• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of the Al-Si eutectic on the microstructure and corrosion behavior of the single-phase Mg alloy Mg-4Li

    2021-10-30 12:48:56ChngZhangLiangWuZilongZhaoGuangshngHuangBinJiangAndrjAtrnsFushngPan
    Journal of Magnesium and Alloys 2021年4期

    Chng Zhang ,Liang Wu,* ,Zilong Zhao ,Guangshng Huang,d,* ,Bin Jiang,d ,Andrj Atrns ,Fushng Pan,d

    a State Key Laboratory of Mechanical Transmission,College of Materials Science and Engineering,174 Shazhengjie,Shapingba,Chongqing University,Chongqing 400044,China

    b National Engineering Research Center for Magnesium Alloys,Chongqing University,Chongqing 400044,China

    c School of Civil Engineering,Chongqing University,Chongqing 400045,China

    d Chongqing Research Center for Advanced Materials,Chongqing Academy of Science &Technology,Chongqing 401123,China

    e School of Mechanical and Mining Engineering,The University of Queensland,Brisbane,Qld 4072,Australia

    Abstract The influenc of alloying with Al-Si eutectic on the microstructure and corrosion resistance of single-phase Mg-4Li was studied in this paper.The microstructure was characterized using an electron microscopy.The corrosion properties were measured by immersion tests and electrochemical impedance spectrum (EIS) measurements.Alloying with Al-Si eutectic caused the formation of Mg2Si and Mg-Al phase.The grain orientation of Mg-4Li was mainly composed of (0001) while the grain orientation of Mg-4Li-6(Al-Si) was mainly consisted of(10-10) and (11-20).Mg-4Li-6(Al-Si) shows worse corrosion resistance than Mg-4Li owing to the galvanic corrosion from the precipitates and texture change.

    Keywords: Mg-Li alloy;Al-Si eutectic;Microstructure;Grain orientation;Corrosion.

    1.Introduction

    Ultralight Mg-Li alloys are potential metallic structural materials owing to their beneficia properties,including lightweight,good magnetic screening capacity and damping capacity [1-3].These good properties provide Mg-Li alloys with great prospects in the wide fiel of manufacturing industry [4-6].Generally,Li element is greatly active electrochemically and chemically.Li can react with oxygen and water vapor.However,Li can impart some special properties to Mg alloys without changing the advantages of Mg alloys.

    Many researches [7,8] have reported that Mg-Li alloys possess three different micro-structures,depending on the Li content.Mg-Li alloys exhibitα-Mg single-phase microstructure if the Li concentration is<5.5wt%.Mg-Li alloys exhibit aα-Mg+β-Li dual-phase micro-structure if the Li concentration is between 5.5wt%and 10.3wt%.Mg-Li alloys exhibit aβ-Li single-phase micro-structure if the Li concentration is>10.3wt%.Many researches have focused on Mg-Li alloys with single-phaseβ-Li and dual-phaseα-Mg+β-Li.These alloys possess more slip systems than theα-Mg alloys [9].Thus,there are a large number of investigations about how to strengthen Mg-Li alloys with theα-Mg+β-Li dual-phase structure and theβ-Li single-phase structure[10-13].However,research about Mg-Li alloys withα-Mg single phase is relatively less.These alloys nevertheless deserve study.

    Alloying with Al is an effective method to improve the mechanical strength of Mg-Li alloys.Park et al.[14] found that Mg-15Li-xAl alloys (x=1,3 and 5wt%) had excellent mechanical properties,and could be considered as potential candidates for industrial applications.Shi et al.[15] reported that alloying Mg-8Li with the Al-Si eutectic greatly improved the tensile strength up to 390MPa and was more effective than simply alloying with Al.Zhao et al.[9] also found that alloying with the Al-Si eutectic was more beneficia for enhancing the tensile strength of Mg-4Li than alloying with Al alone.However,the influenc of alloying with Al-Si eutectic on the corrosion behavior of Mg-Li alloys is not clear,and needs to be studied,as part of the effort to better understand the corrosion of Mg alloys [16-22].

    In this paper,the Mg-4Li and Mg-4Li-6(Al-Si) alloys were prepared to study the effect of the Al-Si addition on the microstructure and corrosion behavior of the Mg-4Li alloy with single-phase.The microstructure was analyzed by an electron microscopy and the corrosion behavior was evaluated through immersion tests and electrochemical tests.

    2.Experimental procedures

    Fig.1.SEM images of the two annealed alloys:(a) Mg-4Li and (b) Mg-4Li-6(Al-Si).

    Fig.2.EBSD microstructure of the two annealed alloys:(a) Mg-4Li and (b) Mg-4Li-6(Al-Si).

    Fig.3.(0002) pole figure of the two annealed alloys:(a) Mg-4Li and (b) Mg-4Li-6(Al-Si).

