• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ALGEBRAIC THEORY OF GENERALIZED INVERSES:GROUP INVERSES AND DRAZIN INVERSES*

    2021-11-01 10:02:04ChenJianlong

    Chen Jianlong

    (School of Mathematics,Southeast University,Nanjing 210096)

    Abstract This is the second part of a series of Algebraic Theory of Generalized Inverses,which includes two chapters:Group Inverses and Drazin Inverses.The chapter Group Inverses(see our Sec.1-9)first gives several sufficient and necessary conditions which guarantee the existence of the group inverse of a complex matrix,and then investigates the characterizations of group inverses in semigroups or rings;group invertibility of product paq,a sum of morphisms,the sum of two group invertible elements,a product,block matrices and a companion matrix.In the chapter Drazin Inverses(see our Sec.10-17),we give some calculation methods for Drazin inverses of complex matrices and study characterizations of Drazin inverses in semigroups or rings.Moreover,we also investigate Drazin invertibility of the product and difference of idempotents,matrices over a ring and a sum of morphisms.Among others,additive properties and Jacobson’s Lemma for Drazin inverses are presented.

    Keywords ring,semigroup,group inverse,Drazin inverse.

    1 The Group Inverse of a Complex Matrix

    In this section,the group inverse of a complex matrix is introduced.Then we give several sufficient and necessary conditions which guarantee the existence of the group inverse of a complex matrix.

    Definition 1.1LetA∈Cn×n.If there existsX∈Cn×nsuch that

    thenXis called the group inverse ofA.If such anXexists,it is unique by Proposition 1.2 below and denoted byA#.

    Proposition 1.2LetA∈Cn×n.IfAis group invertible,then the group inverse ofAis unique.

    ProofIfX,Yare two group inverses ofA,then

    Proposition 1.3([2,pp.156,Theorem2])LetA∈Cn×n.Then the following statements are equivalent:

    (1)Ais group invertible.

    (2)rank(A)=rank(A2).

    (3)R(A)=R(A2).

    (4)N(A)=N(A2).

    Proof(1)(2).SinceAis group invertible,A2A#=A.Then rank(A)≤rank(A2).Therefore rank(A)=rank(A2).

    (2)(1).Since rank(A)=rank(A2),there existY1andY2such thatA=A2Y1=Y2A2.It is easy to verify thatX==is the group inverse ofA.

    (2)(3).It is obvious thatR(A2)(A).Since rank(A)=rank(A2),we haveR(A)∈R(A2).So,R(A)=R(A2).

    (3)(2).BecauseR(A)=R(A2),rank(A)=rank(A2).

    (3)(4).It is obvious.

    Theorem 1.4([16,Theorem1])LetA∈Cn×nandA=GHbe a full rank decomposition.ThenAis group invertible if and only ifH Gis invertible.In this case,A#=G(H G)?2H.

    ProofSupposeAis group invertible.By Proposition 1.3,we know that rank(A)=rank(A2),which implies rank(H G)=rank(A).ThereforeH Gis invertible.

    Conversely,supposeH Gis invertible.It is easy to verify thatA#=G(H G)?2H.

    Theorem 1.5 LetA=whereDis invertible andNis nilpotent.ThenAis group invertible if and only ifN=0.In this case,A#=.

    ProofSupposeAis group invertible.By Proposition 1.3,we know that rank(A)=rank(A2),which follows that rank(N)=rank(N2).SinceNis nilpotent,N=0.

    Conversely,supposeN=0.It is easy to verify that

    2 Characterizations of Group Inverses in Semigroups or Rings

    In this section,we firstly recall the definition of the group inverse in semigroups or rings.Then several sufficient and necessary conditions which guarantee the existence of the group inverse of an element are presented.Unless otherwise stated,Sdenotes a semigroup with identity andRdenotes a ring with identity.

    Definition 2.1Leta∈S.If there existsx∈Ssuch that

    thenxis called the group inverse ofa.If such anxexists,then it is unique(the proof is similar to that of Proposition 1.2)and denoted bya#.

    Theorem 2.2([1,Lemma1])Leta∈S.Thenais group invertible if and only ifa∈a2S∩S a2.In this case,a#=y ax=y2a=ax2wherea=a2x=y a2.

    ProofSupposea=a2x=ya2.By computation,we haveyax=ya2x2=ax2=y2a.Taket=yax=y2a=ax2.Then

    Proposition 2.3([21,Proposition7])Leta∈R,thena∈R#if and only ifR=aR⊕a?if and only ifR=Ra⊕?a.

    In this case,

    where 1=ax+u=y a+vfor somex,y∈R,u∈a?andv∈?a.

    ProofWe shall prove thata∈R#if and only ifR=aR⊕a?.Supposeais group invertible.It is easy to verify thatR=aa#R⊕(1?aa#)R.Sinceaa#R=aRanda?=(1?aa#)R,we haveR=aR⊕a?.Conversely,ifR=aR⊕a?,then there exists an idempotentesuch thataR=eRanda?=(1?e)R.Therefore,ais regular,aR=eRandRa=Re.There existx1andx2such thate=ax1=x2a.So,x2a2=a2x1=a.By Theorem 2.2,we can easily complete the rest proof.

    Theorem 2.4([44,Theorem2.7])Leta,x∈R.Then the following statements are equivalent:

    (1)ais group invertible anda#=x.

    (2)axa=a,xR=aRandRx=Ra.

    (3)axa=a,?x=?aandx?=a?.

    (4)axa=a,and.

    (5)axa=a,?x?aandx?a?.

    Proof(1)(2).We havea=axa=aax=xaaandx=xax=xxa=axx,soxR=aRandRx=Ra.

    (2)(3)(4)(5).They are obvious by[11,Lemma 2.21].

    (5)(1).Fromaxa=ait follows thatax?1∈?a?xand 1?xa∈a?x?so(ax?1)x=0 andx(1?xa)=0.Now,x=ax2=x2a,henceax=ax2a=xaandxax=x2a=x.By the uniqueness of the group inverse,x=a#.

    The following theorem shows that the existence of the group inverse is closely related to existence of some idempotents.

    Theorem 2.5([5,Proposition8.24])Leta∈R.Thenais group invertible if and only if there exists an idempotentesuch thatae=ea=0 anda+e∈R?1.In this case,a#=(a+e)?2a.

    ProofSupposeais group invertible.Takee=1?aa#.Thenae=ea=0 and(a+e)?1=e+a#.

    Conversely,if there exists an idempotentesuch thatae=ea=0 anda+e∈R?1,then(e+a)a=a2=a(e+a).Sincea+e∈R?1,we havea=(a+e)?1a2=a2(a+e)?1.By Theorem 2.2,we have thatais group invertible anda#=(a+e)?2a.

    Theorem 2.6([44,Theorem2.11])Leta∈R.Then the following statements are equivalent:

    (1)ais group invertible.

    (2)there exists an idempotentqsuch thatq R=aRandRa=Rq.

    (3)ais regular and there exists an idempotentqsuch that?a=?qanda?=q?.

    If the previous statements are valid,then the statements(2)and(3)deal with the same unique idempotentq.Moreover,q a?qis invariant under the choice ofa?∈a{1}anda#=q a?q.

    Proof(1)(2).Suppose thatais group invertible and setq=aa#=a#a.Thena=q a=aq,soq R=aR,Rq=Ra.

    (2)(3).Fromq R=aRwe haveq=axanda=qzfor somex,z∈R.Therefore,q a=q2z=q z=aandaxa=q a=a,soais regular.The rest of the proof follows by[11,Lemma 2.21].

    (3)(1).Suppose thatais regular and there exists an idempotentqsuch thata?=q?and?a=?q.Leta?∈a{1}be arbitrary.Since 1?a?a∈a?q?,we obtainq=q a?a.Also,1?q∈q?a?,soa=aq.Similarly,q=aa?qanda=qa.Setx=qa?q.We havex=a#,because

    Now the invariance ofq a?qunder the choice ofa?∈a{1}follows.The uniqueness ofqfollows by[11,Lemma 2.16].

    Chen et al.[13]present an existence criterion of the group inverse of a regular element.

    Theorem 2.7([13,Proposition4.1])Letkbe an positive integer and suppose thatais regular with an inner inversea?.Then the following statements are equivalent:

    (1)ais group invertible.

    (2)u=ak+1?aa?∈R?1.

    (3)v=ak+1?a?a∈R?1.

    In this case,a#=u?1a2k?1v?1.

    Proof(1)(2).Since

    it follows thatuis right invertible.Similarly,we can prove that

    Hence,u=ak+1?aa?∈R?1.

    (2)(3).Note thatu=1+a(ak?1?a?)∈R?1if and only if 1+(ak?1?a?)a=v∈R?1by Jacobson’s Lemma.

    (3)(1).Asv∈R?1,thenu∈R?1.Sinceua=ak+1=av,it follows thata=ak+1v?1=u?1ak+1∈a2R∩Ra2.Therefore,a∈R#by Theorem 2.2.

    Note thata=u?1ak?1a2=a2ak?1v?1∈a2R∩Ra2.It follows from Theorem 2.2 thata#=u?1ak?1aak?1v?1=u?1a2k?1v?1.

    Corollary 2.8([5,Proposition8.23])Ifa∈Ris regular with an inner inversea?,then the following conditions are equivalent:

    (1)a∈R#.

    (2)u=a2a?+1?aa?∈R?1.

    (3)v=a?a2+1?a?a∈R?1.

    (4)u′=a+1?aa?∈R?1.

    (5)v′=a+1?a?a∈R?1.

    In this case,

    ProofIt is obvious by Jacobson’s Lemma and Theorem 2.7.

    3 The Group Inverse of Product paq

    Supposeais a regular element ofR.Our aim is to give necessary and sufficient conditions for the productt=paqto possess a group inverse.To do this we introduce the two elements

    We may now state:

    Theorem 3.1([43,Theorem1])Supposea∈Ris regular with an inner inversea?,u=aq paa?+1?aa?,v=a?aq pa+1?a?aandt=paq.Then the following are equivalent:

    If in additionRa=Rpa,then these are also equivalent to

    ProofWe first note that ifais regular thenaa?R=aR.

    (i)(ii).uR=Rimplies thataq paR=aa?(aq paa?+1?aa?)R=aa?uR=aa?R=aR.

    Conversely,ifaq pax=a,letα=axa?+1?aa?.Then

    (ii)(iii).Ifaq pax=a,letβ=a?ax+1?a?a,then

    Conversely,ifv R=Rthenaq paR=av R=aR.

    (ii)(iv).Clearly(ii)implies thataR=aq R.HencetR=paq R=paR=paq paR=(paq)(paq)R=t2R.

    Conversely,sinceaq R=aR,we have that(paq)(paq)R=paq Rimpliespaq paR=paR.Now by(iv)there existsp′such thata=p′pa.Therefore,pre-multiplication byp′yieldsaq paR=(p′pa)q paR=p′paR=aR.

    Remark 3.2([43,pp.141,Remarks])

    (1)By symmetry it follows that the following are equivalent:

    If in additionaR=aq Rthen these are also equivalent to

    (2)Ifpandqare invertible then the following are equivalent:

    and

    Combining(3.2)and(3.5),we have

    Corollary 3.3([43,Corollary1])The following are equivalent:

    (1)uis a unit.

    (2)Raq pa=Ra,aq paR=aR.

    (3)vis a unit.

    (4)t#exists andaR=aq R,Ra=R pa.

    Moreover

    where

    andaq pax=a=yaq pa.

    ProofTo computet#we note first thatua=aq pa=avand thus anda=u?1(aq pa)=(aq pa)v?1.Hencepaq=pu?1aq paq=pu?1p′(paq)(paq)ort=ht2,whereh=pu?1p′.Likewise,t2g=t,whereg=q′v?1q.

    From[22]we may conclude thatt#=htg=pu?1p′paq q′v?1qwhich shows that

    By(3.7)we also have the asymmetric forms

    The expressions foru?1andv?1follow from(3.3)and(3.4).

    Corollary 3.4([43,Corollary2])Ifpandqare invertible then the following are equivalent:

    (1)uis a unit.

    (2)Raq pa=Ra,aq paR=aR.

    (3)vis a unit.

    (4)t#exists.We may also setaq=s,pa=randt=r a?s.In addition,we could takep=r a?andq=a?s.We then have the following theorem.

    Theorem 3.5([43,Theorem2])Supposeais regular with an inner inversea?,aR=sR,Ra=Rrand

    Then the following are equivalent:

    and

    In which case,

    4 The Group Inverse of a Sum of Morphisms

    In this section,the group inverse of a sum of morphisms is investigated.

    Proposition 4.1([49,Proposition1])LetCbe an additive category.Suppose that?:X?→Xis a morphism ofCwith group inverse?#and thatη:X?→Xis a morphism ofCsuch that 1X+?#ηis invertible.Let

    and

    Then the following conditions are equivalent:

    (1)f=?+η?εhas a group inverse.

    (2)1X?γand 1X?δare invertible.

    (3)1X?γis left invertible and 1X?δis right invertible.

    In that case

    and

    ProofBy[11,Lemma 14.1],(1X+?#η)?1?#∈f{1,2}.Let

    Then

    andf?#=β?1??#.So=fα?#=f?#β=β?1??#βand

    and

    We have

    (which impliesfγ=0),

    and

    Now we are ready to show the equivalence of three conditions.

    (1)(2).First,we show that 1X??#?+f#f?#?is a right inverse of 1X?γ.Note that

    Multiplying the equality by?#?on the right,we obtain(1X?γ)f f#?#?=?#?.Since

    we obtain

    Next,we show that this right inverse is also a left inverse for 1X?γ.Note first that

    So,(1X??#?)γ=(1X??#?)η?#β=(1X??#?)(1X?β)and

    On the other hand,

    Therefore,

    Hence 1X?γis invertible and(1X?γ)?1=1X??#?+f#f?#?.Similarly,we have that 1X?δis invertible,and(1X?δ)?1=1X???#+??#f f#.

    (2)(3).Obvious.

    (3)(1).Letωdenote the left inverse of 1X?γandtthe right inverse of 1X?δ.Sincef(1X?δ)=and(1X?γ)f=,we have

    This means that the equationsf=f2xandf=y f2have solutionsx0=andy0=,respectively.Therefore,the group inversef#offexists andf#=y0f x0=by Theorem 2.2.

    From(1)(2),we know that 1X?γand 1X?δare invertible andω=(1X?γ)?1,t=(1X?δ)?1.Sof#=(1X?γ)?1α?#(1X?δ)?1.

    Remark 4.2([49,Remark1])The method for proving(3)(1)belongs to Hartwig(see[23]).

    Corollary 4.3([28,Proposition3])Ifa∈Rhas a group inversea#andj∈J(R),thena+jhas a group inverse if and only if(1?aa#)j(1+a#j)?1(1?a#a)=0.

    In that case,(a+j)#=(1?γ)?1(1+a#j)?1a#(1?δ)?1,in which

    ProofSincej∈J(R),the element 1+a#jis invertible.

    “”.By hypothesis,ε=0,sof=a+j.Since 1?γand 1?δare invertible,a+jhas a group inverse by Proposition 4.1.In that case,(a+j)#=(1?γ)?1(1+a#j)?1a#(1?δ)?1.

