• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The preferential growth and related textural evolution during static recrystallization in a cold-rolled Mg–Zn–Gd alloy

    2021-10-28 10:08:20ZhoYnChenEnHouHn
    Journal of Magnesium and Alloys 2021年3期

    L.Y.Zho,H.Yn,R.S.Chen,En-Hou Hn

    a The Group of Magnesium Alloys and Their Applications,Institute of Metal Research,Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China

    b School of Materials Science and Engineering,University of Science and Technology of China,72 Wenhua Road,Shenyang 110016,China

    Abstract The grain growth process plays an important role in the texture formation in magnesium alloys.The microstructural and micro-textural evolution of a cold-rolled Mg–Zn–Gd alloy during annealing at 350 °C for 60–190min were tracked by quasi-in-situ electron backscatter diffraction method.The results show that grain growth takes place gradually with the annealing time increasing.Moreover,the TD-split texture maintains the texture type but alters in three aspects-the increased tilting angle,the decreased pole intensity and the widened distribution of high-intensity area.Grains with their c-axis tilting 45–70° from normal direction show preferential growth which is closely associated with the texture changes.The original grain size advantage is one of the important factors leading to the growth advantage,some grain boundaries,such as 50–60°[20],50–60°[70],60–70°[20](Σ18b),and 70–80°[1010](Σ10)are also considered to be related to this preferential growth.? 2020 Chongqing University.Publishing services provided by Elsevier B.V.on behalf of KeAi Communications Co.Ltd.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/)Peer review under responsibility of Chongqing University

    Keywords:Grain growth;Preferential growth;Texture;Static recrystallization;Magnesium alloys.

    1.Introduction

    The recrystallization process,especially recrystallization grain growth(GG),has an important effect on the mechanical properties of materials.On one hand,GG can modify grain size which directly affects the yield strength of materials[1-3].On the other hand,the texture evolution during recrystallization,which plays an important role in plasticity and formability[4-6],is related to the GG process closely[7-9].Therefore,it is very necessary to study the GG process.

    Lots of study on preferential grain growth(PGG)have been done in face-centered cubic(fcc)and body-centered cubic(bcc)metals,such as the faster growth of recrystallization cube-orientated grains than others in aluminum(Al)and copper(Cu)[10],the growth advantage ofγ-fiber grains({111}[112])in low-carbon steels[11],and so on.Regarding hexagonal close packing(hcp)metals,such as magnesium(Mg)alloy,few specialized studies on GG have been done and the research on GG is mostly reported in the papers which discuss the formation mechanism of texture.

    For commercial AZ31 and pure Mg,grains with their caxis nearly parallel to the normal direction(ND)show growth advantage and this PGG is considered to be the key factor for the formation of strong basal texture[12,13].However,opinions on the GG in rare-earth(RE)contained Mg alloys are different.Grains with non-basal orientation are observed to grow preferentially in Mg(-Zn)-RE alloy[14-16].For example,Imandoust et al.[16]characterized the inverse pole figure(IPF)sheets of all recrystallization grains and the larger grains over 25μm,then found that the latter show more obvious[111]-[113]//ED(extruded direction)orientation,and thus believed these grains have growth advantage.However,uniform grain growth is reported[17-19].For instance,Guan et al.[19]divided the recrystallization texture into four different components and considered the absence of PGG according to the invariance of average grain size at each annealing state and almost unchanged number fraction during the whole grain growth process.In addition,although the PGG is discussed in some papers,the reason for it is still controversial.Many factors,like grain size difference[9,20,21],storage energy[14,16],grain boundary(GB)misorientation[22,23],solute atoms segregation[16,24],and so on,can affect the GG process.

    Fig.1.(a-g)Quasi-in-situ IPF maps of cold-rolled ZG21 during annealing at 350 °C with various time:(a)60min,(b)65min,(c)75min,(d)85min,(e)100min,(f)130min,(g)190min,and(h)changes of grain number and average grain diameter over annealing time,together with(i)grain diameter distribution under different annealing states displaying the microstructural evolution.