    Mg-4Li and Mg-4Li-6(Al-Si)(wt%)alloys were prepared by the magnetic-leviation,vacuum,high-frequency and induction melting method.The pure Mg(Mg ≥99.95wt%),pure Li(Li ≥99.95wt%) and Al-12.6Si eutectic (wt%) were melted in a vacuum induction furnace with the protection of argon atmosphere and were then cooled by water.Before rolling,the alloys were heated at 300°C for 0.5h and were then rolled into sheets by multi-pass rolling process.The reduction of each pass is about 20%.Finally,the thickness of the rolled alloys was 1.6mm.Subsequently,the rolled sheets were annealed at 150°C for 1h.The actual compositions of the two alloys were analyzed using a plasma-atomic emission spectrometer (ICP-AES),which are presented in Table 1.

    Table 1 .The chemical compositions of the alloys (wt%).

    The microstructure was examined using a JSM-7800F scanning electron microscope (SEM) equipped with an Oxford electron backscattered diffraction (EBSD) system.The specimens for microstructure characterization were mechanically ground using silicon paper from 400# to 2000#,washed with alcohol and dried using fl wing cool air.The microstructure was revealed by etching with a reagent consisting of 2.5g picric acid+3ml acetic acid+21ml ethanol.

    Fig.4.Recrystallization and grain size distribution of Mg-4Li-6(Al-Si).

    The sheets were cut into 10mm×10mm×1.6mm for corrosion tests and were mechanically ground using silicon paper from 400# to 2000#,washed with alcohol and dried using fl wing cool air.The hydrogen evolution,weight loss and electrochemical tests were carried out in the 3.5wt% NaCl solution saturated with Mg(OH)2for 48h at 25°C.The specimens for hydrogen evolution tests were inlayed by phenolic resin and the exposed plane was 10mm×10mm.A typical three-electrode cell system was adopted to measure electrochemical impedance spectra (EIS).A platinum electrode worked as the counter electrode and a saturated calomel electrode (SCE) worked as the reference electrode,and the specimen (with an area of 1 cm2) was the working electrode.The specimens were immersion for 0.5h in the NaCl solution before the EIS tests.The EIS measurements were performed with an amplitude of 5mV and the scan frequency from 100kHz to 10 mHz.The tested results were fitte by a software of ZSimpWin 3.60.

    3.Results and discussion

    3.1.Microstructure

    Fig.1 shows SEM images of the two annealed alloys.Mg-4Li had a single-phase microstructure without any second phase particles.In contrast,Mg-4Li-6(Al-Si) contained punctiform second phase particles including Mg2Si and Mg-Al phases.Zhao et al.[9] have reported that the brittle phase Mg2Si,which has a secondary strengthening effect on the alloy as it hinders grain growth.In addition,Mg-4Li-6(Al-Si)contained the Al-Li phase particles,which was also confirme by the literature [14,15,23].

    Fig.2 shows EBSD results of the two annealed alloys.Mg-4Li had a relatively coarse grain size.Most of the grains were close to the red color,which indicated a strong basal texture.The color of the grains of Mg-4Li-6(Al-Si) was mostly blue and green,indicating that the grain orientation mostly tends to the cone and cylinder direction,indicating mostly conical and cylindrical textures.This was obviously different to the grains in Mg-4Li that mostly tended to the(0001)orientation.Moreover,Mg-4Li-6(Al-Si) had relatively fin grains compared with Mg-4Li,which contributes to the alloying with Al-Si eutectic on the increase of nucleation rate and the inhibition of grain growth by Mg2Si and Mg-Al phase.

    Fig.5.Hydrogen evolution and weight loss rate of annealed Mg-4Li and Mg-4Li-6(Al-Si) after immersion in 3.5wt% NaCl solution saturated with Mg(OH)2 for 48h.

    Fig.3 shows the pole figure of the two annealed alloys.Fig.3(a) and Fig.3(b) respectively represent the projection of Mg-4Li and Mg-4Li-6(Al-Si)on the(0001),(11-20),and(10-10) crystal surface exponents.Mg-4Li had a strong basal texture with a maximum value of 17.63.Alloying with Al-Si eutectic,the peak value was located at the cylinder surface of(10-10).The maximum value was 15.67.This indicated that the alloying with the Al-Si eutectic weakened and dispersed the basal texture.

    Fig.4 shows the recrystallization and grain size distribution for Mg-4Li-6(Al-Si).Fig.4(a) shows the dynamic recrystallization grain distribution,in which the red areas represent deformed grains,the yellow areas represent substructure grains,and the blue areas represent dynamic recrystallization grains.Fig.4(a) and (b) indicates that the proportion of red deformed grains is the largest,most of which are larger grains without recrystallization.Many sub-grain (low-angle grain)boundaries were inside these grains (Fig.4(c) and (d)),which were caused by many dislocations when the grains underwent deformation,and the dislocations were entangled together to form the low-angle grain boundaries.

