ to 150 ℃, exhibiting the positive temperature coefficient(PTC) effects.

    The resistivity-temperature curves of 3D braided composites are also reported during the cooling process as shown in Fig.11. The resistivity decreases with temperature from 150 ℃ to 110 ℃ and increases with temperature from 110 ℃ to 35 ℃. The difference in coefficient of thermal expansion between carbon fiber tows and epoxy resin causes the stretches in composites under thermal loads[26], which leads to irreversible changes in the conductive network. During the cooling process, the broken conductive network cannot be recovered and exhibits the resistivity recovery hysteresis.

    3 Conclusions

    The electrical conductivity, electrical-mechanical coupling behaviors, and thermal-resistance effects of 3D braided composites have been investigated. It is found that the axial resistivity increases and the transverse resistivity decreases with the increasing braiding angle. The fractional change in resistance increases linearly until the strain reaches about 1.0%, and exhibits nonlinearity when the strain exceeds 1.0% under quasi-static tensile loading. The sample with the braiding angle of 18° has greater GF than the samples with a larger braiding angle. The resistivity decreases and increases with the temperature increase before and after 110 ℃ respectively owing to the thermal expansion behaviors of epoxy resin and the reduction in resistivity of carbon fiber tows.

    简卡轻食公司| 久久久精品94久久精品| 人人妻人人澡人人爽人人夜夜 | 午夜视频国产福利| 男人狂女人下面高潮的视频| 欧洲精品卡2卡3卡4卡5卡区| 男人狂女人下面高潮的视频| 26uuu在线亚洲综合色| 99热6这里只有精品| 夜夜看夜夜爽夜夜摸| 国国产精品蜜臀av免费| 色尼玛亚洲综合影院| 国产高清激情床上av| 91精品国产九色| 亚洲精品久久久久久婷婷小说 | 欧美激情久久久久久爽电影| 一区福利在线观看| 91久久精品电影网| 国产一区二区三区av在线 | 欧美成人免费av一区二区三区| 日韩欧美国产在线观看| 精品国内亚洲2022精品成人| 国产白丝娇喘喷水9色精品| 又粗又爽又猛毛片免费看| 精品久久久久久久久亚洲| 亚洲国产欧美在线一区| 全区人妻精品视频| 