    “”.Letτ=(a+j)#.By[11,Lemma 14.1],τ∈ε{1},i.e.,ετε=εandε(1?τε)=0.Sinceε=(1?aa#)j(1+a#j)?1(1?a#a)∈J(R),1?τεis invertible andε=0.

    5 The Group Inverse of the Sum of Two Group Invertible Elements

    In this section,we assume thatRis a Dedekind-finite ring.The group inverses of sum and difference of two group invertible elements are presented under different conditions.

    Theorem 5.1([52,Theorem3.1])Leta,b∈R#and 2∈R?1.Ifabb#=baa#,then

    (1)a+b∈R#and(a+b)#=a#+b#.

    (2)a?b∈R#and(a?b)#=a#?b#?ba#a#+ab#b#.

    ProofSinceabb#=baa#,we haveabb#(b#aa#)abb#=ab#abb#=ab#baa#=abb#.Sob#aa#is an inner inverse ofabb#.Then we have

    SinceRis a Dedekind-finite ring,(1+abb#?b#abb#)(1+b#aa#?b#abb#)=1.From Theorem 2.7,we know thatabb#∈R#.Sinceb#(baa#)2=b#babb#=b#bbaa#=baa#,we have

    Similarly,(baa#)#=a#bb#.Soa#bb#=b#aa#.Furthermore,aa#bb#=ab#aa#=abb#b#aa#=b#aa#abb#=b#abb#=b#baa#.In addition,

    Similarly,aa#ba#=ba#andaa#b#a=b#a.We know thatabaa#=abb#baa#=baa#abb#=babb#=bbaa#.Henceaba#=bba#.Sincea#b#aa#=a#bb#b#aa#=b#aa#a#bb#=b#a#bb#=b#b#aa#,a#b#a=b#b#a.Similarly,we can getbab#=aab#andb#a#b=a#a#b.From the above discussion,we have

    (1)Letx=a#+b#.By equalities(5.10)-(5.12),

    then

    and

    So(a+b)x=x(a+b).By equalities(5.10)and(5.11),we have

    and

    and

    So(a?b)y=y(a?b).By equalities(5.11)and(5.15),we have

    Thus,

    Since

    we have

    Therefore,(a?b)#=a#?b#?ba#a#+ab#b#.

    Next,we present the expressions of(a+b)#and(a?b)#under the conditionbb#a=aa#b.

    Theorem 5.2([52,Theorem3.2])Leta,b∈R#and 2∈R?1.Ifbb#a=aa#b,then

    (1)a+b∈R#and(a+b)#=a#+b#.

    (2)a?b∈R#and(a?b)#=a#?b#?a#a#b+b#b#a.

    ProofSincebb#a(aa#b#)bb#a=bb#ab#a=aa#bb#a=bb#a,aa#b#is an inner inverse ofbb#a.Sincebb#a=aa#b,we have

    SinceRis a Dedekind-finite ring,(1+aa#b#?bb#ab#)(1+bb#a?bb#ab#)=1.So 1+bb#a?bb#ab#∈R?1.From Theorem 2.7,we know thatbb#a∈R#.Sincebb#aa#a=bb#a=aa#b,(bb#a)#aa#=aa#b#.Then we have

    Hence(bb#a)#=aa#b#.Similarly,(aa#b)#=bb#a#.Therefore,bb#a#=aa#b#.We have

    In addition,

    Sincebb#ab=bb#aaa#b=aa#bbb#a=aa#ba=bb#aa,b#ab=b#aa.Similarly,a#ba=a#bb.Sincebb#a#b#=bb#a#aa#b#=aa#b#bb#a#=aa#b#a#=bb#a#a#,ba#b#=ba#a#.Hence,b#a#b#=b#a#a#.Similarly,ab#a#=ab#b#anda#b#a#=a#b#b#.To sum up,we have the following equalities:

    (1)Letx=a#+b#?.By equalities(5.16),(5.18),and(5.19),we obtain that

    and

    So(a+b)x=x(a+b).By equalities(5.16)and(5.18),we have

    and

    (2)Lety=a#?b#?a#a#b+b#b#a.By equalities(5.19)-(5.21),then

    and

    Hence,(a?b)y=y(a?b).Sincea#b#a=a#aa#b#a=a#bb#a#a,by equalities(5.16),(5.17),(5.18)and(5.20),we obtain

    By equalities(5.16)and(5.21),we have

    Thus(a?b)#=a#?b#?a#a#b+b#b#a.

    According to the above two theorems,we have the following corollary.

    Corollary 5.3([52,Corollary3.3])Leta,b∈R#and 2∈R?1.Ifabb#=baa#andbb#a=aa#b,then

    (1)a+b∈R#and(a+b)#=a#+b#?.

    (2)a?b∈R#and(a?b)#=a#?b#.

    ProofBy the proof of the above two theorems,we have

    From Theorem 5.1,we obtain

    and

    6 The Group Inverse of a Product

    Mary and Patr′?cio[34]characterized the existence of the group inverse of a product of two regular elements by an unit and gave the corresponding expression.Leta,bbe regular elements inR,with reflexive inversesa+,b+,respectively.Let also which we will assume to be regular inR.Note that the regularity ofwdoes not depend on the choices ofa+andb+.That is to say,ifwis regular for a particular choice ofa+and ofb+,then it must be regular for all choices ofa+andb+.This can be easily proved by noting thatwbeing regular is equivalent to the regularity of the matrix,using[38],which in turn is equivalent to(1?bb=)(1?a=a)being regular,for any other choices of inner inversesa=andb=ofaandb.Consider the matrixAQwithA=.It is well known thatM#exists if and only if(ab)#exists,using[25].Furthermore,the(1,1)entry ofM#equals(ab)#.Also,M#exists if and only ifU=AQ+I?AA?is invertible,see[43,37],in which case(AQ)#=U?2(AQ).

    AsAQ+I?AA?=A(Q?A?)+IthenAQ+I?AA?is invertible if and only if(Q?A?)A+I=QA+I?A?Ais invertible,using Jacobson’s Lemma,which in turn means(QA)#exists.Therefore,by considering the matrixW=QA=then(ab)#exists if and only ifWis group invertible.Using[36],the matrixWis group invertible if and only if

    is a unit.We have,hence,the equivalence(ab)#exists if and only if 1?a+a+ba+(1?ww?)(1?bb+)is a unit.Using the expression presented in[36]does not give a tractable algorithm to actually compute(ab)#.We will,therefore,pursue a different strategy and compute the(1,1)entry ofM#.Recall that forM=AQandQinvertible,the group inverse ofMexists if and only ifU=AQ+I?AA?is invertible.For,there existsA?for which

    by using[38].The matrixUthen becomes

    Multiplication on the right byK=gives

    where

    as(1?bb+)b=0.We are left with showing when isGinvertible.We do so using the Schur complement on the(1,1)entry.This Schur complement equals

    This gives,and as previously shown,(ab)#exists if and only ifz=1?a+a+ba+(1?ww?)(1?bb+)is a unit.

    As a side note,we construct another unit associated withz,namely we may show thatz=1?a+a+ba+(1?ww?)(1?bb+)is a unit if and only ifz′=1?aa++ab?a(1?ww?)(1?bb+)a+is a unit.This follows by the sequence of identities(1?ww?)(1?bb+)=(1?ww?)(1?bb+)(1?a+a+a+a)=(1?ww?)(1?bb+)a+atogether with Jacobson’s Lemma.

    We remark that given a reflexive inversew+ofw,the element?w=(1?a+a)w+(1?bb+)is an idempotent reflexive inverse ofw.As suchzandz′simplify to 1?a+a+ba+1?bb+?w?wand 1+ab?abb+a+?aw?wa+,respectively.

    We know,using[37,Corollary 3.3(4)],that(AQ)#exists if and only ifUis invertible,in which case(AQ)#=U?2(AQ).The matricesUandGare equivalent,and we are able to relate their inverses by means of the matrixK.Indeed,sinceG=U K,thenU?1=K G?1.Firstly,we need to compute the inverse ofG,for which we will use the following known result:

    Lemma 6.1Letx,y,z∈R.Thenis invertible if and only ifz?xyis invertible.In this case

    whereζ=z?xyis the Schur complement.

    Our purpose is to derive an expression for(ab)#,which equals the(1,1)entry ofM#.The(1,1)entry ofM#is obtained by multiplying the first row ofU?2by the first column ofAQ,which is.So,in fact we just need the(1,1)entry ofU?2,which is then multiplied on the right byabto give(ab)#.

    We recall thatG=U K,where,which givesU?1=K G?1andU?2=K G?1K G?1.Pre-multiplication withKdoes not affect the first row,and so we just need the(1,1)element ofG?1K G?1.Calculations show that

    We will need the simplification

    from which we obtain

    Indeed,αab=aa+ab?bab+2(1?ww?)(1?bb+)a+abwhose last summand can be expressed as

    and thereforeαab=a+ab?bab.Therefore,

    from which we obtain the general formula

    From 1?a+a=z?1?z?1a+awe obtain,by post-multiplying byb,

    which implies

    Now,from(6.22)we havez?1b=b+z?1a+ab?z?1babwhich implies,using(6.23),that

    which in turns delivers

    Using(6.25)and(6.26),together with(ab)#=2az?1b?2(az?1b)2+az?2b,we write the idempotent(ab)#(ab)as

    Using(6.24),this equals toaz?1band thereforeaz?1bis an idempotent,the unit of the group generated byab.This simplifies the expression of(ab)#to

    It comes with no surprise that the expression of(ab)#is of the formaX b,for a suitableX.We have,from the above,our main result:

    Theorem 6.2([34,Theorem2.2])Leta,bbe regular elements inRwith reflexive inversesa+andb+,respectively.Assume,also,thatw=(1?bb+)(1?a+a)is regular.Then(ab)#exists if and only ifz=1?a+a+ba+(1?ww?)(1?bb+)is a unit.In this case,

    7 The Group Inverse of Block Matrices

    In this section,we introduce group inverses of block matrices.At first,we introduce two useful lemmas.

    Lemma 7.1([9,Lemma1.1])Leta∈Rbe regular,b∈R,and assume that there exists a reflexive inversea+such thata+b=ba+=0.Ifa+bis regular thenbis regular andb?=(a+b)?is an inner inverse ofb,for any(a+b)?.

    Lemma 7.2([9,Lemma1.2])LetP,Q,A∈R2×2.IfM=P AQwherePandQare units andAis regular,then the group inverse ofMexists if and only ifS=AQP+I?AA?is a unit ofR2×2,independent of the choice ofA?,or equivalently,T=QP A+I?A?Ais a unit,in which case

    ProofIt is obvious by Corollary 3.3.

    From now on we assume thatd∈Ris regular and thatd+is a fixed but arbitrary reflexive inverse ofd.Let us introduce the notation

    With this notation,we have the following decomposition of the matrixM∈R2×2

    In the notation of(7.27),we assume bothebandcfto be regular elements inR.Set

    for fixed but arbitrary(eb)+and(cf)+.

    Lemma 7.3([9,Lemma2.1])Lete,f,s,p,qandwbe as in(7.27)and(7.29).We have thatis regular inR2×2if and only ifwis regular inR.In this case,

    is an inner inverse ofAand

    ProofLet us first observe that the following relations hold:

    Now,consider

    Hence,Ais regular if and only ifis regular.Usingw=qsp,we can write

    Conversely,assume thatwis regular.LetWe claim thatXis an inner inverse ofIndeed,

    In view of(7.32)we conclude that an inner inverse ofAis given by(7.30)and,thus,Ais regular.It remains to prove(7.31),but the proof of this is straightforward.

    We can now formulate our main result.It is required thatdhas the group inverse.Accordingly,we can setd+=d#.In this case,in the notation of(7.27)we havee=1?dd#=1?d#d=f.It follows thatde=ed#=0.Moreoverd+eis a unit ofRand(d+e)?1=d#+e.

    Theorem 7.4([9,Theorem2.2])Letdbe group invertible.With the notation(7.27)and under the assumptions of(7.29),withd+replaced byd#,ifwis regular inRthen the group inverse of the matrixexists if and only if

    is a unit ofR.In this case,,where

    with

    ProofWriteM=P AQas in(7.28).By Lemma 7.2,the group inverse ofMexists if and only ifS=AQP+I?AA?is a unit,independent of the choice ofA?.For

    the inner inverse provided in Lemma 7.3,we have

    Now,let us introduce the matrixF=.We have

    where

    Since[d#b(eb)+e]2=0,it follows that 1+d#b(eb)+eis a unit ofR.Moreover,d+eis a unit becausedhas group inverse.Thus,his a unit and

    On account that the(2,2)entry of the matrixS Fis a unit,it follows thatS Fis a unit ofR2×2if and only if the Schur complement is a unit ofR.Therefore,the matrixSis a unit if and only if

    is a unit ofR.From(7.38)we getgb=eb+d#bp.Further,using the last relation of(7.37)we obtain

    By substituting this expression in(7.39)we conclude thatuhas the form given in(7.33).

    By Lemma 7.2,M#=P S?2AQ.From(7.36)it follows that

    Next,we compute

    the last equality is due to the fact thateg=e. In the sequel,we denoteα=u?1(1?ww?)qandβ=αcd#+u?1ce.From(7.38),(7.37)and(7.39)it follows that

    respectively.In deriving the last equality we have multiplied on the left expression(7.39)byu?1.Then

    Using(7.40)and(7.42)we obtain

    where

    From(7.38)it follows thatg2b=g b?d#(b?d#bp).Using this latter expression and(7.41)we get

    By substituting this into(7.43),usingu?1xd#=?αc(d#)2,and regrouping terms we get(7.34).

    Next,some applications are indicated.We begin with the case thatdis a unit ofR.

    Corollary 7.5([9,Corollary3.1])LetM=,wheredis a unit ofR,and lets=a?cd?1bbe regular.Then the group inverse ofMexists if and only if

    is a unit ofR.In this case,,where

    with

    In addition,letsbe group invertible.Denotet=1?ss#.Then the following statements are equivalent:

    (1)M#exists.

    (2)u=s+t(1+tcd?2b)is a unit ofR.

    (3)1+tcd?2bis a unit ofR.

    (4)d2+btcis a unit ofR.

    ProofNote thatdis a unit,we havee=1?dd#=0 and sop=q=1.Thusw=s.The rest of the proof follows from Theorem 7.4.

    The next corollary provides a compact representation for the group inverse ofM.

    Corollary 7.6([9,Corollary3.2])LetM=,whereb,cand

    are regular elements inR.Then the group inverse ofMexists if and only if

    is a unit ofR.In this case,,where

    withα=u?1(1?ww?)(1?cc+)andδ=α+u?1(a+1?b+b).

    ProofThis result follows from Theorem 7.4 since,in this case,d=0 and soe=1,s=a,p=1?b+b,q=1?cc+andw=(1?cc+)a(1?b+b).