    3.2.Corrosion

    3.2.1.Immersion tests

    Fig.5 shows the average hydrogen evolution volume and weight loss rate of the two annealed alloys after immersion for 48h in the NaCl solution at 25°C.The corrosion rate(measured by hydrogen evolution and weight loss) of Mg-4Li-6(Al-Si) was considerable larger than that of Mg-4Li.Alloying with Al-Si eutectic into Mg-4Li had a detrimental influenc on the corrosion resistance.The average hydrogen evolution volumes were 8.0 and 22.1mL cm-2(8.4 and 23.1mm y-1)for Mg-4Li and Mg-4Li-6(Al-Si),respectively.The average weight loss rates were 11.1 and 16.5mg cm-2(11.6 and 17.3mm y-1) for Mg-4Li and Mg-4Li-6(Al-Si),respectively.

    Fig.6.EIS plots of the annealed Mg-4Li and Mg-4Li-6(Al-Si) in 3.5wt%NaCl solution saturated with Mg(OH)2.

    Fig.7.Equivalent circuit of EIS plots for the annealed Mg-4Li and Mg-4Li-6(Al-Si) in 3.5wt% NaCl solution saturated with Mg(OH)2.

    3.2.2.Electrochemical tests

    To better analyze the corrosion behavior of the two annealed alloys,EIS spectra were measured.Fig.6(a-c) shows the Nyquist plot,the Bode magnitude plot and the Bode phase plot,respectively,for the two annealed alloys.The Nyquist plots of the two alloys all consist of one capacitive loop throughout the tested frequency range.The capacitive loop is connected with the charge transfer resistance of the electrochemical reaction [24,25].Mg-4Li shows larger capacitive loop than that Mg-4Li-6(Al-Si),indicates that the Al-Si eutectic had a harmful effect of the corrosion resistance of Mg-4Li,consistent with the hydrogen evolution and weight loss data.The Bode magnitude plots of the two alloys show that Mg-4Li possessed higher impedance modulus |Z| than Mg-4Li-6(Al-Si),which was consistent with the results of the above experiments.The Bode phase plots of the two alloys have one time constant owing to its phase-frequency plot composed of one upward peak.

    Fig.7 illustrates the equivalent circuit of EIS of the two alloys,which was used to calculate the corresponding electrochemical parameters,which are summarized in Table 2.Rsrepresents the solution resistance,Rtrepresents the charge transfer resistance andRfrepresents the corrosion fil resistance.Qdlis the constant phase element andQfis the constant phase element of corrosion fil [26-28].The higher value ofRtrepresents better corrosion resistance [29,30].Alloying with Al-Si eutectic significantl decreased theRtof Mg-4Li.Therefore,the results of EIS indicate that Mg-4Li shows better corrosion resistance than that of Mg-4Li-6(Al-Si).

    Table 2 .The fittin results of EIS curves for the two annealed alloys.

    3.2.2.Corrosion morphologies

    Fig.8 shows the optical corrosion morphologies of the two annealed alloys after immersion for 48h in the NaCl solution at 25°C.Mg-4Li had relatively less corrosion than Mg-4Li-6(Al-Si),which had suffered severe corrosion with lots of corrosion cavities.Fig.9 shows the microscopic corrosion morphologies of the two annealed alloys after immersion for 48h in the NaCl solution at 25°C (corrosion products on the surface were removed by the solution of 10g/L AgNO3+200g/L CrO3).Mg-4Li showed characteristic fili form corrosion and some shallow pits.Corrosion pits on the surface of Mg-4Li-6(Al-Si) were deep and irregular.This indicates that the corrosion of Mg-4Li-6(Al-Si) was more severe than that of Mg-4Li.

    Fig.8.Optical corrosion morphologies of annealed Mg-4Li and Mg-4Li-6(Al-Si) after immersion in 3.5wt% NaCl solution saturated with Mg(OH)2 for 48h.

    Fig.9.Microscopic corrosion morphologies of annealed Mg-4Li and Mg-4Li-6(Al-Si) after immersion in 3.5wt% NaCl solution saturated with Mg(OH)2 for 48h.

    As shown in Fig.11,the corrosion mechanism of annealed Mg-4Li and Mg-4Li-6(Al-Si) alloys was explained including galvanic corrosion and the texture change.Song and Atrens [17] considered that second phase particles have a significan impact on the corrosion behavior of Mg alloys,and there are two main aspects.On the one hand,continuous and net-like second phases are beneficia for Mg alloys,as they can provide a barrier to the corrosion of the Mg matrix.On the other hand,the potential of Mg is more negative than all second phases,which causes galvanic corrosion between second phase particles and Mg matrix.Thus,the Mg matrix acts as the anode and corrodes preferentially in the micro-galvanic corrosion.Li et al.[31] reported that duplex Mg-7.5Li alloy had worse corrosion resistance than single-phase Mg-4Li,and Mg-14Li alloys resulted from selective dissolution ofα-Mg phases,which was caused by the galvanic corrosion.In this current paper,Mg-4Li had a single phase structure,while Mg-4Li-6(Al-Si) contained Mg2Si phase particles and Mg-Al phase particles.Fig.10 shows the initial corrosion morphologies of annealed Mg-4Li-6(Al-Si) after immersion in the NaCl solution at 25°C for 30min.It indicates that corrosion preferentially occurred around the Mg2Si phase and Mg-Al phase particles.The Mg2Si phase andα-Mg formed a galvanic couple andα-Mg corroded preferentially.The Mg2Si phase accelerated the corrosion of the alloy and thus Mg-4Li-6(Al-Si) shows a higher corrosion rate than Mg-4Li.Similarly,the Mg-Al phase also accelerated the corrosion of Mg-4Li-6(Al-Si) due to microgalvanic corrosion.