    To address the above issues,a quasi-in-situ electron backscatter diffraction(EBSD)method was used to track the GG process during static recrystallization(SRX)annealing.The studied alloy was cold-rolled Mg–Zn–Gd alloy sheet with special elliptical annular texture[25].The detailed microstructural and micro-textural evolution during annealing process were observed to explain the correlation between GG and texture evolution.Moreover,whether PGG exists and the mechanism for it will be discussed.

    2.Experimental procedure

    The experimental material was hot-rolled Mg–1.73Zn–0.78Gd(wt.%,ZG21)sheet(the detail information of hotrolling can be seen in Ref.[26]).The consecutive multi-passes cold-rolling was performed on hot-rolled ZG21 sheet and the cold rolling direction(RD)was parallel to the RD of the hot-rolled sheet.The per-pass and accumulated reduction is 5% and 20%,respectively.A rectangular sample 12(RD)×8(transverse direction,TD)×2(ND)mm3was cut from the cold-rolled sheet and annealed at 350 °C for 60min to get fully recrystallization microstructure.

    We use quasi-in-situ EBSD to track the grain growth process.The EBSD scans were taken after 60,65,75,85,100,130 and 190min annealing at 350 °C.This sample was mechanical and electrochemical polished for first EBSD scan,then annealed for additional 5min and ion etched using Leica RES101 to remove oxide layer or tarnish for the second scan,and done same treatment for rest scans.Fiducial marks were made on the sample surface before the first scan,so that the same area could be accurately captured each time.The EBSD test and data processing is the same as used in Ref.[27]except the magnification and step length are 500×and 0.6μm,respectively.

    In addition to EBSD,transmission electron microscope(TEM)is used to observe the segregation of solute atoms.The TEM test is processed on JEOL JEM-2100F equipped with energy-dispersive X-ray spectroscopy(EDX)operating at 15kV.The observation plane in not only EBSD but also TEM experiments is RD-TD plane.

    3.Results

    3.1.The quasi-in-situ microstructural and micro-textural evolution during annealing

    After annealing at 350 °C for 60min,fully SRX microstructure is achieved(Fig.1a).The quasi-in-situ microstructural evolution during annealing from 60 to 190min is shown in Fig.1(a–g).With the annealing time increasing,the number of grains decreases from 2042 to 1717 while the average grain diameter increases from 4.9 to 5.4μm(Fig.1h).Fig.1i provides the number fraction of grains with different size under each annealing state.After 60min annealing,the grains with size around 3μm occupy the highest fraction.As annealing time increases(190min),the fraction of 3μm grains decreases obviously and that of grains over 3μm(5–21μm)increases a little,which indicates the grain size distribution tends to be more uniform.According to the above results,we can say that the GG belongs to normal GG process during the 60–190min annealing process.

    Fig.2 presents the micro-textural evolution of the coldrolled ZG21 alloy during annealing.After 60min annealing,the texture is a TD-split texture with two obvious poles tilting 40° from ND towards TD and the high-intensity area(with red and yellow color)is concentrated within 30–60°(the black dotted circle)along TD in the(0002)PF.With annealing time increasing,the texture type maintains the same.However,three changes should be noticed.Firstly,the tilting angle gradually increases to 50°.Secondly,the pole intensity decreases from 5.40 to 4.27.Thirdly,the distribution of highintensity area(indicated by a black dotted circle in Fig.2(a,d,g))is widened(around 30–80°).

    3.2.The PGG during annealing

    It is reasonable to link the normal GG process to the texture evolution.In order to ensure this relationship,the texture is subdivided to four different texture components(TCs)-TCA,TCB,TCC and TCD,the tilting angle from ND of which is 0–20°,20–45°,45–70° and 70–90°,respectively.Figs.3-6 provide the(0002)PF sheets and corresponding IPF maps of TCA-TCD grains during 60–190min annealing.As the(0002)PF displays the c axis distribution of grains,we can say that the angle between c axis of TCA grains and ND is 0–20°.That is,TCA-TCD represent grains with different c axis orientation.