    8 The Group Inverse of a Companion Matrix

    One of the fundamental building block in the theory and applications of matrices,is the lower companion matrix associated with a monic polynomialf(x)=p0+p1x+···+pn?1xn?1+xn.It is defined by

    and is the simplest example of ann×nnon-derogatory matrix.Throughout this sectionnwill be fixed.

    It was shown in[25]that over a ring,L#withn≥2,exists exactly when there exist solutionsxandyin the ringR,such that(i)

    (ii)

    (iii)

    In which caseL#has the form

    The casen=2 is included in this if we setp2=1,y2=yand dropIn?2from(8.48).This gives

    Consider then×ncompanion matrixoverR,wherea=a0andk=[a1,a2,...,an?1]T.

    Theorem 8.1([43,Theorem3])The following are equivalent:

    (1)The group inverseL#ofLexists.

    (2)ais regular andh=a?(1?aa?)a1is invertible.

    (3)ais regular andk=a?a1(1?a?a)is invertible.

    ProofFor convenience,we seta1=banda2=c.Consider the companion matrixLand its factorization

    BecausePandQare invertible,it is necessary in order forL#to exist,thatAand henceabe regular.Let us now assume thatais a regular and apply Corollary 3.4 to simplify the conditions forL#to exist,and then use(3.6)to compute the actual group inverse.From(8.48)we recall that it suffices to computeandIn order to construct the matricesUandV,we must consider

    in whiche=1?aa?.Similarly

    wheref=1?a?a.Next we define

    ThenU=F W1andV=F W2,whereWi=W(Xi)and

    We note that ifn=2,thenU=X1andV=X2.As such let us first turn to the case wheren>2.We shall need the following facts:

    Using these identities we see that

    and

    Let us now apply these to the three formulae forL#.

    Case(I)L#=PU?2AQ.Now

    From(8.53)we thus see that forn>2,

    Likewise

    Case(II)L#=P AV?2Q.Now

    which gives

    Likewise

    Case(III)L#=P U?1AV?1Q.

    In this case,

    and

    Thus equating the three cases we arrive forn>2 at the identities

    This shows that we must have

    In order to verify these we need the explicit expressions for.This we now pursue.

    From(8.51)we may factor theXias

    whereh=a?eb,and by symmetry

    wherek=a?bf.

    This shows thatUandVare invertible inRn×nwithn≥2,exactly whenh=a?ebandk=a?bfare respectively invertible inR.Again this is independent of the choice ofa?.Inverting theXiwe see that

    Likewise

    Thus

    Let us now check these identities.Firsthf=?ebf=ek,and thus

    which ensures thatα1=α2.Next,we observe thatf k?1a=h?1ea=0,and hence

    which says that

    The remaining identity follows by symmetry,i.e.,γ1αβ2=γ1β1.In conclusion,let us compute the actual expression forL#.

    Theorem 8.2([43,Theorem4])SupposeL=with.Define the constants

    IfL#exists then the constantsxandyfrom(8.48)are given by

    ProofAll that remains is to prove the case wheren=2.In this case,we again only need computexandyafter which we setx1=y?bxandy1=1?by.It follows from(8.49)-(8.50)thatU=X1andV=X2.Moreover the values ofandchange to

    This gives

    Likewise

    completing the proof.

    9 EP Elements

    Recall thatA∈Cn×nis called EP[45]ifR(A)=R(A*).In this case,A=whereUis a unitary matrix andDis invertible or zero.Hartwig[21]introduced EP elements in rings with involution.Throughout this section,Ris a*-ring.

    Definition 9.1Leta∈Rbe Moore-Penrose invertible and group invertible.Ifa?=a#,thenais called an EP element.

    Proposition 9.2([21,Proposition25])Leta∈R.Then the following statements are equivalent:

    (1)ais EP.

    (2)a?exists andaa?=a?a.

    (3)(3)a#exists and(aa#)*=aa#.

    Proof(1)(2).Sinceais EP,we havea?=a#.Therefore,aa?=aa#=a#a=a?a.

    (2)(3).Becauseaa?=a?a,ais group invertible anda#=a?.So,(aa#)*=(aa?)*=aa?=aa#.

    (3)(1).Since(aa#)*=aa#andaa#=a#a,we have(a#a)*=a#a.Therefore,ais Moore-Penrose invertible anda?=a#.That is,ais EP.

    The following theorem coincides with[39,Proposition 2].For convenience,we rewrite it as follows.

    Theorem 9.3([39,Proposition2])Leta∈R.Then the following statements are equivalent:

    (1)ais EP.

    (2)a?exists andaR=a*R.

    (3)a#exists andaR=a*R.

    Proof(1)(2).By Proposition 9.2,we haveaa?=a?a,which impliesaa?R=a?aR.Sinceaa?a=aand(a?a)*=a?a,we haveaR=aa?Randa*R=a?aR.Therefore,aR=a*R.

    (2)(3).Sinceaa?R=aR=a*R,aa?a*=a*which impliesa2a?=a.BecauseaR=a*R=a?aR,we havea?a2=a.From Theorem 2.2,a#exists.

    (3)(1).Sincea#exists andaR=a*R,aa#R=aR=a*R=(aa#)*Rwhich implies(aa#)*=aa#(aa#)*.Therefore,aa#=(aa#)*.Thenais EP by Proposition 9.2.

    By the above theorem,we can easily get the following corollary,which shows that the notion of an EP element inRis really the generalization of an EP matrix.

    Corollary 9.4LetRbe a*-regular ring anda∈R.Thenais EP if and only ifaR=a*R.

    The following theorem characterizes an EP element by units.

    Theorem 9.5([39,Theorem4])Ifa∈Ris regular with an inner inversea?,then the following are equivalent and independent from the choice ofa?:

    (1)ais EP.

    (2)aa*aa?+1?aa?anda2aa?+1?aa?are invertible and

    (3)a?aa*a+1?a?aanda?aa2+1?a?aare invertible and

    Moreover,ifu=a2aa?+1?aa?,v=a?aa2+1?a?a,=aa*aa?+1?aa?and?v=a?aa*a+1?a?athen

    ProofFollows directly from the results in[35,43]if we can replacea2a?+1?aa?bya2aa?+1?aa?,and analogouslya?a2+1?a?abya?aa2+1?a?a.Indeed,a2a?+1?aa?is invertible if and only if

    is invertible.Then

    The remaining fact to prove is thata#=a?=a(a2)?a(a2)?a.Indeed,ifa#exists thena2is regular and

    since

    and

    Therefore,

    and

    Remark 9.6([39,Remark])Supposea∈Ris regular with an inner inversea?.Thenais EP if and only if

    and

    for any choice ofa?,since

    The following property can be considered as the generalization of a result of Katz,and of its extension to Dedekind-finite rings.Indeed,Katz proved,see[2,p.166,ex.18],that for any square complex matrixA,A?=A#if and only if there is a matrixYsuch thatA*=Y A.His result can be lifted up to the following:

    Proposition 9.7([39,Fact5])LetRbe a Dedekind-finite ring anda?exists.Thena*=ya,for somey∈R,if and only ifais EP.

    ProofIfa?exists,then also(a?)*exists and equals(a*)?.Sincea*=y athena=a*y*and hence.Moreover,aR~=a*Rsinceφ:aR→a*R,withφ(ax)=a?ax,is aR-module isomorphism.Then,alsoaa?R~=a?aR,which impliesaa?R=a?aR,oraR=a*Rby using[24,Theorem 1].By Theorem 9.3,a#exists anda?=a#.

    Conversely,ifa#exists anda?=a#thena*=(aa?a)*=a*aa?=a*aa#=a*a#a.It suffices to takey=a*a#.

    The following theorem shows that the equalityaR=a*Rin Theorem 9.3 can be replaced by the weaker inclusionsora*RaR.

    Theorem 9.8([48,Theorem3.9])Leta∈R.Then the following statements are equivalent:

    (1)ais EP.

    (2)a∈R#and.

    (3)a∈R#and.

    Proof(1)(2).It is obvious by Theorem 9.3.

    (2)(1).Bywe havea=a*rfor somer∈R,thena=(aa#a)*r=(a#a)*a*r=(a#a)*a.Thusa#a=aa#=(a#a)*aa#=(a#a)*a#a,which gives(a#a)*=a#a.Therefore,ais EP.

    (1)(3).It is similar to the proof of(1)(2).

    Recall that an infinite matrixMis said to be bi-finite if it is both row-finite and column-finite.

    Example 9.9([48,Example4.6])LetRbe the ring of all bi-finite real matrices with transpose as involution and letei,jbe the matrix inRwith 1 in the(i,j)entry and 0 elsewhere.LetA=andB=A*,nowAB,B A=I.SoA?=BandA?=A?B A=B2A.It is easy to check thatB2is not left invertible andAis not EP(sinceAB/=B A).In addition,Ais not group invertible(ifA∈R#,thenAA#=A#A=B AA#A=B A=I;thus,Ais invertible,which is not possible.).This example also shows that the equalityaR=a*Rin the equivalence(ais EP=a*R)cannot be replaced by the inclusionsora*RaR.

    Theorem 9.10([48,Theorem4.4])Leta∈R?.Then the following statements are equivalent:

    (1)ais EP.

    (2)There exists a unitu∈Rsuch thata?=ua.

    (3)There exists a left invertible elementv∈Rsuch thata?=va.

    Proof(1)(2).Ifais EP,thena∈R?anda?=a#.Letu=(a#)2+1?aa#.Sinceu(a2+1?aa#)=(a2+1?aa#)u=1 we get thatuis a unit.Furthermore,a=a#=a?.

    (2)(3).It is clear.

    (3)(1).Suppose that there exists a left invertible elementv∈Rsuch thata?=v a.Then 1=tvfor somet∈Randta?=tv a=a.ThusRa?RaandSinceRa?=Ra*,we deduce thatRa*=Ra,that isais an EP element.

    In the following theorem,we show that an EP element in a ring can be described by three equations.

    Theorem 9.11([48,Theorem2.2])Leta∈R.Thenais EP if and only if there existsx∈Rsuch that

    ProofSupposeais EP.Letx=a?=a#.Then(xa)*=(a?a)*=a?a=xa xa2=a#a2=aandax2=a(a#)2=a#=x.Conversely,if there existsx∈Rsuch that(xa)*=xa,xa2=aandax2=x,thena(x2a)=(ax2)a=xa=x(xa2)=(x2a)a,a(x2a)a=(xa)a=xa2=a,and(x2a)a(x2a)=(xa)(x2a)=x(ax2)a=x2a.These three equalities prove thata∈R#,a#=x2a,andaa#=xa.By Proposition 9.2,we getais EP.

    We will characterize whena∈Ris EP by another three equations.

    Theorem 9.12([48,Theorem2.11])Leta∈R.Thenais EP if and only if there existsx∈Rsuch that

    ProofIfais EP,by takingx=a?=a#,we get the above three equations.Conversely,assume that there existsx∈Rsuch that the above three equations are satisfied.We shall show thatais EP anda#=ax2.Sinceax=xa,we geta(ax2)=(ax2)a,but in addition,a(ax2)=(a2x)x=ax,which leads toa(ax2)a=a2x=aand(ax2)a(ax2)=(ax2)ax=(a2x)x2=ax2.Sinceaa#=a2x2=axis Hermitian,the conclusion follows from Proposition 9.2.

    The following theorem gives an equivalent characterization of an EP element.

    Theorem 9.13([3,Theorem2.1])Leta∈R.Then the following statements are equivalent:

    (1)There exists a unique projectionpsuch thata+p∈R?1andap=pa=0.

    (2)ais EP.

    Proof(1)(2).Sinceap=0 andp2=p,we get(a+p)p=p.The invertibility ofa+pentailsp=(a+p)?1p,and in a similar way we getp=p(a+p)?1.Now,we claim

    In fact:

    This proves the claim.Analogously we can prove[(a+p)?1?p]a=1?p.Now,we are going to prove thata?=(a+p)?1?p.We have

    and

    Evidently[(a+p)?1?p]a=a[(a+p)?1?p]=1?pis self-adjoint.This proves thata?=(a+p)?1?p.Sinceaa?=1?p=a?a,we getais EP.

    (2)(1).Letpbe the projection defined byp=1?aa?.Evidently,we haveap=pa=0.Now,pa?=pa?aa?=paa?a?=0,and similarlya?p=0 holds.Let us provea+p∈R?1.We have(a+p)(a?+p)=aa?+ap+pa?+p=aa?+p=1 and analogously we have also(a?+p)(a+p)=1.Now,we shall prove the uniqueness.Assume thatqis another projection such thataq=q a=0 anda+q∈R?1.The computations made in(1)(2)show thata?=(a+p)?1?p=(a+q)?1?q.Premultiplying byawe geta(a+p)?1=a(a+q)?1.Now,9.1 impliesa(a+p)?1=1?panda(a+q)?1=1?q.Therefore,1?p=1?qand the uniqueness is proved.

    Recall thata∈Ris called*-strongly regular if there exist a projectionpandu∈R?1such thata=pu=up.The following theorem can be seen as an application of Theorem 9.13.

    Theorem 9.14([26,Theorem3.3])Leta∈R.Then a is EP if and only if a is*-strongly regular.

    ProofSuppose thataisE P.Then,by Theorem 9.13,there exists a unique projectionpsuch thata+p∈R?1andap=pa=0.Writea+p=u∈R?1.Thena=a(1?p)=u(1?p)=(1?p)u.Therefore,ais*-strongly regular.

    Conversely,assume thatais*-strongly regular.Then there exist a projectionpandu∈R?1such thata=pu=up.Since(a+1?p)(u?1p+1?p)=(u?1p+1?p)(a+1?p)=1,a+1?p∈R?1.Sincea(1?p)=(1?p)a=0,it follows thatais EP by Theorem 9.13.

    10 Drazin Inverses of Complex Matrices

    In this section,we first introduce the Drazin inverse of a complex matrix and show its existence and uniqueness.Then we present a matrix decomposition related to the Drazin inverse.

    Definition 10.1([2,Chapter4,pp.145])LetA∈Cn×n.ThenX∈Cn×nis called the Drazin inverse ofAif there exists a positive integerksuch that

    We next see the existence and uniqueness of such anX.

    Theorem 10.2([2,pp.145,Theorem7])LetA∈Cn×n.ThenAhas at most one Drazin inverse.

    ProofLetX,Ybe Drazin inverses ofA,withX Am+1=AmandY An+1=An,respectively.SetE=AX=X A,F=AY=Y A.It is clear thatE2=E,F2=F.Thus fork=max{m,n},we have

    ThenE=Fand

    meaning that the Drazin inverse is unique.

    In fact,the existence of the Drazin inverse of a complex matrix is given by the following Theorems 10.3–10.6.Customarily,the Drazin inverse ofAis denoted byAD.The smallest positive integer satisfying the equations(10.67)is called the Drazin index ofA,which is consistent with the index of a complex matrix of[11].For convenience,we still denote the Drazin index ofAby ind(A).If ind(A)=1,thenAis said to be group invertible.

    Theorem 10.3([2,pp.146,Theorem8])LetA=,whereDis invertible andNis nilpotent.ThenAD=.

    Proof LetX=.It is easy to check thatXsatisfies the equationsX Ak+1=Ak,for some positive integerk X=AX2,AX=X A.Therefore.