    Fig.10.SEM images of (a) annealed Mg-4Li-6(Al-Si) and (b) high magnification portions of the images in (a) after immersion in 3.5wt% NaCl solution saturated with Mg(OH)2 for 30min.

    Previous literature [32-35] reported that texture has an important impact on the corrosion of Mg alloys.Liu et al.[36] was the firs to investigate the effect of crystallographic orientation on the corrosion of Mg.They confirme that the corrosion rate of basal planes was the lowest,attributed to the highest packing density.Xin et al.[37] also found that the (0001) surface shows the lowest surface energy compared with (10-10) and (11-20) surfaces.Song et al.[38] reported that the rolling surface of AZ31 alloy mainly composed of(0001) crystallographic planes,has better corrosion resistance than its cross-section surface mainly consisting of crystallographic planes (10-10) and (11-20).Fig.2 showed that the grain orientation of Mg-4Li was mainly composed of (0001)while the grain orientation of Mg-4Li-6(Al-Si) was mainly consisted of (10-10) and (11-20).Fig.3 also indicated that Mg-4Li showed strong basal texture,and alloying with Al-Si eutectic weakened the basal texture and turned it to a nonbasal texture.Therefore,the Al-Si eutectic addition has a harmful influenc on corrosion resistance of Mg-4Li.

    Fig.11.Schematic illustration of annealed Mg-4Li and Mg-4Li-6(Al-Si) alloys during corrosion processes.

    4.Conclusions

    1.Mg-4Li had a microstructure consisting of a single phase HCP structure while Mg-4Li-6(Al-Si) contained Mg2Si phase and Mg-Al phase particles.

    2.The grain orientation of the Mg-4Li surface was mainly composed of (0001) crystal planes while the grain orientation of Mg-4Li-6(Al-Si) surface mainly corresponded to(10-10) and (11-20).Mg-4Li showed strong basal texture,and alloying with Al-Si eutectic weakened the basal texture and turned it to a non-basal texture.

    3.The results of hydrogen evolution,weight loss and electrochemical tests indicated that alloying with Al-Si eutectic decreased the corrosion resistance of Mg-4Li.The increased corrosion rate was attributed mainly to the increased micro-galvanic corrosion due to the second phase particles and the change of the texture from a basal texture to non-basal texture.

    Declaration of Competing Interest

    None.

    Acknowledgments

    This work was supported by projects of the National Natural Science Foundation of China (No.51701029,51671041,51531002),the National Key Research and Development Program of China (2016YFB0301100),the China Postdoctoral Science Foundation Funded Project (2018T110943,2017M620410),the Chongqing Postdoctoral Scientifi Research Foundation (Xm2017010) and Fundamental Research Funds for the Central Universities (2018CDGFCL005).