    Grains with TCA orientation distribute homogeneously within the area of 0–20°(Fig.3).For grains with TCB orientation(Fig.4),they distribute toward not only TD but also RD,and the intensity of the latter is a little weaker than that of the former.For TCC grains(Fig.5),they are oriented towards TD preferentially and almost all TCD grains exhibit TD orientations(Fig.6).During the whole annealing process,no obvious change is observed in the orientation distribution of TCA-TCD grains.As shown in Fig.3,many fine grains with TCA orientation can be seen at the initial state(Fig.3a)and the number of them is decreased(Fig.3g)during the GG process.Similarly,the decrease of the number of grains was also observed in the other three type of grains(Figs.4-6).

    In order to explore whether PGG exists among these four orientation grains,the change in average grain size with annealing time of TCA-TCD grains is shown in Fig.7a.With annealing time increasing,the size of TCA-TCD grains gradually increases,among which grains with TCC orientation show obvious growth(from 5.1 to 5.8μm).At 60,65 and 190min annealing states,the order of average grain size is TCD>TCC>TCB>TCA while the order is TCC>TCD>TCB>TCA in the other annealing states,indicating that grains with TCC and TCD orientation show size advantage in the initial state(60min annealing),and thus it is not certain whether there is preferential growth during 60–190min annealing process.

    For further study,the grain number fraction as a function of annealing time is present in Fig.7b.With annealing time increasing,the number fraction of TCA and TCB grains decreases while that of TCC and TCD grains increases,which indicates grains with the former two orientation are swallowed during the GG process.

    Fig.7c shows the change in area fraction with annealing time of TCA-TCD grains.With annealing time increasing,the area fraction of TCA and TCB grains is decreased while that of TCC and TCD grains is increased which is consistent with the change of number fraction.Therefore,it is reasonable to say that two factors can be associated with the change tendency of area fraction.One is the change of number fraction and another is the preferential growth of TCC and TCD grains relative to TCA and TCB grains.If only the former has effects,assuming that all grains grow uniformly,the order of area fraction should be consistent with that of the number fraction among TCA-TCD at the initial(60min)and the final state(190min).However,the actual result is not like this.The number fraction of TCB grains is larger than that of TCC grains during the whole process whereas the area fraction of TCC grains is larger than that of TCB grains after 100min annealing,which indicates the faster growth of TCC grains than TCB grains and thus we can ensure the PGG of TCC grains during 60–190min annealing.In addition,it seems that TCD grains do not show obvious preferential growth based on the current results and they have limited effect on texture because of the low area percentage(Fig.7c).Thus it is not necessary to spend too much energy on TCD grains.

    Fig.2.Quasi-in-situ(0002)PF sheets displaying textural evolution of cold-rolled ZG21 during annealing at 350 °C with various time:(a)60min,(b)65min,(c)75min,(d)85min,(e)100min,(f)130min,(g)190min.

    Fig.3.Quasi-in-situ IPF maps and corresponding(0002)PF sheets of TCA(tilted 0–20° from ND)grains during annealing at 350 °C with various time:(a)60min,(b)65min,(c)75min,(d)85min,(e)100min,(f)130min,(g)190min.

    Then the three texture changes mentioned in Section 3.1 can be explained.During the annealing process,TCC grains with 45–70° from ND grow preferentially leading to the increased texture pole angle.At the initial state,TCB grains have the highest area fraction so that the high-intensity area is concentrated mainly within 30–60°.However,with annealing time increasing,the area fraction of TCC grains increases up to near that of TCB grains until 85min annealing and thus the high-intensity area includes not only 20–45° but also 45–70° away from ND,which leads to the widen distribution of high-intensity area.During 85–190min,the area fraction of TCC grains is a little higher than that of TCB grains and thus the tilting angle of the texture increases to 50°.Considering that the pole intensity is a relative value,the area fraction change caused by faster growth of TCC grains can also explain the deceased texture intensity.