    Theorem 10.4([2,pp.145,Theorem7])LetA∈Cn×nand ind(A)=k.Then there exists a polynomialq(x)such thatAD=Al(q(A))l+1for anyl≥k.

    ProofLetA=,whereDis invertible andNis nilpotent.SinceDis invertible,there exists a polynomialq(x)such thatD?1=q(D).Then for anyl≥k,we have

    It is easy to checkAl(q(A))l+1==AD.

    Theorem 10.5([2,pp.148,Ex.39],seealso[16,Theorem5])LetA∈Cn×nand ind(A)=k.Then for(A2l+1)(1)∈A2l+1{1},AD=Al(A2l+1)(1)Alfor anyl≥k.In particular,AD=Al(A2l+1)?Al.

    ProofLetA=P,whereDis invertible andNis nilpotent.ThenA2l+1=for anyl≥k.Let(A2l+1)(1)∈A2l+1{1}.Then(A2l+1)(1)=for someX1,X2andX3.Hence it is easy to obtainAl(A2l+1)(1)Al=AD.

    Theorem 10.6([16])LetA∈Cn×n.We perform a sequence of full rank decompositions:

    Then there exists a positive integerksuch thatHk Gk=0 orHk Gkis invertible.In this case,

    ProofIfHi Giis ap×pmatrix and has rankq

    Letkbe the smallest positive integer such thatHk Gk=0 orHk Gkis invertible.

    (1)Assume thatHk Gkis invertible.IfGk∈Cp×r,Hk∈Cr×p,then rank(Hk?1Gk?1)=rank(Gk Hk)=raccording to thatHk?1Gk?1=Gk Hkis a full rank decomposition.SinceG1(···Gk x)=02(···Gk x)=0=0,we have thatG1···Gkis of full column rank.Similarly,we can obtainHk···H1is of full row rank.HenceG1···Gk(Hk Gk)is of full column rank.Since

    is a full rank decomposition,we have rank(Ak)=rank(G1···Gk)=r.Also,

    is a full rank decomposition,we have rank(Ak+1)=r.Sincekis the smallest positive integer,we have ind(A)=k.LetX=G1···Gk(Hk Gk)?(k+1)Hk···H1.ThenX=AD.

    (2)Assume thatHk Gk=0.ThenAk+1=0,it follows thatAD=0.

    11 Drazin Inverses in Semigroups or Rings

    In this section,we first give the definition of the Drazin inverse in semigroups or rings.Then we present some basic properties of the Drazin inverse.Finally,we study the core-nilpotent decomposition.

    Definition 11.1[19]Leta,x∈S.Thenxis called the Drazin inverse ofaif there exists a positive integerksuch that

    The smallest positive integerksatisfying the above equations is called the Drazin index ofa,denoted by ind(a).If ind(a)=1,thenais called group invertible.

    The next theorem shows that the Drazin inverse of an element in semigroups or rings is unique if it exists.The proof is similar to that of Theorem 10.2,here we omit it.

    Theorem 11.2([19,Theorem1])Leta∈S.Thenahas at most one Drazin inverse inS.

    If the Drazin inverse ofaexists,we denote the unique Drazin inverse ofabyaD.The notationaπmeans 1?aaDfor any Drazin invertible elementa∈S.

    Theorem 11.3([19,Theorem4])Leta∈S.Thenais Drazin invertible if and only if there existx,y∈Sand a positive integerkand we haveak=ak+1x=y ak+1.In this case,

    ProofIt is trivial to prove the necessity.Conversely,suppose that there existx,y∈Sand a positive integerkand we haveak=ak+1x=y ak+1.Then,we haveak x=y ak+1x=y ak,whence,by induction,ak xm=y mak(m=1,2,···).Thus our choicez=ak xk+1can equivalently be writtenz=yk+1ak,and we have

    by symmetry.By another induction,ak=am+k xm(m=1,2,···)and so

    And

    Hencezis the Drazin inverse ofa.In this case,aD=ak xk+1=y k+1ak,and ind(a)≤k.

    Theorem 11.4([20,Theorem2.2])Leta1,a2,d∈S.Ifa1anda2are both Drazin invertible,thenda1=a2dimplies.

    ProofWritingyi=(i=1,2),we haveai yi=yi ai,yi ai yi=yi,andfor suitablek∈N+.Since for anyj=2,3,···,it follows thatda1=a2dimplies.Then we find

    Dually,interchanginga1witha2andy1withy2while also reversing the order of terms in each monomial,we have

    Hencey2d=y2(a2d)y1=y2(da1)y1=dy1,as required.

    The next two theorems show that the relationships between Drazin invertibility ofaand Drazin invertibility(group invertibility)ofan.

    Theorem 11.5([19,Theorem2])Leta∈Sandn≥1 be a positive integer.ThenaDexists if and only if(an)Dexists.In this case,

    ProofSuppose thataD=xwith ind(a)=k.Then for arbitrary positive integerj,we haveak=ak+1x=a(ak+1x)x=ak+2x2=···=ak+j xjandx=x2a=x(x2a)a=x3a2=···=xj+1aj.Letqbe the unique positive integer satisfying 0≤nq?k

    Thus(an)D=xn=(aD)nwith ind(an)≤q.Finally ind(an)

    Conversely,suppose(an)D=ywith ind(an)=m.Then we havey(an)m+1=(an)m,an y2=y,an y=yan.By induction,we gety=y i+1ainandamn+1=a(an)m=a(an)m+1y=an+1(an)m+1y2=···=ain+1(an)m+1yi+1for arbitrary positive integeri.

    Setx=an?1y.In what follows,we proveaD=x.

    HenceaDexists with ind(a)≤mn.

    Theorem 11.6([30,Proposition4.5])Leta∈S.ThenaDexists if and only if there exists a positive integern≥1 such that(an)#exists.In this case,

    ProofSuppose thatx=aDwith ind(a)=n.Sety=xn.Then we have

    Therefore(an)#=y=(aD)n.

    On the contrary.Letx=an?1(an)#.We prove thatxis the Drazin inverse ofa.In fact,

    HenceaDexists andaD=an?1(an)#.

    The core-nilpotent decomposition in a ring was introduced by Patr′?cio and Puystjens[39].

    Definition 11.7([39,Definition9])Leta∈R.Then the suma=a1+a2is called the core-nilpotent decomposition ofa,if the following conditions hold:

    (1)a1is group invertible.

    (3)a1a2=a2a1=0.

    Wherea1is called the core part ofaanda2is called the nilpotent part ofa.

    Theorem 11.8([39,Lemma8])Leta∈R.ThenaDexists if and only ifahas a core-nilpotent decomposition.

    ProofSuppose thataDexists with ind(a)=k.Seta1=aaD aanda2=a?aaD a=(1?aaD)a.Then we havea1a2=(aaD a)(1?aaD)a=(aaD a?aaD a2aD)a=0 anda2a1=(1?aaD)a(aaD a)=a2aD a?aaD a2aD a=0.Hencea1a2=a2a1=0.By induction,we obtain=((1?aaD)a)k=(1?aaD)ak=0.Next,we prove thatexists.SinceaD a1=aD(aaD a)=(aaD a)aD=a1aD,a1(aD)2=aaD a(aD)2=aDandaD(a1)2=aD(aaD a)2=a4(aD)3=aaD a=a1,we haveexists with=aD.

    Conversely,Leta=a1+a2be core-nilpotent decomposition ofa.Then there exists a positive integerksuch thatexists,=0 anda1a2=a2a1=0.By induction,ak=.Then,decompositions and=.HenceaDexists withaD=.

    Remark 11.9[39]The core-nilpotent decomposition is unique.In fact,leta∈R.Suppose thata=a1+a2anda=b1+b2are the core-nilpotent decompositions ofa.By Theorem 11.8,we know that.Thereforea2=a?a1=a?b1=b2,the uniqueness of core-nilpotent decomposition is proved.

    12 Drazin Invertibility in Two Semigroups of a Ring

    In this section,e∈Ris an idempotent.we denoteeRe+1?e={exe+1?e:x∈R}.It should be stressed that this set is a semigroup.The subrings of the formeReare called corner rings.We first start with elementary lemmas which will be useful in proving our results.

    Lemma 12.1([40,Theorem1])Lete∈Rbe an idempotent.Then for allx∈R,the following statements hold:

    (1)exe+1?eis invertible inRif and only ifexeis invertible in the ringeRe.In this case,

    and

    (2)exe+1?eis regular inRif and only ifexeis regular in the ringeRe.In this case,

    and

    (3)exe+1?eis group invertible inRif and only ifexeis group invertible in the ringeRe.In this case,

    and

    (4)exe+1?eis Drazin invertible with indexkinRif and only ifexeis Drazin invertible with indexkin the ringeRe.In this case,

    and

    IfA∈Rm×nis regular,A?,A=∈A{1},thenAA?andA=Aare two idempotents.We next relate Drazin inverses and the classical inverse between the semigroup

    and the semigroup

    using Lemma 12.1.

    Proposition 12.2([40,Proposition3])LetA∈Rm×nbe a regular matrix with inner inversesA?andA=,andB∈Rm×m.Then the following conditions are equivalent:

    (1)Γ=AA?B AA?+Im?AA?is an invertible matrix.

    (2)?=A=AA?B A+In?A=Ais an invertible matrix.

    Moreover,

    and also

    ProofIfAA?B AA?+Im?AA?is invertible inRm×m,then it follows from Lemma 12.1(1)thatAA?B AA?is invertible in the ringAA?Rm×m AA?.Therefore,there exists anX∈AA?Rm×m AA?such thatAA?B AA?X=X AA?B AA?=AA?.Multiplying on the left byA=and on the right byA,and asAA?X=X AA?=X,then

    and

    Hence,(A=A)A?B A(A=A)is invertible in the ringA=ARn×n A=Aand thusA=AA?B A+In?A=Ais an invertible matrix.

    The converse is analogous.To proveA=AA?Γ?1A+In?A=Ais the inverse of?,we remark that

    The expression of the inverse ofΓcan be verified analogously.

    Proposition 12.3([40,Proposition4])LetA∈Rm×nbe a regular matrix with inner inversesA?andA=,andB∈Rm×m.Then the following conditions are equivalent:

    (1)Γ=AA?B AA?+Im?AA?is a regular matrix.

    (2)?=A=AA?B A+In?A=Ais a regular matrix.

    Moreover,

    and also

    ProofIfΓis regular,then

    Conversely,if?is regular,then

    Theorem 12.4([40,Proposition5])LetA∈Rm×nbe a regular matrix with inner inversesA?andA=,andB∈Rm×m.Then the following conditions are equivalent:

    (1)Γ=AA?B AA?+Im?AA?is Drazin invertible with indexk(group invertible ifk=1).

    (2)?=A=AA?B A+In?A=Ais Drazin invertible with indexk(group invertible ifk=1).

    Moreover,

    and also

    ProofLet us first consider the casek=1,i.e.,the group invertibility case.IfΓ#exists,then by Lemma 12.1 and Proposition 12.3

    and furthermore

    Thus

    sinceAA?Γ#=Γ#AA?.In fact,using Lemma 12.1(3),it follows that

    and henceAA?Γ#=Γ#AA?.Therefore,

    Conversely,if?#exists then

    and also

    So,

    sinceA=A?#=?#A=A,using?#∈A=ARn×n A=A+In?A=Aby Lemma 12.1(3).Therefore,

    For the general case,supposeΓhas indexk,i.e.,ΓDexists.Then

    exists.Using the first part of the proof and keeping in mind thatBis arbitrary,

    is group invertible.Thus,?Dexists.Moreover,and using Theorem 11.6,

    The converse is analogous.For the expression ofΓD,

    13 Jacobson’s Lemma and Cline’s Formula for Drazin Inverses

    In this section,we first give some auxiliary lemmas.Then we present Jacobson’s Lemma and Cline’s formula for Drazin inverses.

    Lemma 13.1([8,Lemma2.2])Letabe a regular element with an inner inversea?.Then,given a positive integern,

    ProofThe proof is by induction onn.Denote

    It is clear thatz=x+a(1?aa?).Assume(13.68)to hold fork,we will prove it fork+1.

    We note that

    Now,by the induction step,

    Lemma 13.2([8,Lemma2.3])Leta,b∈R.Then,given a positive integern,

    wherer=?ab)j.

    ProofThis can be easily proved by induction onn.

    The following lemma is an answer to a question raised by Patr′?cio and Veloso in[41]about the equivalence between the conditions ind(a2a?+1?aa?)=kand ind(a+1?aa?)=k,and provides a new characterization of the Drazin index.

    Lemma 13.3([8,Theorem3.1])Letabe a regular noninvertible element with an inner inversea?.Then the following conditions are equivalent:

    (1)ind(a)=k+1.

    (2)ind(a2a?+1?aa?)=k,for one and hence all choices ofa?∈a{1}.

    (3)ind(a+1?aa?)=k,for one and hence all choices ofa?∈a{1}.

    Proof(1)(2).Whenk=0,we get Corollary 2.8.So we may considerk≥1.

    Firstly,note thatak+1a?=(a2a?)k,fork≥1,and secondlya2a?∈eRe,wheree=aa?,from which(a2a?)D∈eRewith indexkif and only if ind(a2a?+1?aa?)=kby Lemma 12.1.

    If ind(a2a?+1?aa?)=k,then ind(a2a?)=k.This means(a2a?)k+1R=(a2a?)k RandR(a2a?)k+1=R(a2a?)k,which in turn givesak+2R=ak+1RandRak+2=Rak+1.Hence,ind(a)≤k+1.Now,if ind(a)=l≤kthenal+1a?R=al+1R=al R=al a?R,from which(a2a?)l R=(a2a?)l?1R,and thereforek=ind(a2a?)≤l?1

    Conversely,if ind(a)=k+1 thenak+2a?R=ak+1a?RandRak+2a?=Rak+1a?,which give(a2a?)k+1R=(a2a?)k RandR(a2a?)k+1=R(a2a?)k.Therefore,ind(a2a?)≤k.Assuming ind(a2a?)=l

    (2)(3).Denote

    Assume that ind(x)=k,or equivalently,ind(a)=k+1.Thenxk R=xk+1Randak+1=ak+2wfor somew∈R.By(13.68),

    This givesz k R=z k+1R.On the other hand,since ind(x)=kwe also havexk=uxk+1for someu∈R.By(13.68),

    From this we conclude thatRz k=Rz k+1.Consequently,ind(z)≤k.

    By symmetrical arguments,we can show that ind(z)=kimplies that ind(x)≤k.Furthermore,if ind(z)

    Lemma 13.4([8,Theorem3.4])Leta,b∈R.Then(1?ab)+is a reflexive inverse of 1?ab,then a reflexive inverse of 1?bais given by

    wherep=1?(1?ab)+(1?ab)andq=1?(1?ab)(1?ab)+.

    ProofLetx=1+b((1?ab)+?pq)a.Then(1?ba)x=1?bqa.Furthermore,(1?ba)x(1?ba)=1?ba?bq a(1?ba)=1?baand

    where we have simplified by writingab=1?(1?ab)and using the relations(1?ab)(1?ab)+(1?ab)=1?aband(1?ab)+(1?ab)(1?ab)+=(1?ab)+.