    国产一级毛片在线| 亚洲av中文字字幕乱码综合| 老司机影院成人| 青春草亚洲视频在线观看| 久久久久精品久久久久真实原创| 久久久久国产网址| 极品少妇高潮喷水抽搐| 国产精品久久久久久精品电影小说 | 久久女婷五月综合色啪小说| 成人午夜精彩视频在线观看| 极品教师在线视频| 毛片一级片免费看久久久久| 中国三级夫妇交换| 99精国产麻豆久久婷婷| 成人美女网站在线观看视频| 国产成人aa在线观看| 美女福利国产在线 | 欧美日韩视频高清一区二区三区二| 少妇人妻久久综合中文| 精品人妻偷拍中文字幕| 亚洲色图av天堂| 在线观看免费视频网站a站| 久久久久久久国产电影| 女性被躁到高潮视频| 黄色怎么调成土黄色| 中文精品一卡2卡3卡4更新| 一区在线观看完整版| 亚洲电影在线观看av| 久久av网站| 久久精品国产a三级三级三级| 国产 精品1| 大片免费播放器 马上看| 久久久精品94久久精品| 精品久久久久久电影网| av网站免费在线观看视频| 女性生殖器流出的白浆| av专区在线播放| 亚洲国产精品国产精品| a级毛色黄片| 热99国产精品久久久久久7| 黄色怎么调成土黄色| 欧美精品国产亚洲| 欧美日韩精品成人综合77777| 22中文网久久字幕| 99精国产麻豆久久婷婷| 一个人看视频在线观看www免费| 亚洲三级黄色毛片| 亚洲美女搞黄在线观看| 久久久久性生活片| 久久久久网色| 美女福利国产在线 | 五月天丁香电影| 午夜福利视频精品| 久久午夜福利片| 日韩人妻高清精品专区| 色综合色国产| 久久久欧美国产精品| 一个人免费看片子| 晚上一个人看的免费电影| 黄色视频在线播放观看不卡| 毛片一级片免费看久久久久| 国产精品欧美亚洲77777| 少妇被粗大猛烈的视频| 国产女主播在线喷水免费视频网站| 岛国毛片在线播放| 免费看不卡的av| 国产日韩欧美在线精品| 99久久人妻综合| 欧美3d第一页| 最近的中文字幕免费完整| 好男人视频免费观看在线| 青青草视频在线视频观看| 麻豆国产97在线/欧美| 日韩精品有码人妻一区| 欧美日韩在线观看h| 日韩人妻高清精品专区| 高清午夜精品一区二区三区| 国产精品一区二区三区四区免费观看| 日日摸夜夜添夜夜添av毛片| 国产色爽女视频免费观看| av线在线观看网站| 亚洲精品中文字幕在线视频 | 亚洲综合色惰| 久久国产乱子免费精品| freevideosex欧美| 精品人妻偷拍中文字幕| av国产免费在线观看| 色吧在线观看| 久久综合国产亚洲精品| 午夜老司机福利剧场| 国产视频内射| 在线观看一区二区三区激情| 精品少妇黑人巨大在线播放| 肉色欧美久久久久久久蜜桃| 亚洲真实伦在线观看| 99热网站在线观看| 大片电影免费在线观看免费| 又粗又硬又长又爽又黄的视频| 国产精品三级大全| 欧美日韩视频高清一区二区三区二| 91久久精品国产一区二区成人| 插阴视频在线观看视频| 亚洲欧美日韩另类电影网站 | 久久久久久久国产电影| 亚洲精品中文字幕在线视频 | 久久影院123| 激情五月婷婷亚洲| 亚洲欧洲日产国产| 国产欧美另类精品又又久久亚洲欧美| 日本vs欧美在线观看视频 | 日韩中字成人| av免费观看日本| 日韩中字成人| 啦啦啦在线观看免费高清www| 爱豆传媒免费全集在线观看| 男女国产视频网站| 最近中文字幕高清免费大全6| 欧美成人a在线观看| 男人和女人高潮做爰伦理| 亚洲av综合色区一区| 免费看日本二区| 国产91av在线免费观看| 欧美成人精品欧美一级黄| 亚洲精品国产av蜜桃| 伊人久久国产一区二区| 又黄又爽又刺激的免费视频.| 国产亚洲av片在线观看秒播厂| 极品少妇高潮喷水抽搐| 亚洲人成网站高清观看| 联通29元200g的流量卡| 国产色婷婷99| av视频免费观看在线观看| 成人午夜精彩视频在线观看| 在线播放无遮挡| 日日摸夜夜添夜夜添av毛片| 日本黄色日本黄色录像| 欧美区成人在线视频| 天堂中文最新版在线下载| 日韩中字成人| 国产成人91sexporn| 久久精品国产自在天天线| 美女国产视频在线观看| 一区二区av电影网| 看非洲黑人一级黄片| 一区在线观看完整版| 国产黄频视频在线观看| 国产黄色免费在线视频| 日韩一本色道免费dvd| 97热精品久久久久久| 亚洲国产欧美在线一区| 国产成人91sexporn| 久久久成人免费电影| 久久久成人免费电影| 国内揄拍国产精品人妻在线| 