    Fig.4.Quasi-in-situ IPF maps and corresponding(0002)PF sheets of TCB(tilted 20–45°from ND)grains during annealing at 350 °C with various time:(a)60min,(b)65min,(c)75min,(d)85min,(e)100min,(f)130min,(g)190min.

    Fig.5.Quasi-in-situ IPF maps and corresponding(0002)PF sheets of TCC(tilted 45–70° from ND)grains during annealing at 350 °C with various time:(a)60min,(b)65min,(c)75min,(d)85min,(e)100min,(f)130min,(g)190min.

    Fig.6.Quasi-in-situ IPF maps and corresponding(0002)PF sheets of TCD(tilted 70–90° from ND)grains during annealing at 350 °C with various time:(a)60min,(b)65min,(c)75min,(d)85min,(e)100min,(f)130min,(g)190min.

    Fig.7.(a)Grain number fraction,(b)grain area fraction and(c)average grain diameter of each texture component as a function of annealing time..

    4.Discussion

    Considering that the PGG of TCC grains plays an important role in the texture evolution,it is necessary to give further study on it.As stated in theIntroduction,many factors associated with PGG were reported in papers.This section discusses possible reasons.

    4.1.The size difference

    Due to the curvature driven process during normal GG,the grain size difference can contribute to the phenomenon that larger grains will grow whereas smaller grains will shrink[20].Steiner et al.reported grains with{0001}[110]orientation grow faster than grains with{0001}[100]orientation in AZ31 and took the size advantage as the key reason[21].Basu et al.found that grains with non-basal orientation have a larger size than grains with basal orientation and thus believed that non-basal grains show advanced growth behavior[9]in Mg-1Gd alloy.In the current study,TCC grains are larger than TCB and TCA grains in the initial state(60min annealing)as shown in Fig.7a and thus it is reasonable to consider that the original size advantage is an important factor for faster growth of TCC grains during 60–190 min annealing.

    4.2.The storage energy

    Wu et al.[14]indicated that grains with[21]//ED orientation have the advantage to grow over[100]//ED grains and the kernel average misorientation(KAM)map was used to characterize the storage energy.The results show that DRX regions with high KAM value display[21]//ED orientation while DRX regions with low KAM value have mainly[100]//ED orientation.Therefore,the authors deemed that[21]//ED grains with low storage energy can grow toward[100]//ED grains with high energy.The results in Ref.[16]supported this criterion.A similar method to Ref.[14]is used to characterize the correlation between the storage energy and GG.The local misorientation(LocMis)maps which have the same meaning to KAM maps are used to characterize TCA-TCD grains at 85min annealing,as shown in Fig.8.If the above mentioned criterion works in this study,TCC grains should have the lowest LocMis value while other grains occupy higher LocMis value.However,the actual result is not like this-grains are almost always with low energy regardless of texture components(Fig.8).No direct relation can be established between PGG and the storage energy during 60–190min annealing.

    Fig.8.The maps corresponding to LocMis value displaying storage energy in grains of different texture components:(a)TCA,(b)TCB,(c)TCC,(d)TCD after 85min annealing.

    4.3.The property of GBs

    The GG is essentially the process of GB migration.On one hand,the reduction in GB energy is the driving force and thus GBs with low energy tend to be reserved during growth based on simulation results[22].On the other hand,GG rate is closely related to the migration ability of GB[23].Some coincident site lattice(CSL)boundaries were studied to have high migration ability,such asΣ7(38.2°[111]),Σ13a(22.6°[100]),Σ13b(27.8°[111])andΣ17(28.1°[100])infccmetals(Al,Cu,Pb,et al.)as well asΣ13b(27.8°[111])andΣ19(26.5°[110])inbccmetals(Nb,Fe-Si,et al.)[28].As forhcpmetals,just like Mg,Zn,Cd,et al.,onlyΣ13(30°[0001])[29]was reported.