国产精品久久视频播放| 人人妻人人澡人人爽人人夜夜 | 精品免费久久久久久久清纯| av在线亚洲专区| 亚洲av一区综合| 亚洲最大成人中文| 免费大片18禁| 成年版毛片免费区| 久久午夜福利片| 午夜福利在线观看免费完整高清在 | 成熟少妇高潮喷水视频| 久久久久性生活片| 久久亚洲精品不卡| 成人毛片60女人毛片免费| 人体艺术视频欧美日本| 日本黄大片高清| 久久热精品热| 少妇熟女欧美另类| 免费观看a级毛片全部| 中文字幕免费在线视频6| 久久精品国产亚洲av香蕉五月| 国产又黄又爽又无遮挡在线| 亚洲18禁久久av| a级一级毛片免费在线观看| 国产精品日韩av在线免费观看| kizo精华| 亚洲五月天丁香| 国产极品精品免费视频能看的| 成人av在线播放网站| 久久欧美精品欧美久久欧美| 国产v大片淫在线免费观看| 日日撸夜夜添| 成人综合一区亚洲| 欧美性感艳星| 亚洲经典国产精华液单| 毛片女人毛片| 久久久午夜欧美精品| 人妻久久中文字幕网| 亚州av有码| 中国美白少妇内射xxxbb| 日韩av在线大香蕉| 亚洲欧美精品自产自拍| 麻豆精品久久久久久蜜桃| 欧美bdsm另类| 久久久精品大字幕| 我要看日韩黄色一级片| 亚洲最大成人中文| 99久国产av精品国产电影| 国产极品天堂在线| 校园春色视频在线观看| 丰满人妻一区二区三区视频av| 欧美高清成人免费视频www| 嫩草影院新地址| 国产极品精品免费视频能看的| 国产亚洲欧美98| 欧美性猛交╳xxx乱大交人| 欧美日韩乱码在线| 日韩精品有码人妻一区| 国产视频首页在线观看| 久久久久网色| 美女cb高潮喷水在线观看| 亚洲av二区三区四区| 日韩一区二区视频免费看| 99视频精品全部免费 在线| 哪个播放器可以免费观看大片| 亚洲av免费在线观看| 两个人视频免费观看高清| 亚洲欧美日韩高清专用| 国产精品久久电影中文字幕| 亚洲,欧美,日韩| ponron亚洲| 五月玫瑰六月丁香| 成人无遮挡网站| 亚洲成a人片在线一区二区| av女优亚洲男人天堂| videossex国产| 国产成人a∨麻豆精品| 国产精品蜜桃在线观看 | 国产亚洲精品久久久com| 国产成人影院久久av| 嘟嘟电影网在线观看| 久久精品综合一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 国产精品久久久久久久久免| 精品久久国产蜜桃| 波野结衣二区三区在线| 又爽又黄无遮挡网站| 一区二区三区四区激情视频 | 国产极品天堂在线| 亚洲精品国产成人久久av| 久久久色成人| 内地一区二区视频在线| 丝袜喷水一区| 国产熟女欧美一区二区| 日日啪夜夜撸| 乱人视频在线观看| 日本撒尿小便嘘嘘汇集6| 国产av麻豆久久久久久久| 天堂中文最新版在线下载 | 少妇的逼好多水| 国产片特级美女逼逼视频| 国产大屁股一区二区在线视频| 久久久久国产网址| ponron亚洲| 亚洲av男天堂| 美女内射精品一级片tv| 欧美极品一区二区三区四区| 波多野结衣巨乳人妻| 国产免费一级a男人的天堂| 边亲边吃奶的免费视频| 久久久久久伊人网av| 九九热线精品视视频播放| 春色校园在线视频观看| 欧美极品一区二区三区四区| 日韩欧美在线乱码| 男人舔奶头视频| 亚洲国产欧美人成| 毛片女人毛片| 久久久久久久亚洲中文字幕| 三级男女做爰猛烈吃奶摸视频| 日本与韩国留学比较| 深爱激情五月婷婷| 简卡轻食公司| 欧美成人精品欧美一级黄| 国产午夜精品论理片| 欧美激情久久久久久爽电影| 91aial.com中文字幕在线观看| 一边亲一边摸免费视频| 男人和女人高潮做爰伦理| 午夜久久久久精精品| av天堂中文字幕网| 日韩制服骚丝袜av| 一区二区三区免费毛片| 午夜福利成人在线免费观看| 欧美日本视频| 国产极品精品免费视频能看的| 99热网站在线观看| 91久久精品国产一区二区成人| 美女高潮的动态| 国产免费男女视频| 亚洲自拍偷在线| 狂野欧美激情性xxxx在线观看| 一进一出抽搐动态| 99热精品在线国产| 一进一出抽搐gif免费好疼| 亚洲自偷自拍三级| 亚洲欧美日韩高清专用| 成人一区二区视频在线观看| 天天躁夜夜躁狠狠久久av| 亚洲熟妇中文字幕五十中出| 