    Theorem 13.5([8,Theorem3.5])Leta,b∈R.If 1?abis group invertible,then 1?bais group invertible and

    ProofLetx=1+b((1?ab)#?(1?ab)π)a.First,we note that(1?ab)#is a reflexive inverse that commutes with 1?ab.In view of the preceding Lemma 13.4 we have thatxis a reflexive inverse of 1?ba.Next,we will prove thatxcommutes with 1?ba.We have

    and,similarly,(1?ba)x=1?b(1?ab)πa,which givesx(1?ba)=(1?ba)x.Thereforexsatisfies the three equations involved in the definition of group inverse.

    Theorem 13.6([8,Theorem3.6])Leta,b∈R.If 1?abis Drazin invertible with ind(1?ab)=k,then 1?bais Drazin invertible with ind(1?ba)=kand wherer?ab)j.

    ProofAssume that ind(1?ab)=k≥2.Then(1?ab)kis group invertible and Lemma 13.3 leads to ind=0.By Lemma 13.2,we have

    wherer?ab)j.From the above relations,1?rab(1?ab)k((1?ab)k)#is invertible and by[11,Theorem 2.19],we have that 1?b(1?ab)(1?ab)D rais invertible.Furthermore,

    From this it follows that

    On the other hand,

    and hence(1?ba)k=(1?ba)2k(1?b(1?ab)(1?ab)D ra)?1∈(1?ba)k+1R.Therefore(1?ba)k∈R(1?ba)k+1∩(1?ba)k+1R,which implies that ind(1?ba)≤k.

    Furthermore,analysis similar to that of the last part of the proof of Lemma 13.3 shows that ind(1?ba)=k.Now,(1?ba)D=((1?ba)k)#(1?ba)k?1.In view of(13.2)and applying Theorem 13.5,it follows that

    Hence,

    In 1965,Cline[15]proved that ifabis Drazin invertible,thenbais Drazin invertible.In this case,(ba)D=b((ab)D)2a.This equality is called Cline’s formula.

    Theorem 13.7([15])Leta,b∈R.Thenab∈R Dif and only ifba∈RD.In this case,

    ProofThe sufficiency of the theorem is easy to obtain by the symmetry ofaandb.We only need to prove the necessity.Suppose thatab∈RDwith ind(ab)=k,then we haveab(ab)D=(ab)D ab,ab((ab)D)2=(ab)D,(ab)k+1(ab)D=(ab)k.Then we prove thatba∈RD.Letx=b((ab)D)2a.Then

    Hence(ba)x=x(ba).

    Henceba∈RDwith ind(ba)≤k+1,and(ba)D=b((ab)D)2a.

    14 Additive Properties of Drazin Invertibility of Elements

    In this section,we first start with some lemmas which will be useful in proving our main results.

    Lemma 14.1([53,Lemma1])

    (1)Ifa,b∈Rwithab=baandais nilpotent,thenabis nilpotent.

    (2)Ifa,b∈Rare nilpotent andab=ba,thena+bis nilpotent.

    Lemma 14.2([53,Lemma2])Leta,b∈Rbe Drazin invertible andab=ba.Then

    (1)a,b,aDandbDcommute.

    (2)abis Drazin invertible,and(ab)D=bD aD.

    Proof(1)By Theorem 11.4,we have thatab=bagivesaD b=baD.So isaD bD=bD aD.Hencea,b,aDandbDcommute each other.

    (2)Letx=bD aD.The commutativity ofabandxis obvious,and it is easily verified thatxabx=x.Finally,ab?(ab)2xis nilpotent by using Lemma 14.1 and the splittingab?(ab)2x=abbπ+b2bD aaπ,whereaaπandbbπare both nilpotent.

    The next theorem characterizes the relationships of the Drazin invertibility between ofa+band 1+aD b,and gives the explicit expressions of the Drazin inverse.

    Theorem 14.3([53,Theorem3])Leta,b∈Rbe Drazin invertible andab=ba.Then 1+aD bis Drazin invertible if and only ifa+bis Drazin invertible.In this case,we have

    and

    ProofSupposeξ=1+aD bis Drazin invertible,then by Lemma 14.2,a,b,aD,bD,ξandξDcommute with each other.Sinceaaπis nilpotent,we get 1+aaπbDis invertible.In a similar way,we conclude that 1+bbπaDis invertible.

    Letx=ξD aD+bD(1+aaπbD)?1aπ.In what follows,we show thatxis the Drazin inverse ofa+b,i.e.,the following conditions hold:(i)(a+b)x=x(a+b);(ii)x(a+b)x=x;(iii)(a+b)?(a+b)2xis nilpotent.

    (i)By Lemma 14.2,a+bandxcommute.

    (ii)After a calculation we obtain

    Then we can simplify

    Note thataD aπ=0,then we have

    (iii)We have

    Sinceaaπ,bbπandξξπare nilpotent,it follows that(a+b)?(a+b)2xis nilpotent by Lemma 14.1.

    In order to show another expression(a+b)D,it is sufficient to prove

    Noting the commutativity and

    we derive

    Observing that 1?(1+bbπaD)?1ξξπis invertible since(1+bbπaD)?1ξξπis nilpotent,we know

    Thus

    Now we get

    Hence

    Conversely,ifa+bis Drazin invertible,we can rewrite 1+aD b=a1+b1,wherea1=aπandb1=aD(a+b).Note thata1is idempotent andaDis group invertible with(aD)#=a2aD.Then by Lemma 14.2(2),we know thatb1is Drazin invertible and

    In addition,

    Therefore we can derive(a1+b1)D,wherea1andb1satisfy the sufficient conditions.That is,1+aD bis Drazin invertible and the formula is presented as follows:

    The proof is completed.

    Corollaryn 14.4([53,Corollary4])Leta,b∈Rbe Drazin invertible with ind(a)=k,ind(b)=l,ab=ba.If 1+aD bis Drazin invertible,thena+bis Drazin invertible and

    ProofFrom ind(a)=k,it follows that(aaπbD)k=0.Thus

    Similarly,

    Using Theorem 14.3,we obtain the above formulae.

    Proposition 14.5Leta,b∈Rbe group invertible withab=ba.Thena+bis group invertible if and only if 1+a#bis group invertible.In this case,

    and

    ProofIt is similar to the proof of Theorem 14.3.

    15 Drazin Invertibility of the Product and Difference of Idempotents

    In this section,we first begin with some elementary and known results which play an important role in main results.In what follows,unless otherwise stated,pandqmean two arbitrary idempotents in a ringR.Then we give some equivalent conditions for the Drazin invertibility ofp?q,pq,pq?q pandpq+q p.

    Lemma 15.1([19,Corollary1])Leta,b∈R Dandab=ba=0.Then(a+b)D=aD+bD.

    ProofFrom Lemma 14.2(1),we have

    and,choosingmso large thatam=am+1bD,bm=bm+1bD,we have

    Therefore,the result now follows.

    Lemma 15.2([12,Lemma2.5])Leta,b∈R Dandp2=p∈R.Ifap=paandbp=pb,thenap+b(1?p)∈R Dand

    ProofSincep2=p,we havepD=p.Thus,a,b,p∈RD.Note thatap=paandbp=pb.We obtain(ap)D=aD pand(b(1?p))D=bD(1?p)by Lemma 14.2(2).Asapb(1?p)=b(1?p)ap=0,according to Lemma 15.1,it follows that(ap+b(1?p))D=aD p+bD(1?p).

    Lemma 15.3([12,Lemma2.6])Leta∈R,p2=p∈R,b=pa(1?p)andc=(1?p)ap.The following statements are equivalent:

    (1)b+c∈RD.

    (2)bc∈RD.

    (3)b?c∈RD.

    Proof(1)(2).Since(b+c)2=bc+cbandb+c∈R D,we havebc+cb∈R D.Letx=(bc+cb)D.Asp(bc+cb)=(bc+cb)p,we obtain thatpx=xpby Lemma 14.2(2).Next,we prove that(bc)D=pxp.

    Sincex=(bc+cb)x2,we get

    By(bc+cb)x=x(bc+cb),we obtainp(bc+cb)xp=px(bc+cb)p.It follows thatbc(pxp)=(pxp)bc.

    Because(bc+cb)n+1x=(bc+cb)nfor some positive integern,we have

    Multiplying the equation above bypon two sides yields

    i.e.,(bc)n+1pxp=(bc)n.So,bcis Drazin invertible and(bc)D=pxp.

    (2)(1).According to Lemma 13.7,bc∈RDis equivalent tocb∈RD.Note thatbccb=cbbc=0.We have(b+c)2=bc+cb∈RDby Lemma 15.1.It follows thatb+c∈RD.

    (2)(3).Its proof is similar to(1)(2).

    Lemma 15.4([12,Lemma2.7])Leta∈Rwitha?a2∈RDora+a2∈RD.Thena∈RD.

    ProofWe only need to prove the situation whena?a2∈RDwithx=(a?a2)D.By Lemma 11.4,it is clearax=xasincea(a?a2)=(a?a2)a.Sincea?a2∈RD,we get(a?a2)n=(a?a2)n+1xfor some positive integern≥1,that is,

    Note that

    It follows that

    This showsan∈an+1R∩Ran+1.Hence,a∈R Dby Theorem 11.3.

    Proposition 15.5([12,Proposition3.1])The following statements are equivalent:

    Proof(1)(6)is obvious by Lemma 13.6.We only need to prove that(1)-(5)are equivalent.

    (1)(4).It is clear that 1?pq=1?p(pq).Thus,1?pqis Drazin invertible if and only if 1?pq pis Drazin invertible by Lemma 13.6.

    (4)(5).Sincep∈RDandp(1?pq p)=(1?pq p)p=p?pq p,we obtain thatp?pq pis Drazin invertible according to Lemma 14.2(2).

    (5)(4).Supposea=p?pq p,b=1.Thenaandbare Drazin invertible.Since 1?pq p=(p?pq p)+1?p,it follows that 1?pq p=ap+b(1?p)is Drazin invertible in view of Lemma 15.2.

    (2)(5).Sincep?pq=pp(1?q)andp?pq p=p(1?q)p,the result follows by Lemma 13.7.

    (2)(3).By Lemma 13.7,p(1?q)∈RDif and only if(1?q)p∈R D.

    Finally,the other equivalences follow by interchangingpandq.

    By replacingpandqwith 1?pand 1?qin Proposition 15.5,respectively.We get the following result immediately.

    Corollary 15.6([12,Corollary3.2])The following statements are equivalent:

    Finally,asp?pq∈R Dappears in Proposition 15.5 and Corollary 15.6(18),we get the following result.

    Corollary 15.7([12,Corollary3.3])Statements(1)-(10)of Proposition 15.5 are equivalent with statements(11)-(20)of Corollary 15.6.

    In 2012,Koliha,Cvetkovi′c-Ili′c and Deng[29]proved thatp?q∈ADif and only if 1?pq∈ADif and only ifp+q?pq∈AD,wherep,qare idempotents in a Banach algebraA.It is natural to consider whether the same property can be inherited to the Drazin inverse of ring versions.The following result proves that the statement holds in the ring case.

    Theorem 15.8([12,Theorem3.4])The following statements are equivalent:

    (1)p?q∈R D.

    (2)1?pq∈RD.

    (3)p+q?pq∈RD.

    Proof(1)(2).Asp(p?q)2=(p?q)2p=p?pq p,then 1?pq p=(p?q)2p+1?p.

    Leta=(p?q)2andb=1.Thenap=pa,bp=pb.Sincep?q∈RD,we obtain thata=(p?q)2∈R D.By Lemma 15.2,1?pq p=ap+b(1?p)∈RD.Therefore,1?pqis Drazin invertible by Lemma 13.6.

    (2)(3).This is Corollary 15.7(2)(11).

    (3)(1).Leta=1?pq p,b=1?(1?p)(1?q)(1?p).Thenap=pa,bp=pbanda∈R Dby Corollary 15.7.As 1?(1?p)(1?p)(1?q)=p+q?pq∈R D,thenb∈R Dby Lemma 13.6.Finallyap+b(1?p)=(p?q)2∈RDby Lemma 15.2,hencep?q∈R D.

    Cvetkovi′c-Ili′c,Deng[18]considered the Drazin invertibility of product and difference of idempotents in a Banach algebraA.Moreover,they proved that if one ofpq,1?p?qand(1?p)(1?q)belongs toADthen they all do.We extend the result in[18]to the ring cases.

    Theorem 15.9([12,Theorem3.5])The following statements are equivalent:

    (1)pq∈RD.

    (2)1?p?q∈RD.

    (3)(1?p)(1?q)∈RD.

    Proof(1)(2).Letˉp=1?p.Thenˉp?q∈RDif and only ifq?ˉpq∈RDby Proposition 15.5 and Theorem 15.8.Sinceˉp?q=1?p?qandq?ˉpq=pq,(1)(2)holds.

    (1)(3).Setˉp=1?p.Thenˉp?ˉpq∈RDif and only ifq?ˉpq∈R Dby Proposition 15.5.Sinceˉp?ˉpq=(1?p)(1?q)andq?ˉpq=pq,the result follows.

    Theorem 15.10([12,Theorem3.6])The following statements are equivalent:

    (1)pq?q p∈RD.

    (2)pq∈RDandp?q∈RD.

    ProofPoseb=pq(1?p)andc=(1?p)q p.Thenb?c=pq?q p.

    (1)(2).As by hypothesisb?c∈RD,thenpq p?(pq p)2=pq(1?p)q p=bc∈RDby Lemma 15.3.It follows thatpq p∈RDby Lemma 15.4,hencepq=p(pq)∈RDby Lemma 13.7.

    Similarly,(1?p)q?q(1?p)=?(pq?q p)∈RDimpliesq?pq=(1?p)q∈R D.Therefore,p?q∈RDby Proposition 15.5 and Theorem 15.8.

    (2)(1).By Lemma 13.7,bothpq pand(p?q)2are Drazin invertible.Note thatbc=pq(1?p)q p=pq p(p?q)2=(p?q)2pq p.It follows thatbcis Drazin invertible by Lemma 14.2(2).Hence,according to Lemma 15.3,we havepq?q p=b?c∈R D.

    We can give an interesting result similar to Theorem 15.10.

    Theorem 15.11([12,Theorem3.7])The following statements are equivalent:

    (1)pq+q p∈RD.

    (2)pq∈RDandp+q∈RD.

    Proof(1)(2).Sincepq+q p=?(p+q)+(p+q)2=(p+q?1)+(p+q?1)2∈R D,p+q∈RDandp+q?1∈RDaccording to Lemma 15.4.Therefore,pq∈RDby Theorem 15.9.

    (2)(1).Sincepq+q p=(p+q)(p+q?1)=(p+q?1)(p+q),pq+q p∈RDby Lemma 14.2(2)and Theorem 15.9.