    In order to investigate whether the misorientation angle does effect on the PGG of TCC grains or not,the GB misorientation distribution(GBMD)graphs of four types texture components TCA-TCD at 60,85 and 190min are provided in Fig.9(a–c)and GBMD of total grains is also given as a reference.The GBMD is quite different among TCA-TCD during the whole annealing process and thus it is reasonable to suppose that the misorientation affects the GG.Detailed characterization on GBMD of TCC grains is shown in Fig.9d.From 60 to 190 min annealing,the GB length fraction of the misorientation angles,including 20–30°,50–60°,60–70° and 70–80°,is increased which indicates GBs with these misorientation angles may migrate faster.

    Fig.10 presents the quasi-in-situ GB migration process between grains with no obvious size difference during 85–130min annealing.On one hand,the obvious growth of grain 1 toward grain 2,3,4,7(85–100min),grain 13 toward 12,14(85–100min)and grain 15 toward 14(100–130min)are observed.On the other hand,GBs between grain 1,10(100–130min)and 4,16(85–130min)are relatively stable.From corresponding misorientations shown in Fig.10d,it is obvious to see the GB angles of the former are all distributed within while that of the latter(30–40°)are beyond the abovementioned fast migration angle range in Fig.9d,which is an evidence for our speculation in the previous paragraph.

    Fig.9.The GBMD among grains of different texture components at different annealing states:(a)60min,(b)85min,(c)100min,and(d)the GBMD change of TCC grains with annealing time increasing.

    Fig.10.(a-c)The quasi-in-situ IPF maps displaying the growth between grains with no obvious size difference and(d)corresponding misorientation.

    Fig.11.The misorientation axis distribution of(a-c)20–30°,(d-f)50–60°,(g-i)60–70° and(j-l)70–80° among different texture components(a,d,g,j)total,(b,e,h,k)TCC,(c,f,i,l)other(including TCA,TCB and TCD).

    Table 1The possible near-CSL boundaries in Mg alloy(c/a=1.633)[29].

    Comparing the misorientation axis corresponding to the misorientation angles favorable for migration between TCC grains and other grains(TCA,TCB and TCD)in Fig.11,the favorable axes[0001]for 20–30°,[20]and[70]for 50–60° and 60–70°,[20]and[100]for 70–80° among TCC grains are observed.Relative to other grains,the misorientation of TCC grains show preferred 50–60°[20],50–60°[70],60–70°[20],and 70–80°[100]boundaries.Aligning with the reported possible near-CSL boundaries in Mg alloy listed in Table 1[29],Σ10(70–80°[100])andΣ18b(60–70°[1210])may exist and have high migration ability.

    4.4.The solute atoms segregation

    The solute atoms segregation can have a drag effect on GB migration[15,30-32].PGG of basal grains was reported and attributed to the rapid migration of 30°[0001]GBs in commercial AZ31 alloys[12,29,33,34].With respect to AZ31 alloy,the grain growth was restricted in RE contained Mg alloys[1,35].Zeng et al.[24]speculated that solute atoms are prone to segregate into this special 30°[0001]GB and hinder its migration[16],and then suppress the growth advantage of basal grains,leading to relative PGG of non-basal grains.However,some simulation results indicated that RE solute atoms are preferentially segregated into high-energy GBs to reduce the GB anisotropy and resulting in uniform growth[17].That is,the solute atoms segregation can produce two effects.One is to inhibit GB migration and the other is to reduce GB energy.

    Fig.12.The segregation on different GBs:(a)the STEM image of the grain boundaries GB1-GB6,(b-g)TEM-EDX results displaying the distribution of solute atoms along L1-L6,respectively.