精品久久久久久久久亚洲| 亚洲熟女精品中文字幕| 中国国产av一级| 亚洲精品国产av成人精品| 欧美成人午夜免费资源| 国产成人a区在线观看| 精品99又大又爽又粗少妇毛片| 欧美 日韩 精品 国产| 香蕉精品网在线| 极品教师在线视频| 色视频www国产| a级毛色黄片| 性色av一级| a级毛色黄片| 成人二区视频| 免费看av在线观看网站| 国产亚洲一区二区精品| 99热这里只有是精品在线观看| 国产视频内射| 国产成人a区在线观看| 成人亚洲精品一区在线观看 | 又粗又硬又长又爽又黄的视频| 国产成人a∨麻豆精品| 在线观看免费高清a一片| av国产精品久久久久影院| 久久99热这里只频精品6学生| 精品一区二区三区视频在线| 国产亚洲av片在线观看秒播厂| 插逼视频在线观看| 国产精品成人在线| 久久久久人妻精品一区果冻| 最后的刺客免费高清国语| 午夜激情福利司机影院| 一级爰片在线观看| 国产精品久久久久久久电影| 日本欧美国产在线视频| 大香蕉97超碰在线| 直男gayav资源| 看十八女毛片水多多多| 亚洲成人中文字幕在线播放| 精品少妇久久久久久888优播| 免费黄色在线免费观看| 日韩一区二区视频免费看| 欧美日韩一区二区视频在线观看视频在线| 观看av在线不卡| 亚洲精品久久午夜乱码| 干丝袜人妻中文字幕| 欧美人与善性xxx| 久久99蜜桃精品久久| 18禁在线播放成人免费| 97精品久久久久久久久久精品| 精品一品国产午夜福利视频| 欧美xxⅹ黑人| 国产精品三级大全| 黄色视频在线播放观看不卡| 午夜免费观看性视频| 成人毛片a级毛片在线播放| 亚洲自偷自拍三级| 老司机影院成人| 久久婷婷青草| 亚洲av中文av极速乱| 舔av片在线| 欧美丝袜亚洲另类| 成人午夜精彩视频在线观看| 亚洲精品视频女| 激情 狠狠 欧美| 干丝袜人妻中文字幕| 人妻制服诱惑在线中文字幕| 国产精品成人在线| 91在线精品国自产拍蜜月| 中文字幕免费在线视频6| 网址你懂的国产日韩在线| 亚洲国产av新网站| 能在线免费看毛片的网站| 国产亚洲av片在线观看秒播厂| 国产成人精品久久久久久| 免费久久久久久久精品成人欧美视频 | 男女边吃奶边做爰视频| 亚洲精品成人av观看孕妇| 亚洲国产精品999| 精品人妻视频免费看| 久久精品久久精品一区二区三区| 亚洲国产成人一精品久久久| av天堂中文字幕网| 久久人人爽人人爽人人片va| 韩国av在线不卡| 内射极品少妇av片p| 国内揄拍国产精品人妻在线| 婷婷色综合www| av专区在线播放| 黄片无遮挡物在线观看| 黄色怎么调成土黄色| 内地一区二区视频在线| 久久鲁丝午夜福利片| 久久久久久久久大av| 久久久久网色| 欧美高清成人免费视频www| 亚洲成人中文字幕在线播放| 成人无遮挡网站| 日韩视频在线欧美| 亚洲真实伦在线观看| 久久国产亚洲av麻豆专区| 国产久久久一区二区三区| 欧美三级亚洲精品| 97在线视频观看| 欧美精品亚洲一区二区| 日韩,欧美,国产一区二区三区| 97超视频在线观看视频| 老司机影院成人| 久久av网站| av国产免费在线观看| 欧美成人a在线观看| 在线观看人妻少妇| 成年美女黄网站色视频大全免费 | 久久久久国产精品人妻一区二区| 亚洲人成网站高清观看| 午夜福利高清视频| 一级二级三级毛片免费看| 免费看av在线观看网站| 在线精品无人区一区二区三 | 妹子高潮喷水视频| 日韩欧美一区视频在线观看 | 这个男人来自地球电影免费观看 | 丝瓜视频免费看黄片| 国产有黄有色有爽视频| 成人特级av手机在线观看| 久久久久久久大尺度免费视频| 国产精品国产av在线观看| 国产欧美亚洲国产| 日日撸夜夜添| 久久人人爽人人片av| a级一级毛片免费在线观看| 国产有黄有色有爽视频| av一本久久久久| 精品人妻熟女av久视频| 亚洲精华国产精华液的使用体验| 久久国产乱子免费精品| 精品久久久精品久久久| 男女无遮挡免费网站观看| 婷婷色麻豆天堂久久| 黄色怎么调成土黄色| 久久精品国产a三级三级三级| 九九在线视频观看精品| 国产亚洲午夜精品一区二区久久| 国产亚洲一区二区精品| 看十八女毛片水多多多| 亚洲自偷自拍三级| 韩国av在线不卡| 亚洲中文av在线| 99久久精品热视频| 婷婷色综合www| 久久婷婷青草| 久久国产乱子免费精品| 国产成人91sexporn| 日本与韩国留学比较| 黄色怎么调成土黄色| 