亚洲va在线va天堂va国产| 国产综合懂色| 插逼视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 一个人免费在线观看电影| 国产精品久久久久久久久免| 久久鲁丝午夜福利片| 国内揄拍国产精品人妻在线| 午夜老司机福利剧场| 午夜久久久久精精品| 寂寞人妻少妇视频99o| 波多野结衣高清作品| 精品一区二区三区视频在线| 亚洲三级黄色毛片| 久久久久久九九精品二区国产| 色综合站精品国产| 99热这里只有是精品在线观看| 亚洲欧美成人精品一区二区| 波多野结衣高清无吗| 成年女人永久免费观看视频| 美女 人体艺术 gogo| 国产激情偷乱视频一区二区| 2022亚洲国产成人精品| 亚洲精品日韩在线中文字幕 | 久久亚洲精品不卡| 成人漫画全彩无遮挡| 久久久久性生活片| 国产精品不卡视频一区二区| 成人毛片60女人毛片免费| 亚洲国产欧美在线一区| 男插女下体视频免费在线播放| 亚洲第一电影网av| 熟女电影av网| 少妇被粗大猛烈的视频| 色综合站精品国产| 国产真实乱freesex| 国产伦理片在线播放av一区 | 黄片wwwwww| 亚洲无线在线观看| 国产黄色视频一区二区在线观看 | 久久人人爽人人片av| 免费人成在线观看视频色| 日韩av不卡免费在线播放| 乱人视频在线观看| 免费黄网站久久成人精品| 看黄色毛片网站| 神马国产精品三级电影在线观看| 久久精品影院6| 日本撒尿小便嘘嘘汇集6| 不卡视频在线观看欧美| 97人妻精品一区二区三区麻豆| 狠狠狠狠99中文字幕| 精品99又大又爽又粗少妇毛片| 夫妻性生交免费视频一级片| 国产精品久久久久久精品电影| 成人无遮挡网站| 国产成人a区在线观看| 1000部很黄的大片| 九色成人免费人妻av| 国产真实乱freesex| 国产色爽女视频免费观看| 国产午夜福利久久久久久| 中文精品一卡2卡3卡4更新| 成人av在线播放网站| 色尼玛亚洲综合影院| 全区人妻精品视频| 丰满的人妻完整版| 丰满人妻一区二区三区视频av| 欧美最新免费一区二区三区| 只有这里有精品99| 美女xxoo啪啪120秒动态图| 女的被弄到高潮叫床怎么办| av专区在线播放| 精品熟女少妇av免费看| 99久久精品热视频| 性色avwww在线观看| 观看免费一级毛片| 亚洲欧美精品自产自拍| 国产高清视频在线观看网站| 国产淫片久久久久久久久| 中文字幕av在线有码专区| 波多野结衣高清无吗| 嫩草影院新地址| 日韩三级伦理在线观看| 中国美女看黄片| 午夜久久久久精精品| 成人毛片a级毛片在线播放| 久久精品国产清高在天天线| 99久国产av精品国产电影| 午夜久久久久精精品| 久久久久久久久久久免费av| 国产高清激情床上av| 嫩草影院入口| 久久久a久久爽久久v久久| 国产高潮美女av| 美女xxoo啪啪120秒动态图| 成熟少妇高潮喷水视频| 久久久久久久久久成人| 久久精品夜夜夜夜夜久久蜜豆| 一区二区三区免费毛片| 丝袜喷水一区| 波多野结衣高清无吗| 日本av手机在线免费观看| 熟女人妻精品中文字幕| 在现免费观看毛片| 亚洲av中文字字幕乱码综合| 91午夜精品亚洲一区二区三区| 美女xxoo啪啪120秒动态图| 99久国产av精品| av天堂中文字幕网| 高清日韩中文字幕在线| 禁无遮挡网站| 麻豆一二三区av精品| 看非洲黑人一级黄片| 午夜福利在线观看吧| 国产高清三级在线| 国产精品综合久久久久久久免费| 青春草亚洲视频在线观看| 插阴视频在线观看视频| 中文字幕av在线有码专区| 看非洲黑人一级黄片| 亚洲最大成人手机在线| 91狼人影院| 日韩精品有码人妻一区| 亚洲欧美清纯卡通| 国产在线精品亚洲第一网站| 自拍偷自拍亚洲精品老妇| 91久久精品国产一区二区成人| 观看免费一级毛片| 色哟哟哟哟哟哟| 哪里可以看免费的av片| 国产黄色视频一区二区在线观看 | 美女 人体艺术 gogo| 欧美激情国产日韩精品一区| 久久亚洲精品不卡| 老司机影院成人| 亚洲,欧美,日韩| 久久这里只有精品中国| 国产亚洲av嫩草精品影院| 国产午夜精品一二区理论片| 国产 一区精品| 最近手机中文字幕大全| 国产欧美日韩精品一区二区| 黄片无遮挡物在线观看| 