    Remark 15.12([12,Remark3.8])Letp,qbe two idempotents in a Banach algebra.Then,p+qis Drazin invertible if and only ifp?qis Drazin invertible[29].Hence,pq+q pis Drazin invertible is equivalent topq?q pis Drazin invertible in a Banach algebra.However,in general,this need not be true in a ring.For example,letR=Z,p=q=1.Thenp?q=0∈RD,butp+q=2/∈R D.

    Following the Drazin invertibility of product and difference of idempotents,we investigate the Moore-Penrose invertibility of the commutatorpq?q pand the anticommutatorpq+q pfor two projectionspandq,we need the following four lemmas.

    Lemma 15.13([51,Lemma11])The following conditions are equivalent for any two projectionspandqin a*-proper ringR:

    (1)(1?p)(1?q)∈R?.

    (2)1?p?q∈R?.

    (3)pq∈R?.

    ProofSubstitute 1?pforpin[11,Corollary 10.8].

    Lemma 15.14([51,Lemma12])Letb=pq(1?p),wherepandqare two projections inR,thenb?b*∈RDif and only ifbb*∈R D.In this case,ind(bb*)≤ind((b?b*)2).

    ProofSee Lemma 15.3.

    Lemma15.15([51,Lemma13])Letr∈R.Ifr+r2∈R D(resp.,r?r2∈RD),thenr∈R Dand ind(r)≤ind(r+r2)(resp.,ind(r)≤ind(r?r2)).

    ProofSee Lemma 15.4.

    Theorem15.16([51,Theorem14])The following conditions are equivalent for any two projectionspandqin a*-proper ringR:

    (1)pq?q p∈R?.

    (2)pq∈R?andp?q∈R?.

    Proof(1)(2).Letb=pq(1?p).Sinceb?b*=pq?q p∈R?and(b?b*)R=(b*?b)R=((b?b*))*R,we have(b?b*)?=(b?b*)#by Theorem 9.3.It can be verified that((b?b*)?)2is the Moore-Penrose inverse of(b?b*)2.Again,by Theorem 9.3,it follows that((b?b*)2)?=((b?b*)2)#since((b?b*)2)*R=(b?b*)2R.In view of Lemma 15.14,we havebb*∈RDand ind(bb*)≤ind((b?b*)2)≤1.

    Note thatbb*=pq(1?p)q p=pq p?(pq p)2.By Lemma 15.15,we obtainpq p∈RDand ind(pq p)≤ind(bb*)≤1,which meanspq p∈R#.Hence(pq p)?=(pq p)#because(pq p)*R=pq pRby Theorem 9.3.Now,substitutingpqforrin[11,Theorem 8.7],one can see thatpq∈R?.

    Thus,pq?q p∈R?impliespq∈R?.Replacingpby(1?p),we get(1?p)q∈R?since(1?p)q?q(1?p)=?(pq?q p)∈R?.In addition,we havep?q∈R?by[11,Corollary 10.8].

    (2)(1).It follows that(p?q)(p?q)?=(p?q)?(p?q)sincep?q∈R?and(p?q)*=p?q.One can easily check that((p?q)?)2is the Moore-Penrose inverse of(p?q)2.Also,we havepq p∈R?sincepq∈R?.Meanwhile,((p?q)2)*=(p?q)2,(pq p)*=pq pandbb*=pq p(p?q)2=(p?q)2pq p.Combining these facts we can see thatpq p,(pq p)?,(p?q)2and((p?q)2)?commute with each other according to[33,Corollary 12].Now,it is trivial to verify that(pq p)?((p?q)?)2is the Moore-Penrose inverse ofbb*=pq p(p?q)2.Moreover,it is clear thatb∈R?by[11,Theorem 8.7].Finally,pq?q p∈R?follows by[4,Theorem 4.1(iv)](see also[31,Theorem 13]).

    Theorem 15.17([51,Theorem15])The following conditions are equivalent for any two projectionspandqin a*-proper ringR:

    (1)pq+q p∈R?.

    (2)p+q∈R?andpq∈R?.

    Proof(1)(2).According to Theorem 9.3,it follows that(pq+q p)?=(pq+q p)#sincepq+q p∈R?and(pq+q p)*R=(pq+q p)R.Note that(p+q)2?(p+q)=(p+q?1)2+(p+q?1)=pq+q p∈R#.By Lemma 15.5,we havep+q,p+q?1∈RDwith ind(p+q)≤ind(pq+q p)≤1 and ind(p+q?1)≤ind(pq+q p)≤1,i.e.,p+q,p+q?1∈R#.On the other hand,(p+q)*R=(p+q)Rand(p+q?1)*R=(p+q?1)Rimply(p+q)?=(p+q)#and(p+q?1)?=(p+q?1)#by Theorem 9.3.Finally,by Lemma 15.3,we havepq∈R?sincep+q?1∈R?.

    (2)(1).First,pq∈R?impliesp+q?1∈R?by Lemma 15.3.Combining this with the hypothesisp+q∈R?and the facts(p+q)*=p+q,(p+q?1)*=p+q?1 andpq+q p=(p+q)(p+q?1)=(p+q?1)(p+q),one can see thatp+q,p+q?1,(p+q?1)?and(p+q)?are commutative with each other by[33,Corollary 12].Whence it is straightforward to check that(pq+q p)?=(p+q)?(p+q?1)?.

    16 Drazin Invertibility for Matrices Over a Ring

    LetAbe anm×nregular matrix over a ring,andTbe a square matrix withT k=P AQfor some matricesPandQ.In this section,we give necessary and sufficient conditions for a productP AQwithP′P A=A=AQQ′to have Drazin inverse,and the formulae for obtaining the Drazin inverse if the conditions are satisfied.

    Theorem 16.1([10,Theorem2.1])LetAbe am×nregular matrix over a ring,andTbe a square matrix withT k=P AQfor some positive integerkand matricesPandQ.Then the following statements are equivalent:

    (1)Thas a Drazin inverseT Dwith ind(T)≤kand there exist matricesP′andQ′such thatP′P A=A=AQQ′.

    (2)A?AQT P A+In?A?Ais invertible.

    In this case,

    Proof(1)(2).LetX=T D.ThenT k=T k+1X,T X=X T,X=T X2.Hence,

    Thus,by(16.70),we have

    Multiplying the equality above byP′andQ′on the left and right sides respectively,we obtain

    by the hypothesis.Therefore we get

    Similarly,we have

    Thus,it follows that

    and

    that is,A?AQT P A+In?A?Ais invertible.

    (2)(1).If we writeN=A?AQT P A+In?A?A,thenNis invertible.Thus there existsYsuch thatIn=Y N=N Y.Hence

    and

    PutP′=AY A?AQT,Q′=T P AY.ThenP′P A=A=AQQ′.

    LetX=P AN?1Q.We shall show thatXis a Drazin inverse ofTwith ind(T)≤k.First of all,it is easy to verify that

    and

    Thus

    Next,we have

    Note thatT k=P AQand we have

    Similarly,

    SetM=A?AQP A+In?A?AandS=A?AQT2P A+In?A?A.ThenN2=M S=S M.SinceNis invertible,so isM,andM?1=N?2S=S N?2.Thus

    and

    whenceT X=X T.This completes the proof of Theorem 16.1.

    Letk=1 in Theorem 16.1.Then we have

    Corollary 16.2([10,Corollary2.1])LetAbe am×nregular matrix over a ring,andTbe a square matrix withT=P AQfor some matricesPandQ.Then the following statements are equivalent:

    (1)Thas a group inverseT#and there exist matricesP′andQ′such thatP′P A=A=AQQ′.

    (2)A?AQP A+In?A?Ais invertible.

    In this case,

    ProofSinceT=P AQ,one has

    Thus,Corollary 16.2 follows from Theorem 16.1.

    Corollary 16.3([10,Corollary2.2])LetEbe an×nidempotent matrix,andTbe a square matrix such thatT k=P E Qfor some positive integerkand matricesPandQ.Then there exist matricesP′andQ′such thatP′P E=E=E QQ′andThas a Drazin inverseT Dwith ind(T)≤kif and only ifE QT P E+In?Eis invertible.In this case,

    ProofSinceEis idempotent,we haveE?=E.Thus Corollary 16.3 follows from Theorem 16.1.

    Next,we give characterizations for existence of the Drazin inverse of a matrix over an arbitrary ring.Moreover,the Drazin inverse of a productP AQfor which there existP′andQ′such that

    can be characterized and computed.This generalizes results obtained for the group inverse of such products.

    Lemma 16.4([42,Lemma])LetTbe an×nmatrix over a ring.The following conditions are equivalent:

    (1)Thas a Drazin inverse with indexk.

    (2)There exists a matrixLandkis the smallest positive integer such that

    (3)There exist matricesMandNandkis the smallest positive integer such thatT k=T k+1N=M T k+1.

    (4)kis the smallest positive integer such thatT khas a group inverse(T k)#and,independent of the choice of(T k)?,also equivalent with.

    (5)kis the smallest positive integer such thatT kis regular andT2k(T k)?+In?T k(T k)?is invertible.

    (6)kis the smallest positive integer such thatT kis regular and(T k)?T2k+In?(T k)?T kis invertible.

    In this case,T k+nis regular for all positive integersnwithM n(k+1)T(n?1)kbelonging toT k+n{1}and

    which shows thatT Dis always equivalent withT2k?1.Moreover,(T D)#exists and equalsT2T D.

    Proof(1)(2)(3).It is clear.

    (3)(1).Suppose thatT k=M T k+1=T k+1N,then

    and

    more generally,

    It follows that(T2k)?and(T2k+1)?exist.

    Now,we prove by straightforward computation that

    is the Drazin inverse ofTof indexk.

    (I)We claim thatT D=T k(T2k)?T2k?1(T2k)?T k.

    In fact,it follows from(3)that:

    Then,

    We verify now the three definition equations:

    (II)We claim thatT D=T k(T2k+1)?T k.

    In fact,we verify the three definition equations:

    (3)(4).It follows from(3)that

    implies the existence of(T k)#.Conversely,if(T k)#exists,for the smallest positive integerk,thenT k?1(T k)#is the Drazin inverse ofTsince there exists a matrixGsuch thatT k=GT2k=T2k G,from which follows that:

    and

    Moreover,

    implies

    (4)(5)(6).Follows from Theorem 3.1.Moreover,

    i.e.,T Dis always equivalent withT2k?1.

    Finally,it follows from(2)that:

    and therefore that(T D)#always exists,ifT Dexists.Since

    we have

    Theorem 16.5([42,Theorem])LetAbe an×nmatrix overRandP,Qmatrices overRfor which there exist matricesP′,Q′such thatP′P A=A=AQQ′.LetA1:=Aand for all positive integersi>1,let

    Then the following statements are equivalent:

    (1)T=P AQhas a Drazin inverse with indexk.

    (2)kis the smallest positive integer such thatAkis regular andis invertible.

    (3)kis the smallest positive integer such thatAkis regular andis invertible and independent of the choice of.

    In that case,withUk:=?Ak,we have

    ProofThas a Drazin inverse with indexkif and only ifkis the smallest positive integer such thatT khas index 1.But,

    andAQT k?2P Ais regular if and only ifT kis regular,because there existP′andQ′such thatP′P A=A=AQQ′.Indeed,

    is equivalent to

    Moreover,sinceP′P A=A=AQQ′,we have

    which means thatP′P Ak=Ak=Ak QQ′.

    We therefore can apply Corollary 3.3 withp=P,a=AQT k?2P Aandq=Q,which implies thatT khas index 1 if and only ifT kis regular andIn?Ak A?kis invertible if and only ifT kis regular andis invertible.

    Corollary 16.6([42,Corollary])LetTbe an×nregular matrix over a ring withT=T T(1,2)T.Then the following statements are equivalent:

    (1)Thas a Drazin inverse with indexk.

    (2)kis the smallest positive integer such thatTk:=T(1,2)T k T(1,2)is regular andis invertible.

    (3)kis the smallest positive integer such thatTk:=T(1,2)T k T(1,2)is regular andis invertible and independent of the choice of the reflexive inverse.

    In that case,and with

    we obtain

    Indeed,apply the theorem to the factorizationT=T T(1,2)TwithA=T(1,2),P=Q=TandP′=Q′=T(1,2).

    17 The Drazin Inverse of a Sum of Morphisms

    LetCbe an additive category.Suppose that?,η:X→Xare two morphisms ofCwith the Drazin inverse?DandηD,respectively.In this section,we mainly investigate the Drazin inverse of a sum of morphisms.

    In 1958,Drazin[19]proved(a+b)D=aD+bDprovided thata,b∈Rsatisfyingab=ba=0.In fact,similarly to the proof of Lemma 15.1,it is also valid for morphisms in an additive category.In 2009,Chen et al.[14]reduced the condition?η=η?=0 to the condition?η=0 and proved that?+ηis Drazin invertible.

    Theorem 17.1([14,Theorem2.1])LetCbe an additive category.Suppose that?,η:X→Xare two morphisms ofCwith the Drazin inverse?DandηDsuch that?η=0,then?+ηhas the Drazin inverse with ind(?+η)≤k1+k2?1,and

    wherek1=ind(?),k2=ind(η).

    ProofLetω1=.Setω=ω1+ω2.Since?η=0,we have?ηD=?η(ηD)2=0,?Dη=(?D)2?η=0.Then?ω2=0 and

    Hence

    On the other hand,

    and

    Therefore

    Next we prove thatω(?+η)ω=ω.Let

    Then we have

    or

    and

    Finally,we prove that(?+η)mω(?+η)=(?+η)m,wherem=k1+k2?1.From?η=0,we have

    Now forj=1,2,···,k1?1,we have

    Hence,

    Therefore,ωis the Drazin inverse of?+η,i.e.,(?+η)Dexists with ind(?+η)≤k1+k2?1 and

    We observe that Theorem 17.1 answers the problem raised in the literature[50].

    Corollary 17.2([14,Corollary2.2])LetCbe an additive category.Suppose that?,η:X→Xare two morphisms ofCwith the group inverse?#andη#such that?η=0,then?+ηhas the group inverse and(?+η)#=(1X?ηη#)?#+η#(1X???#).

    Cvetkovi′c-Ili′c[17]examined an additive problem of finding(a+b)Din terms of Drazin invertible ring elementsaandband their Drazin inverses.We find that the result also holds for morphisms in an additive category.

    Let us define forj∈N,the setUj={(p1,q1,p2,q2,···,pj,qj)=j?1,pi,qi∈{0,1,···,j?1},i=1,···j}.

    The following theorem is a generalization of[32,Theorem 2.1]to the category case.The proof below completely differs from the one presented in[32].