国产免费又黄又爽又色| 日韩人妻高清精品专区| 久久人人爽av亚洲精品天堂 | 精品国产乱码久久久久久小说| 大香蕉97超碰在线| 久久精品熟女亚洲av麻豆精品| 日韩人妻高清精品专区| 精品久久久久久久久av| 三级国产精品片| 亚洲欧美成人精品一区二区| 蜜臀久久99精品久久宅男| 大片免费播放器 马上看| 久久这里有精品视频免费| 欧美bdsm另类| 国产精品一区www在线观看| 一个人看视频在线观看www免费| 日本wwww免费看| 国产黄色视频一区二区在线观看| 免费大片黄手机在线观看| 久久久成人免费电影| 国产 精品1| 色综合色国产| 自拍欧美九色日韩亚洲蝌蚪91 | 色婷婷久久久亚洲欧美| 新久久久久国产一级毛片| 久久女婷五月综合色啪小说| 一级片'在线观看视频| 在线免费观看不下载黄p国产| 熟女av电影| 蜜臀久久99精品久久宅男| 亚洲精品久久午夜乱码| 亚洲人成网站高清观看| 大话2 男鬼变身卡| 国产综合精华液| 纯流量卡能插随身wifi吗| www.av在线官网国产| 亚洲天堂av无毛| 欧美成人一区二区免费高清观看| 国产av一区二区精品久久 | 久久综合国产亚洲精品| 特大巨黑吊av在线直播| 亚洲国产高清在线一区二区三| 丰满乱子伦码专区| 亚洲人成网站在线播| 三级国产精品欧美在线观看| 一级二级三级毛片免费看| 丝瓜视频免费看黄片| 精品人妻偷拍中文字幕| 女人十人毛片免费观看3o分钟| 亚洲图色成人| 日韩人妻高清精品专区| 免费观看无遮挡的男女| 男女无遮挡免费网站观看| 精品人妻视频免费看| 2021少妇久久久久久久久久久| 在线播放无遮挡| 精品久久久久久电影网| 一本一本综合久久| 中文资源天堂在线| 26uuu在线亚洲综合色| av女优亚洲男人天堂| 97超碰精品成人国产| 成人国产麻豆网| 简卡轻食公司| 色综合色国产| 男女国产视频网站| 亚洲人成网站在线播| 日本免费在线观看一区| 久久影院123| 99久久人妻综合| 亚洲精品自拍成人| videossex国产| 亚洲久久久国产精品| 在线观看美女被高潮喷水网站| 久久亚洲国产成人精品v| 欧美性感艳星| 国产探花极品一区二区| 亚洲精品久久午夜乱码| 三级经典国产精品| 亚洲欧美清纯卡通| 午夜福利网站1000一区二区三区| 免费黄色在线免费观看| 欧美日韩在线观看h| 91精品国产九色| 婷婷色综合大香蕉| 97在线人人人人妻| 黑人高潮一二区| 美女中出高潮动态图| 一级a做视频免费观看| 亚洲丝袜综合中文字幕| 噜噜噜噜噜久久久久久91| 亚洲精华国产精华液的使用体验| 欧美一区二区亚洲| 国产精品.久久久| 91在线精品国自产拍蜜月| 亚洲av中文字字幕乱码综合| a级毛片免费高清观看在线播放| 日韩在线高清观看一区二区三区| 人人妻人人添人人爽欧美一区卜 | 777米奇影视久久| 日本欧美视频一区| 夫妻午夜视频| 亚洲欧美成人精品一区二区| 国产精品精品国产色婷婷| 国产精品99久久久久久久久| 亚洲欧洲日产国产| 国产精品99久久久久久久久| 天天躁日日操中文字幕| 波野结衣二区三区在线| 丰满少妇做爰视频| 交换朋友夫妻互换小说| 黄色视频在线播放观看不卡| 日产精品乱码卡一卡2卡三| 韩国高清视频一区二区三区| 亚洲美女黄色视频免费看| 欧美3d第一页| 亚洲怡红院男人天堂| 晚上一个人看的免费电影| 欧美日韩视频精品一区| 免费看日本二区| av免费观看日本| 国内精品宾馆在线| 乱码一卡2卡4卡精品| 美女主播在线视频| 久久精品国产鲁丝片午夜精品| 亚州av有码| 国产免费又黄又爽又色| 中文精品一卡2卡3卡4更新| 男人添女人高潮全过程视频| 青春草亚洲视频在线观看| 青春草视频在线免费观看| 激情 狠狠 欧美| 人妻制服诱惑在线中文字幕| 91在线精品国自产拍蜜月| 久久久久久久久久人人人人人人| 国产片特级美女逼逼视频| 精品国产露脸久久av麻豆| 高清欧美精品videossex| 插逼视频在线观看| 丝袜脚勾引网站| 男人舔奶头视频| 免费在线观看成人毛片| 免费播放大片免费观看视频在线观看| 国产69精品久久久久777片| 2022亚洲国产成人精品| 国产精品嫩草影院av在线观看| 少妇裸体淫交视频免费看高清| 久久久久久久亚洲中文字幕| 亚洲欧洲日产国产| 久久av网站| 99九九线精品视频在线观看视频| 亚洲精华国产精华液的使用体验| 午夜福利视频精品| 人妻夜夜爽99麻豆av| 