夜夜爽天天搞| 国产精品不卡视频一区二区| 黄色视频,在线免费观看| 成人午夜精彩视频在线观看| 成人特级av手机在线观看| 黄色欧美视频在线观看| 热99在线观看视频| 国产片特级美女逼逼视频| 午夜福利高清视频| av免费观看日本| 亚洲,欧美,日韩| 中文字幕av成人在线电影| 国产视频首页在线观看| 晚上一个人看的免费电影| 亚洲中文字幕一区二区三区有码在线看| 亚洲无线在线观看| 99热这里只有精品一区| 成年女人看的毛片在线观看| 国产精品女同一区二区软件| 在线播放国产精品三级| 午夜福利在线在线| 好男人视频免费观看在线| 国产色爽女视频免费观看| 亚洲欧美精品专区久久| 在线免费观看的www视频| 丰满乱子伦码专区| 青春草国产在线视频 | 午夜福利高清视频| 国产 一区精品| 好男人在线观看高清免费视频| 18+在线观看网站| 国产成人91sexporn| 国产黄色视频一区二区在线观看 | 亚洲精品日韩在线中文字幕 | 悠悠久久av| 亚洲五月天丁香| 欧美日韩国产亚洲二区| 久久精品国产清高在天天线| 久久久久性生活片| 黄色日韩在线| 国产精品日韩av在线免费观看| 国产精品蜜桃在线观看 | 久久精品综合一区二区三区| 高清毛片免费看| 天天躁夜夜躁狠狠久久av| 夜夜爽天天搞| 国产成人午夜福利电影在线观看| 婷婷六月久久综合丁香| 听说在线观看完整版免费高清| 97热精品久久久久久| 国产午夜精品一二区理论片| 亚洲电影在线观看av| 一级毛片电影观看 | 久久6这里有精品| 久久人妻av系列| 免费观看在线日韩| or卡值多少钱| 乱码一卡2卡4卡精品| 日本黄色视频三级网站网址| 国产精品免费一区二区三区在线| 亚洲一区高清亚洲精品| 12—13女人毛片做爰片一| 成人无遮挡网站| 国产伦精品一区二区三区四那| 在线观看一区二区三区| 最近2019中文字幕mv第一页| 国产精品一区二区三区四区免费观看| 一边亲一边摸免费视频| 一级黄片播放器| 亚洲人成网站在线播放欧美日韩| 欧美一区二区亚洲| 人人妻人人看人人澡| 中文精品一卡2卡3卡4更新| 狠狠狠狠99中文字幕| 日韩在线高清观看一区二区三区| 欧美精品国产亚洲| 免费看av在线观看网站| 女同久久另类99精品国产91| 国产精品日韩av在线免费观看| 国产精品永久免费网站| 少妇人妻一区二区三区视频| 国内精品宾馆在线| 伦理电影大哥的女人| 乱人视频在线观看| 国产精品永久免费网站| 国产真实伦视频高清在线观看| 午夜精品在线福利| 国产探花极品一区二区| 欧美精品国产亚洲| 亚洲久久久久久中文字幕| 亚洲精品久久久久久婷婷小说 | 欧美日本亚洲视频在线播放| 国产黄色小视频在线观看| 亚洲,欧美,日韩| 一级毛片久久久久久久久女| 内射极品少妇av片p| 中国国产av一级| 国产 一区 欧美 日韩| 男女下面进入的视频免费午夜| 精品日产1卡2卡| 最好的美女福利视频网| 99在线视频只有这里精品首页| 美女脱内裤让男人舔精品视频 | 少妇高潮的动态图| 一级毛片我不卡| 寂寞人妻少妇视频99o| 国产精品一区www在线观看| 国产三级中文精品| 久久久国产成人精品二区| 3wmmmm亚洲av在线观看| 国产又黄又爽又无遮挡在线| 国产一区二区在线av高清观看| 亚洲成av人片在线播放无| 偷拍熟女少妇极品色| 岛国毛片在线播放| 一本久久中文字幕| 边亲边吃奶的免费视频| 美女高潮的动态| 欧美bdsm另类| 久久久久久久亚洲中文字幕| 亚洲最大成人av| 天天一区二区日本电影三级| 日韩高清综合在线| 国产乱人视频| 嘟嘟电影网在线观看| 国产一区二区在线观看日韩| 又爽又黄a免费视频| 亚洲熟妇中文字幕五十中出| 国产成人午夜福利电影在线观看| 成人午夜高清在线视频| 人体艺术视频欧美日本| 一进一出抽搐动态| 精品久久久久久久久亚洲| 级片在线观看| 色综合站精品国产| 黄色配什么色好看| 99久久精品国产国产毛片| 大型黄色视频在线免费观看| 久久草成人影院| 久久亚洲精品不卡| 国产探花在线观看一区二区| 一级毛片久久久久久久久女| 国产高清不卡午夜福利| 色尼玛亚洲综合影院| 深夜a级毛片| 国产久久久一区二区三区| 免费电影在线观看免费观看| 