    Theorem 17.3([17,Theorem2.1])LetCbe an additive category.Suppose that?,η:X→Xare two morphisms ofCwith the Drazin inverse?DandηD.Let ind(?)=r,ind(η)=sandk∈N.If

    for every(p1,q1,p2,q2,...,pk,qk)∈Uk,then?+ηis Drazin invertible and

    where

    ProofLet us denote the element on the right side of(17.76)byχ.We will prove that(?+η)χ=χ(?+η),χ2(?+η)=χand(?+η)l+1χ=(?+η)l,for somel∈N.Denote by

    Hence,χ=y1+y2+y3.From(17.75)it follows that?η?D=0 and?ηD=0.Also,we have that

    Therefore,by(17.78)we get

    and

    By computation using that?ηD=0,

    where

    Using(17.78),we have

    On the other hand,

    Hence,

    Since?η(?+η)k?1=0,we have that y3(?+η)=(?+η)i?1,so by(17.79)and(17.81),

    Now,by(17.78)and using that y1?D?=y1andηDy2?=y2?ηD?π,we get that(?+η)χ=χ(?+η).In order to prove thatχ2(?+η)=χ,remark that y1y2=0,y3y1=0,y3y2=0 and=0.Thus we have

    We can easy verify the following

    Now,we will computey2y3.Since?y1=??D,we get that?π?y1=0,which together with?ηD=0 implies that?π?y3=0.Now,

    Upon substituting these identities into(17.82),we have the following

    Now,since?η(?+η)k?1=0,y1?D?=y1andηD y2?=y2?ηD?π,we get

    Letl,i∈N be such thati≥r+s?1 andl≥k+i?1.We will prove that

    Sincey3(?+η)l=0,to prove(17.85),it is sufficient to prove that(y1+y2)(?+η)l+1=(?+η)l.By?η(?+η)l=0,we get thaty1η(?+η)l=0.Also,we have thaty2η(?+η)l=

    so to prove(17.85),it is sufficient to prove that

    Sincei≥r+s?2,

    and

    we get that(17.87)holds.Hence,χ=(?+η)D.

    Remark 17.4([17,Remark])Theorem 17.3 gives representations of(?+η)Din the following particular cases:

    (1)?η=0.

    (2)?η?=0,?η2=0.

    (3)?η?η=0,?η?2=0,?η2?=0,?η3=0.

    In 2001,You and Chen[49]studied the group inverse of a sum of morphisms.In 2009,Chen et al.[14]extended the result of Huylebrouck[27]to the Drazin inverse and investigated the Drazin inverse of a sum of morphisms in an additive category.

    Theorem 17.5([14,Theorem2.3])LetCbe an additive category.Suppose that?:X→Xis a morphism ofCwith the Drazin inverse?Dand ind(?)=k1and thatη:X→Xis a morphism ofCsuch that??Dη=η.Ifγ=(?+η)??Dhas the Drazin inverseγDwith ind(γ)=k2,then?+ηhas the Drazin inverse with ind(?+η)≤k1+k2and

    ProofLetq=?2?D+η,s=η(1X???D),γ=(?+η)??D.Thenq=s+γand

    Henceshas the Drazin inverse with ind(s)=2 andsD=0.From Theorem 17.1,qhas the Drazin inverse with ind(q)≤k2+1,and

    Letp=?(1X???D).Then?+η=p+q,

    Hence,phas the Drazin inverse with ind(p)=k1andpD=0.From Theorem 17.1,?+η=p+qhas the Drazin inverse with ind(?+η)≤k1+k2and

    Fromsγ=0,we havesγD=0.Then

    Furthermore,(q D)i=(γD)i+(γD)i+1sfor arbitraryi≥1.Note that

    Therefore,

    Corollary 17.6([50,Theorem1])LetCbe an additive category.Suppose that?:X→Xis a morphism ofCwith the Drazin inverse?Dand ind(?)=k1and thatη:X→Xis a morphism ofCsuch that??Dη=ηand 1X+?Dηis invertible,then?+ηhas the Drazin inverse with ind(?+η)≤k1+1 and

    whereξ=(1X+?Dη)?1?D.

    ProofLetγ=(?+η)??D.Next we proveγ#=ξ.

    Hence

    Then we haveγ#=ξ.From Theorem 17.5,?+ηhas the Drazin inverse with ind(?+η)≤k1+1 and

    Theorem 17.7([14,Theorem2.5])LetCbe an additive category.Suppose that?:X→Xis a morphism ofCwith the Drazin inverse?Dand ind(?)=k1and thatη:X→Xis a morphism ofCsuch that?Dη=0.Ifγ=(?+η)(1X???D)has the Drazin inverseγDwith ind(γ)=k2,then?+ηhas the Drazin inverse with ind(?+η)≤k2+1 and

    Proof Letp=?2?D.Thenphasp#=?D.Letq=?(1X???D)+η.Then we have

    Lets=η??D.Thenq=s+γands2=η??Dη??D=0.Henceshas the Drazin inverse with ind(s)=2 andsD=0,

    Then we havesγD=0.From Theorem 17.1,qhas the Drazin inverse with ind(q)=k,wherek≤k2+1.

    From Theorem 17.1,?+ηhas the Drazin inverse with ind(?+η)≤k,and

    Henceq?D=(?(1X???D)+η)?D=η?D,q2?D=(?+η??2?D)η?D=(?+η)η?D.Note that?D(?+η)=?D?,?D(?+η)2=?D?(?+η)=?2?D.Since?D(?+η)i=?i?D,we have?D(?+η)iη=?i?Dη=0.By induction,we knowq i?D=(?+η)i?1η?Dfor arbitraryi≥1.Hence

    and

    Then

    Therefore,we have

    LetB=A+Ebe complex matrix withI+AD Einvertible.Wei and Wang[47],Wei[46]investigated the perturbation problem of group inverse and gave the sufficient and necessary condition ofB#=(I+AD E)?1AD.Castro-Gonz′alez et al.[6,7]investigated the sufficient and necessary condition ofB D=(I+AD E)?1AD.Chen et al.[14]generalized these results to the morphisms of an additive category.

    Theorem 17.8([14,Theorem3.1])LetCbe an additive category.Suppose that?:X→Xis a morphism ofCwith the Drazin inverse?Dand ind(?)=kand thatη:X→Xis a morphism ofCsuch that 1X+?Dηis invertible.Let

    whereα=(1X+?Dη)?1,β=(1X+η?D)?1.If 1X?γand 1X?δare invertible and

    thenf=?+η?εhas the Drazin inverse with ind(f)≤k.

    ProofLet=α?D.It is easy to verify thatα?D=?Dβ,?Dε=ε?D=0.

    Then

    And we have

    Similarly,since?(??D?1X)η=0,we havef k=and

    Similarly we have

    Similarly we have

    Since 1X?γand 1X?δare invertible,we have

    Hence,fhas the Drazin inverse with ind(f)≤k,and

    Corollary 17.9([49,Proposition1])LetCbe an additive category.Suppose that?:X→Xis a morphism ofCwith the group inverse?#and thatη:X→Xis a morphism ofCsuch that 1X+?#ηis invertible.Let

    whereα=(1X+?#η)?1,β=(1X+η?#)?1.If 1X?γand 1X?δare invertible,thenf=?+η?εhas the group inverse andf#=(1X?γ)?1α?#(1X?δ)?1.

    Corollary 17.10([14,Corollary3.3])LetJ(R)be Jacobson radical anda∈RwithaDexisting,j∈J(R).Ifj(aD a?1)a=0 anda(aD a?1)j=0,thena+j?εhas the Drazin inverse,whereε=(1?aaD)j(1+aD j)?1(1?aD a).

    Proof Sincej∈J(R),we have that 1+a#j,1?γand 1?δare invertible.From Theorem 17.8,the conclusion holds.

    Theorem 17.11 generalizes the conclusion in[6]to morphisms in an additive category.

    Theorem 17.11([14,Theorem3.4])LetCbe an additive category.Suppose that?:X→Xis a morphism ofCwith the Drazin inverse?Dand thatη:X→Xis a morphism ofCsuch that 1X+?Dηis invertible and

    Letf=?+η.Then the following statements are equivalent:

    (1)fhas a Drazin inverse,andf D=(1X+?Dη)?1?D.

    (2)??Dηm=ηm,wheremis a positive integer.

    (3)ηm??D=ηm,wheremis a positive integer.

    In this case,f f D=??D.

    ProofLet=(1X+?Dη)?1?D.The proof is similar to Theorem 17.8,hence we have

    from??Dη=η?D?,we have

    Then

    Similarly(1X??D?)β?1=1X??D?.Hence

    Since 1X?=1X??D?,we have

    Similarly to the proof of Theorem 17.8,we have=f+(??D????ε),where

    From(17.88)and hypothesis,we have?η1X???D=η?1X???D.By induction we have

    Next we prove

    In fact,by(17.88)

    It is easy to check(17.91)is true whens=1.Suppose that the conclusion holds ats,then

    Hence for arbitrarys,(17.91)holds.And we have

    Therefore

    (2)(3).It is easy to obtain by(17.92).

    (2)(1).If there exists a positive integerm≥1 such that??Dηm=ηm,then

    Since?Dis the Drazin inverse of?with ind(?)=k.Lets=m+k?1.Then we have

    Hence by(17.94),we have

    Thereforefhas the Drazin inverse with ind(f)≤sand.By(17.89),we havef f D=??D.

    (1)(2).Supposef D=(1X+?Dη)?1?Dis the Drazin inverse offwith ind(f)=s.As?Dis the Drazin inverse of?with ind(?)=k.Let

    Thenus=0,vk=0,and by(17.89)we havef f D=??D,

    Then

    and we haveuv=v u.Letm=s+k?1.Then(u?v)m=0.But

    Note that(17.88),we haveη(1X???D)=(1X???D)η.Hence

    That is,there exists a positive integerm≥1 such thatηm(1X???D)=0 andηm=ηm??D.

    Theorem 17.12 generalizes the conclusion in[46]to morphisms in addition category.

    Theorem 17.12([14,Theorem3.5])LetCbe an additive category.Suppose that?:X→Xis a morphism ofCwith the Drazin inverse?Dand thatη:X→Xis a morphism ofC.Then the following statements are equivalent:

    (1)??Dη=η??D=???2?D+η.

    (2)f=?+ηhas the group inverse andf#=(1X+?Dη)?1?D.

    Proof(1)(2).Let.By the condition(1),we have

    Similarly,sinceη=η?D?+?2?D??,we have=?D?.Hence

    Hence,f=is the group inverse off.

    andf#f=?D?.