国产精品熟女久久久久浪| 身体一侧抽搐| 国产亚洲欧美精品永久| 人妻 亚洲 视频| 精品少妇久久久久久888优播| 人妻 亚洲 视频| 伦理电影免费视频| 亚洲国产日韩一区二区| 国产男女内射视频| 伦精品一区二区三区| 嫩草影院入口| 国产一区二区三区综合在线观看 | 精品久久久噜噜| 欧美国产精品一级二级三级 | 久久人妻熟女aⅴ| 亚洲综合精品二区| 亚洲无线观看免费| 亚洲国产精品一区三区| 亚洲中文av在线| 国产精品嫩草影院av在线观看| 寂寞人妻少妇视频99o| 三级国产精品片| 亚洲成人中文字幕在线播放| 亚洲av免费高清在线观看| 99精国产麻豆久久婷婷| 国产精品熟女久久久久浪| 男女啪啪激烈高潮av片| 久久精品夜色国产| 亚洲欧美成人综合另类久久久| 亚洲国产成人一精品久久久| 啦啦啦在线观看免费高清www| 日韩在线高清观看一区二区三区| 噜噜噜噜噜久久久久久91| 女性生殖器流出的白浆| 国语对白做爰xxxⅹ性视频网站| av网站免费在线观看视频| 妹子高潮喷水视频| 哪个播放器可以免费观看大片| 涩涩av久久男人的天堂| 精品人妻视频免费看| 国产片特级美女逼逼视频| 九九在线视频观看精品| 亚洲四区av| 国产免费一级a男人的天堂| 男人狂女人下面高潮的视频| 亚洲欧美日韩无卡精品| 久久精品国产a三级三级三级| 啦啦啦在线观看免费高清www| 国产一区有黄有色的免费视频| 国产亚洲午夜精品一区二区久久| 午夜免费观看性视频| 精品少妇久久久久久888优播| 99视频精品全部免费 在线| 国产精品嫩草影院av在线观看| 欧美精品一区二区免费开放| 妹子高潮喷水视频| 亚洲欧洲国产日韩| 成人综合一区亚洲| 国产亚洲91精品色在线| 国产毛片在线视频| 国产精品久久久久成人av| 亚洲精品aⅴ在线观看| 亚洲精品456在线播放app| 免费人妻精品一区二区三区视频| 男人狂女人下面高潮的视频| 在线观看三级黄色| 97在线人人人人妻| 99九九线精品视频在线观看视频| 国产精品久久久久久久电影| 成年人午夜在线观看视频| 亚洲欧美日韩无卡精品| 在线观看人妻少妇| 免费av中文字幕在线| 亚洲成色77777| 人妻少妇偷人精品九色| 只有这里有精品99| 久久久a久久爽久久v久久| 一本—道久久a久久精品蜜桃钙片| 国产成人午夜福利电影在线观看| 97热精品久久久久久| 日本免费在线观看一区| 国产精品伦人一区二区| 日韩三级伦理在线观看| 亚洲av中文字字幕乱码综合| 国产免费一区二区三区四区乱码| 婷婷色麻豆天堂久久| 亚洲av综合色区一区| www.色视频.com| 亚洲三级黄色毛片| 久久人人爽av亚洲精品天堂 | 黑人猛操日本美女一级片| 国产淫语在线视频| 人人妻人人添人人爽欧美一区卜 | 一级毛片电影观看| 人人妻人人看人人澡| 噜噜噜噜噜久久久久久91| 国产熟女欧美一区二区| 久久人人爽人人片av| 最新中文字幕久久久久| 国产伦精品一区二区三区四那| 国产精品人妻久久久影院| 免费看光身美女| 免费观看的影片在线观看| 精品人妻偷拍中文字幕| 97在线人人人人妻| 久久综合国产亚洲精品| 国产av精品麻豆| 青春草国产在线视频| 午夜福利在线在线| 亚洲av成人精品一区久久| 免费观看性生交大片5| 国产熟女欧美一区二区| 国产v大片淫在线免费观看| 久久人人爽人人爽人人片va| 内射极品少妇av片p| 丝袜脚勾引网站| 少妇人妻久久综合中文| av专区在线播放| 成人无遮挡网站| 少妇人妻一区二区三区视频| 久久精品国产鲁丝片午夜精品| 偷拍熟女少妇极品色| 午夜福利网站1000一区二区三区| 啦啦啦啦在线视频资源| 亚洲内射少妇av| 久久国产精品大桥未久av | 青春草视频在线免费观看| 一本色道久久久久久精品综合| 国产一区二区三区综合在线观看 | 日本色播在线视频| 国产欧美日韩精品一区二区| 亚洲国产精品专区欧美| 亚洲无线观看免费| av女优亚洲男人天堂| 久久久午夜欧美精品| av线在线观看网站| 综合色丁香网| 天天躁夜夜躁狠狠久久av| 中文字幕亚洲精品专区| 欧美少妇被猛烈插入视频| av.在线天堂| 性色av一级| 精品久久国产蜜桃| 久久久久久久久久人人人人人人| 国产黄色视频一区二区在线观看| 99久久中文字幕三级久久日本| 不卡视频在线观看欧美| 日本一二三区视频观看| 国内揄拍国产精品人妻在线| 色5月婷婷丁香| 91久久精品国产一区二区成人|