小蜜桃在线观看免费完整版高清| 嫩草影院新地址| 国产老妇女一区| 国产人妻一区二区三区在| 久久99蜜桃精品久久| 久久精品国产亚洲av涩爱 | 亚洲欧美精品自产自拍| 麻豆精品久久久久久蜜桃| 少妇被粗大猛烈的视频| 国产成人a区在线观看| 国产精品爽爽va在线观看网站| 一个人看视频在线观看www免费| 一区二区三区免费毛片| 天天躁夜夜躁狠狠久久av| 蜜桃亚洲精品一区二区三区| 99热只有精品国产| 亚洲成av人片在线播放无| 免费人成视频x8x8入口观看| 成人毛片60女人毛片免费| 麻豆av噜噜一区二区三区| avwww免费| 国产高清三级在线| 听说在线观看完整版免费高清| 三级经典国产精品| 成人av在线播放网站| 精品人妻视频免费看| 久久久久久久久久久丰满| 亚洲精品粉嫩美女一区| 国产成人freesex在线| 一级毛片我不卡| 亚洲精品亚洲一区二区| 高清毛片免费看| 亚洲精品粉嫩美女一区| 欧美激情久久久久久爽电影| 欧美色视频一区免费| 自拍偷自拍亚洲精品老妇| 久久精品国产鲁丝片午夜精品| 国产一区二区激情短视频| 亚洲欧美日韩东京热| 国产成人影院久久av| 国产三级中文精品| 日本在线视频免费播放| 成人特级av手机在线观看| 国产精品99久久久久久久久| 亚洲精品久久国产高清桃花| 2022亚洲国产成人精品| 精品久久久久久久久久久久久| 欧美一区二区国产精品久久精品| 白带黄色成豆腐渣| 国产亚洲av嫩草精品影院| 国产午夜福利久久久久久| av女优亚洲男人天堂| 男女啪啪激烈高潮av片| 午夜激情欧美在线| 中文亚洲av片在线观看爽| 国产黄片视频在线免费观看| 国产成人一区二区在线| 亚洲av一区综合| 国产精品99久久久久久久久| 久久综合国产亚洲精品| 尾随美女入室| 91久久精品国产一区二区三区| 99热精品在线国产| 在线免费观看的www视频| 国产精品麻豆人妻色哟哟久久 | 亚洲第一电影网av| 亚洲综合色惰| 乱码一卡2卡4卡精品| 黑人高潮一二区| 精品国内亚洲2022精品成人| 国产精品三级大全| 在线国产一区二区在线| 国产精品精品国产色婷婷| 麻豆成人av视频| 日日摸夜夜添夜夜爱| 波野结衣二区三区在线| 插阴视频在线观看视频| 国产极品精品免费视频能看的| 简卡轻食公司| 国产极品天堂在线| 国产一级毛片在线| 午夜a级毛片| 国产在视频线在精品| 深夜精品福利| 国产精品电影一区二区三区| 亚洲欧洲日产国产| 99热这里只有是精品50| 亚洲自偷自拍三级| 国产成人a区在线观看| 国产一区二区激情短视频| 国产精品人妻久久久久久| 国产亚洲91精品色在线| 精品久久久久久久人妻蜜臀av| 国国产精品蜜臀av免费| 可以在线观看毛片的网站| 欧美一区二区国产精品久久精品| 亚洲国产日韩欧美精品在线观看| 日本av手机在线免费观看| 黄色日韩在线| 国产片特级美女逼逼视频| 91精品国产九色| 亚洲av成人精品一区久久| 久久人人爽人人爽人人片va| 国产av麻豆久久久久久久| 九九热线精品视视频播放| 黄色一级大片看看| 禁无遮挡网站| 欧美一区二区精品小视频在线| 日韩一区二区三区影片| 黄片wwwwww| 中文在线观看免费www的网站| 国产一区二区激情短视频| 久久精品国产亚洲av涩爱 | 少妇的逼水好多| 在线观看美女被高潮喷水网站| 亚洲欧美日韩东京热| 亚洲av熟女| 在线观看免费视频日本深夜| 久久午夜亚洲精品久久| 久久热精品热| 少妇被粗大猛烈的视频| 久久精品国产亚洲网站| 欧美日韩精品成人综合77777| 别揉我奶头 嗯啊视频| 久久久久久久久久黄片| 久久这里有精品视频免费| 18禁在线播放成人免费| 欧美最新免费一区二区三区| 久久九九热精品免费| 99久久久亚洲精品蜜臀av| a级毛色黄片| 男女做爰动态图高潮gif福利片| 日韩视频在线欧美| 亚洲一级一片aⅴ在线观看| 亚洲美女搞黄在线观看| 国产精品一区二区三区四区久久| 免费av观看视频| 嫩草影院精品99| kizo精华| 日本免费a在线| 免费看光身美女| 久久久久九九精品影院| 国产精品综合久久久久久久免费| 成人午夜高清在线视频| 国产精品久久久久久久电影| 熟女人妻精品中文字幕| 国产一区二区三区av在线 |