    (2)(1).It is similar to the proof of Theorem 17.8,we have

    Multiply on the right side of(17.96)by?D,we have

    that is

    Similarly,multiply on the left side of(17.96)by?D,we have

    Then we obtainη?D=?D?η?Dand?Dη=?Dη??D.Therefore

    日本免费在线观看一区| 久久久久久人妻| 91在线精品国自产拍蜜月| 亚洲色图 男人天堂 中文字幕| 亚洲在久久综合| 在线观看一区二区三区激情| 亚洲国产精品成人久久小说| 国产高清国产精品国产三级| 一区二区三区精品91| 亚洲,欧美精品.| www.自偷自拍.com| 曰老女人黄片| av一本久久久久| 亚洲一区二区三区欧美精品| 色94色欧美一区二区| 18禁观看日本| 国产精品久久久久成人av| www.熟女人妻精品国产| 免费高清在线观看视频在线观看| 国产男女超爽视频在线观看| 免费黄频网站在线观看国产| 大片免费播放器 马上看| 夫妻午夜视频| 性少妇av在线| 日韩av在线免费看完整版不卡| 亚洲,欧美精品.| 亚洲av在线观看美女高潮| 亚洲四区av| av天堂久久9| 国产成人免费观看mmmm| 这个男人来自地球电影免费观看 | 国产一区二区 视频在线| 国产成人91sexporn| 18在线观看网站| 国产一区二区激情短视频 | 亚洲国产成人一精品久久久| 免费在线观看视频国产中文字幕亚洲 | 免费看av在线观看网站| a级毛片黄视频| 黄色怎么调成土黄色| 18禁裸乳无遮挡动漫免费视频| 天天躁夜夜躁狠狠久久av| 99国产精品免费福利视频| 久久久久久久亚洲中文字幕| 国产无遮挡羞羞视频在线观看| 午夜91福利影院| 我的亚洲天堂| 久久精品国产综合久久久| 天天躁日日躁夜夜躁夜夜| 啦啦啦啦在线视频资源| 99久久人妻综合| 中文字幕人妻丝袜一区二区 | 亚洲成av片中文字幕在线观看 | 日韩熟女老妇一区二区性免费视频| 中文字幕制服av| 黄色视频在线播放观看不卡| 欧美日韩国产mv在线观看视频| 久久久精品94久久精品| av网站在线播放免费| av网站免费在线观看视频| 在线精品无人区一区二区三| 精品人妻一区二区三区麻豆| 9热在线视频观看99| 午夜日韩欧美国产| 久久 成人 亚洲| 久久久久久久久免费视频了| 高清不卡的av网站| 亚洲国产最新在线播放| 亚洲成国产人片在线观看| 久久免费观看电影| 人体艺术视频欧美日本| 亚洲在久久综合| 80岁老熟妇乱子伦牲交| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产色片| 一区二区三区乱码不卡18| 久久久久精品性色| 午夜精品国产一区二区电影| 欧美日韩精品网址| videossex国产| 中文精品一卡2卡3卡4更新| 国产麻豆69| 大香蕉久久成人网| a级毛片在线看网站| 欧美日韩一区二区视频在线观看视频在线| 成年动漫av网址| 亚洲精品国产av蜜桃| 97人妻天天添夜夜摸| 久久午夜福利片| 精品一区在线观看国产| 亚洲国产av新网站| 最新的欧美精品一区二区| 美女脱内裤让男人舔精品视频| 国产一区二区三区综合在线观看| 80岁老熟妇乱子伦牲交| 亚洲国产看品久久| 久久久久久久亚洲中文字幕| 老熟女久久久| 久久精品久久久久久久性| 九色亚洲精品在线播放| 日韩欧美精品免费久久| 在线观看免费高清a一片| 青春草亚洲视频在线观看| 国产精品人妻久久久影院| 性少妇av在线| 日韩中字成人| 国产精品国产三级专区第一集| 精品人妻偷拍中文字幕| 亚洲欧美一区二区三区黑人 | √禁漫天堂资源中文www| 哪个播放器可以免费观看大片| 一级片免费观看大全| 亚洲成色77777| 国产一区二区三区综合在线观看| 深夜精品福利| 欧美+日韩+精品| 国产在线视频一区二区| 亚洲精品美女久久久久99蜜臀 | 国产精品成人在线| 中文欧美无线码| 午夜av观看不卡| 大香蕉久久成人网| 街头女战士在线观看网站| 免费观看a级毛片全部| 日本色播在线视频| 欧美日韩一级在线毛片| 欧美亚洲 丝袜 人妻 在线| 纵有疾风起免费观看全集完整版| 久久99一区二区三区| 人体艺术视频欧美日本| 99国产综合亚洲精品| 久久99一区二区三区| 一级,二级,三级黄色视频| 18在线观看网站| 国产精品无大码| 99香蕉大伊视频| 一区二区av电影网| 成人毛片a级毛片在线播放| 少妇的逼水好多| kizo精华| 亚洲男人天堂网一区| 国产探花极品一区二区| 国产一区二区三区综合在线观看| 色94色欧美一区二区| 免费观看av网站的网址| 久久久久久久久久久久大奶| 制服丝袜香蕉在线| 国产精品 国内视频| 国产精品国产三级专区第一集| 中文欧美无线码| 精品久久久久久电影网| 中文精品一卡2卡3卡4更新| 欧美国产精品一级二级三级| 亚洲欧洲精品一区二区精品久久久 | 国产精品蜜桃在线观看| 巨乳人妻的诱惑在线观看| 免费少妇av软件| 免费看不卡的av| 深夜精品福利| 国产成人精品在线电影| 丝袜美腿诱惑在线| 免费高清在线观看日韩| 亚洲经典国产精华液单| 成人亚洲欧美一区二区av| 电影成人av| 一区二区三区精品91| 最黄视频免费看| 一本—道久久a久久精品蜜桃钙片| 啦啦啦在线观看免费高清www| 多毛熟女@视频| 王馨瑶露胸无遮挡在线观看| 久久久久网色| 韩国av在线不卡| 久久人人97超碰香蕉20202| 久久精品国产a三级三级三级| tube8黄色片| 国产淫语在线视频| 欧美变态另类bdsm刘玥| 18+在线观看网站| 赤兔流量卡办理| 韩国精品一区二区三区| 超色免费av| 菩萨蛮人人尽说江南好唐韦庄| 欧美亚洲日本最大视频资源| 精品一区二区免费观看| 人成视频在线观看免费观看| 满18在线观看网站| 香蕉国产在线看| 免费播放大片免费观看视频在线观看| 国产 一区精品| 汤姆久久久久久久影院中文字幕| 亚洲人成电影观看| 久久精品国产自在天天线| 一本—道久久a久久精品蜜桃钙片| 啦啦啦在线观看免费高清www| www.熟女人妻精品国产| 啦啦啦视频在线资源免费观看| 好男人视频免费观看在线| 亚洲综合精品二区| 亚洲av免费高清在线观看| 亚洲欧美日韩另类电影网站| 在线观看www视频免费| 国产一级毛片在线| 日日啪夜夜爽| 日韩电影二区| 国产伦理片在线播放av一区| 日韩,欧美,国产一区二区三区| 国产男女超爽视频在线观看| 精品福利永久在线观看| freevideosex欧美| 99热国产这里只有精品6| 有码 亚洲区| 久久影院123| 黄片播放在线免费| 中文字幕精品免费在线观看视频| 亚洲综合精品二区| 99热全是精品| av线在线观看网站| h视频一区二区三区| 女人久久www免费人成看片| 最近中文字幕2019免费版| 欧美精品一区二区大全| 日本av免费视频播放| 久久久久视频综合| 校园人妻丝袜中文字幕| 亚洲四区av| 超碰97精品在线观看| 九九爱精品视频在线观看| 国产又色又爽无遮挡免| 五月开心婷婷网| 国产精品国产三级专区第一集| 亚洲美女视频黄频| 国产男女内射视频| 午夜日韩欧美国产| 另类精品久久| 久久这里有精品视频免费| 亚洲av电影在线观看一区二区三区| 欧美精品av麻豆av| 久久 成人 亚洲| 久久久久国产精品人妻一区二区| 99久久人妻综合| 亚洲,欧美,日韩| 熟女电影av网| 国产一区二区三区av在线| 午夜激情久久久久久久| 日日摸夜夜添夜夜爱| 最近2019中文字幕mv第一页| www.自偷自拍.com| 1024香蕉在线观看| 久久精品国产亚洲av高清一级| 欧美日韩一级在线毛片| 欧美另类一区| 五月天丁香电影| www.自偷自拍.com| 99国产精品免费福利视频| 亚洲一码二码三码区别大吗| 国产欧美日韩综合在线一区二区| 国产精品 欧美亚洲| 婷婷色综合www| 伊人久久大香线蕉亚洲五| 欧美激情 高清一区二区三区| 国产熟女欧美一区二区| 69精品国产乱码久久久| 欧美日韩视频高清一区二区三区二| 91精品国产国语对白视频| 欧美日韩精品网址| 国产亚洲精品第一综合不卡| 看免费成人av毛片| 这个男人来自地球电影免费观看 | a级毛片在线看网站| 色吧在线观看| 91在线精品国自产拍蜜月| 精品少妇一区二区三区视频日本电影 | 日本免费在线观看一区| 男女啪啪激烈高潮av片| 国产精品人妻久久久影院| 日本爱情动作片www.在线观看| 美女国产高潮福利片在线看| 男女午夜视频在线观看| www.av在线官网国产| 中文欧美无线码| 国产男女内射视频| 午夜老司机福利剧场| 色婷婷久久久亚洲欧美| 国产精品久久久久久精品古装| 午夜精品国产一区二区电影| 老女人水多毛片| 免费高清在线观看日韩| 一区在线观看完整版| 成人漫画全彩无遮挡| 亚洲一区中文字幕在线| 一级爰片在线观看| 看十八女毛片水多多多| 欧美精品一区二区免费开放| 大片电影免费在线观看免费| 大片免费播放器 马上看| 黄色 视频免费看| 午夜福利乱码中文字幕| 成年人免费黄色播放视频| 1024视频免费在线观看| 99热网站在线观看| 国产成人免费无遮挡视频| 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| 国产有黄有色有爽视频| 久久久精品国产亚洲av高清涩受| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久精品电影小说| 18禁观看日本| 久久精品熟女亚洲av麻豆精品| 黑丝袜美女国产一区| 中文字幕人妻熟女乱码| 日本av手机在线免费观看| 久久久久久免费高清国产稀缺| 国产精品国产av在线观看| 日韩一本色道免费dvd| 国产亚洲午夜精品一区二区久久| av女优亚洲男人天堂| 久久精品熟女亚洲av麻豆精品| 午夜福利在线观看免费完整高清在| 18禁裸乳无遮挡动漫免费视频| 欧美 亚洲 国产 日韩一| 少妇精品久久久久久久| 老司机影院毛片| 亚洲综合色惰| 国产精品嫩草影院av在线观看| 天天影视国产精品| 捣出白浆h1v1| 国产极品粉嫩免费观看在线| 美女xxoo啪啪120秒动态图| 秋霞在线观看毛片| 亚洲,欧美精品.| 男女边摸边吃奶| 伦理电影免费视频| 少妇熟女欧美另类| 赤兔流量卡办理| 国产免费福利视频在线观看| av网站在线播放免费| 狂野欧美激情性bbbbbb| 青春草视频在线免费观看| 久久精品国产亚洲av高清一级| 女人精品久久久久毛片| 99久久综合免费| 国产乱人偷精品视频| 亚洲av电影在线进入| 日本vs欧美在线观看视频| 人人妻人人添人人爽欧美一区卜| 少妇人妻精品综合一区二区| 美女午夜性视频免费| 最近最新中文字幕大全免费视频 | 亚洲精品国产av蜜桃| 人人妻人人爽人人添夜夜欢视频| 街头女战士在线观看网站| 免费av中文字幕在线| 丝袜脚勾引网站| 日韩,欧美,国产一区二区三区| 2022亚洲国产成人精品| 成人18禁高潮啪啪吃奶动态图| 欧美亚洲日本最大视频资源| 伦理电影大哥的女人| 街头女战士在线观看网站| 青春草亚洲视频在线观看| 99热全是精品| 国产伦理片在线播放av一区| 国产极品天堂在线| 亚洲国产精品一区三区| 水蜜桃什么品种好| 久久这里有精品视频免费| 国产精品 国内视频| 精品第一国产精品| 久久精品久久久久久久性| 欧美黄色片欧美黄色片| 如日韩欧美国产精品一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲欧美日韩另类电影网站| 老汉色av国产亚洲站长工具| 美女主播在线视频| 色播在线永久视频| 一级爰片在线观看| 成人毛片a级毛片在线播放| 精品久久蜜臀av无| 久久精品国产综合久久久| 免费黄频网站在线观看国产| 在线看a的网站| 亚洲欧洲日产国产| 亚洲成人一二三区av| 伦精品一区二区三区| 午夜日本视频在线| 亚洲国产精品一区三区| 中文字幕亚洲精品专区| 久久久久久久久久久免费av| 女人精品久久久久毛片| 99久国产av精品国产电影| 久久婷婷青草| 婷婷色麻豆天堂久久| 久久青草综合色| av在线老鸭窝| 亚洲欧美一区二区三区黑人 | 伊人久久大香线蕉亚洲五| 国产白丝娇喘喷水9色精品| 桃花免费在线播放| www日本在线高清视频| 精品国产一区二区三区四区第35| 汤姆久久久久久久影院中文字幕| 日韩成人av中文字幕在线观看| 中文字幕制服av| 99国产综合亚洲精品| 中国三级夫妇交换| 侵犯人妻中文字幕一二三四区| 亚洲国产精品999| 免费观看a级毛片全部| 黄色毛片三级朝国网站| 午夜影院在线不卡| 电影成人av| 久久青草综合色| 亚洲欧美色中文字幕在线| freevideosex欧美| 久久青草综合色| tube8黄色片| 一区二区三区精品91| 丝袜美足系列| 两个人免费观看高清视频| 69精品国产乱码久久久| 99九九在线精品视频| h视频一区二区三区| 香蕉国产在线看| 嫩草影院入口| 国产精品香港三级国产av潘金莲 | 老司机亚洲免费影院| 国产精品不卡视频一区二区| 免费观看a级毛片全部| 欧美人与性动交α欧美软件| 宅男免费午夜| 一区二区av电影网| 国产精品久久久久久精品电影小说| 熟女av电影| 成人国产av品久久久| 欧美在线黄色| 超色免费av| 午夜91福利影院| 久热这里只有精品99| 欧美日韩一级在线毛片| 欧美国产精品va在线观看不卡| 午夜福利一区二区在线看| 男人操女人黄网站| 超碰成人久久| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频| 免费日韩欧美在线观看| 国产精品二区激情视频| 桃花免费在线播放| 日韩中文字幕欧美一区二区 | 精品少妇久久久久久888优播| 欧美成人午夜免费资源| 久久久久久久久久久久大奶| 久久国产亚洲av麻豆专区| 久久这里有精品视频免费| 日本色播在线视频| 2021少妇久久久久久久久久久| 深夜精品福利| 中文字幕色久视频| 欧美成人精品欧美一级黄| 美女国产视频在线观看| 欧美精品av麻豆av| 男人舔女人的私密视频| 中文天堂在线官网| 亚洲av电影在线观看一区二区三区| 精品亚洲成a人片在线观看| 伊人亚洲综合成人网| 在线观看美女被高潮喷水网站| 成年动漫av网址| 精品一区二区三区四区五区乱码 | 人人妻人人澡人人爽人人夜夜| 亚洲av福利一区| 丝袜在线中文字幕| 欧美xxⅹ黑人| 午夜免费鲁丝| 久久久a久久爽久久v久久| 久久精品国产亚洲av涩爱| av福利片在线| 黄色视频在线播放观看不卡| 国产欧美亚洲国产| 国产激情久久老熟女| 久久精品国产鲁丝片午夜精品| 交换朋友夫妻互换小说| 一二三四中文在线观看免费高清| 精品国产一区二区三区四区第35| 日韩人妻精品一区2区三区| 国产综合精华液| 亚洲三级黄色毛片| 免费播放大片免费观看视频在线观看| 欧美人与性动交α欧美软件| 国产精品二区激情视频| 熟女少妇亚洲综合色aaa.| 亚洲av综合色区一区| 成年美女黄网站色视频大全免费| 久久青草综合色| 少妇被粗大的猛进出69影院| 精品一区二区免费观看| 97人妻天天添夜夜摸| 性高湖久久久久久久久免费观看| 一边亲一边摸免费视频| 啦啦啦啦在线视频资源| 亚洲欧美一区二区三区黑人 | 成年女人在线观看亚洲视频| 亚洲熟女精品中文字幕| 王馨瑶露胸无遮挡在线观看| 欧美成人午夜免费资源| 1024香蕉在线观看| 亚洲av国产av综合av卡| 久久综合国产亚洲精品| 黑人巨大精品欧美一区二区蜜桃| 成人手机av| 99久久精品国产国产毛片| 男人添女人高潮全过程视频| 高清黄色对白视频在线免费看| 一本—道久久a久久精品蜜桃钙片| 人妻人人澡人人爽人人| 亚洲精品一二三| 18禁裸乳无遮挡动漫免费视频| 丝袜在线中文字幕| 麻豆av在线久日| 夜夜骑夜夜射夜夜干| 久久久久精品人妻al黑| 久久ye,这里只有精品| 成年动漫av网址| 最近最新中文字幕免费大全7| 999精品在线视频| 免费高清在线观看视频在线观看| 一本久久精品| 欧美激情极品国产一区二区三区| 久久久久人妻精品一区果冻| 一级爰片在线观看| 亚洲伊人久久精品综合| 中文字幕制服av| 波多野结衣一区麻豆| 建设人人有责人人尽责人人享有的| 天天操日日干夜夜撸| 亚洲av免费高清在线观看| 久久久久久久久久人人人人人人| xxxhd国产人妻xxx| av视频免费观看在线观看| 亚洲av福利一区| 十八禁高潮呻吟视频| 最黄视频免费看| 一级a爱视频在线免费观看| 国产有黄有色有爽视频| 天美传媒精品一区二区| 秋霞伦理黄片| 久久久久国产一级毛片高清牌| 18禁观看日本| 欧美日韩一级在线毛片| 国产精品久久久久久久久免| 街头女战士在线观看网站| 最近2019中文字幕mv第一页| 久久人妻熟女aⅴ| 美国免费a级毛片| 女人久久www免费人成看片| 国产日韩一区二区三区精品不卡| 在线观看免费视频网站a站| 可以免费在线观看a视频的电影网站 | 国产97色在线日韩免费| 晚上一个人看的免费电影| 大香蕉久久成人网| 欧美日韩精品网址| 午夜福利网站1000一区二区三区| 毛片一级片免费看久久久久| 久久久久久久久久久免费av| xxxhd国产人妻xxx| 熟女av电影| 中文字幕最新亚洲高清| a级片在线免费高清观看视频| 久久久久国产一级毛片高清牌| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人免费观看mmmm| 久久精品国产鲁丝片午夜精品| 久久99精品国语久久久| 国产精品免费视频内射| 伊人亚洲综合成人网| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 国产在视频线精品| 国产有黄有色有爽视频| 午夜老司机福利剧场| 五月开心婷婷网| 热re99久久国产66热| 亚洲av电影在线进入| 久久97久久精品| 欧美激情极品国产一区二区三区| 美女xxoo啪啪120秒动态图| 国产精品二区激情视频| 国产综合精华液| 十八禁网站网址无遮挡| 黄片播放在线免费| 亚洲精品美女久久av网站| 啦啦啦中文免费视频观看日本| 黄色配什么色好看| 国产免费视频播放在线视频| 久久久国产精品麻豆| 精品久久久精品久久久| 黑丝袜美女国产一区| 不卡av一区二区三区| 欧美精品一区二区大全| 日韩 亚洲 欧美在线| 满18在线观看网站| 亚洲国产色片| 成人毛片60女人毛片免费| 亚洲欧美日韩另类电影网站| 亚洲精品,欧美精品| 亚洲国产欧美日韩在线播放| 免费在线观看黄色视频的| 国产在线一区二区三区精| 国产97色在线日韩免费| 国产日韩欧美在线精品| 色哟哟·www|