    In our study,the fraction of 30° GB in the GBMD at 60min annealing is small(Fig.9a),which is in agreement with the results in Ref.[36].TEM-EDX results of ZG21 annealed at 350 °C for 1h(Fig.12)presents the segregation of solute atoms on the GB(Fig.12c,GB2)and this segregation is Zn/Gd co-segregation.The co-segregation result of Zn/Ca was reported previously[24]and can produce a stronger drag force.Based on the above two results,the mentioned speculation in the previous paragraph reported in Ref.[24]can also be used to explain the growth advantage of grains with nonbasal orientation(i.e.TCB,TCC and TCD)in ZG21 alloy but can not explain the PGG of TCC grains during annealing for 60–190min.

    However,an interesting phenomenon is displayed in our TEM-EDX results-some GBs(GB1 and GB6 in Fig 12a)show no segregation(Fig.12(a,g))and even if there is segregation,the degree of segregation is not the same(by comparing the segregation of GB2,GB3,GB4 and GB5 in Fig.12(cf),respectively).Although no specific information of misorientation is given,it is reasonable to speculate that the high mobility of GBs mentioned in Section 4.3 may be related to their disadvantage to the solute atoms segregation.

    Conclusions

    The grain growth process,including microstructural and micro-textural evolution,of cold-rolled ZG21 was tracked by quasi-in-situ EBSD method during static recrystallization(SRX)annealing at 350 °C for 60–190min.The influence of PGG on textural evolution and the reasonable factors for PGG are discussed.

    1.This annealing process presents the normal grain growth during SRX.The TD-split texture in the initial state maintains the texture type but changes in three aspects-the increased tilting angle,the decreased pole intensity and widened distribution of high-intensity area.

    2.Grains with c axes tilting 45–70° from ND show PGG according to the comprehensive results including the change of average grain size,number fraction and area fraction with annealing time increasing.Moreover,this PGG is the key factor for the above three texture changes.

    3.The effect of size difference,storage energy,GB property and solute atoms segregation on PGG is discussed.The original size advantage plays an important role in PGG.Moreover,some special GBs,such as 50–60°[20],50–60°[70],60–70°[20](Σ18b),and 70–80°[1010](Σ10)show preferred distribution in grains with growth advantage and may lead to the PGG because of their high migration ability and the absence of solute atoms segregation.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China(NSFC,No.51601193),State Key Program of National Natural Science of China(No.51531002),National Key Research and Development Program of China(No.2016YFB0301104),National Basic Research Program of China(973 Program,No.2013CB632202).

    国产精品久久久久久亚洲av鲁大| 老熟妇仑乱视频hdxx| 老司机深夜福利视频在线观看| 淫妇啪啪啪对白视频| 蜜桃久久精品国产亚洲av| 99热这里只有是精品50| 久久久久免费精品人妻一区二区| 内射极品少妇av片p| 我要搜黄色片| 日韩欧美三级三区| 少妇人妻一区二区三区视频| 亚洲真实伦在线观看| 尾随美女入室| 在线观看舔阴道视频| 真人做人爱边吃奶动态| 亚洲午夜理论影院| 亚洲国产精品合色在线| 两性午夜刺激爽爽歪歪视频在线观看| 看片在线看免费视频| 亚洲av不卡在线观看| 国产单亲对白刺激| 免费在线观看成人毛片| 在现免费观看毛片| 可以在线观看的亚洲视频| 色精品久久人妻99蜜桃| 亚洲七黄色美女视频| 观看美女的网站| 女生性感内裤真人,穿戴方法视频| 久久这里只有精品中国| 亚洲美女视频黄频| 人人妻,人人澡人人爽秒播| 成年女人看的毛片在线观看| 亚洲国产日韩欧美精品在线观看| 国产色爽女视频免费观看| 欧美极品一区二区三区四区| 国产aⅴ精品一区二区三区波| 久99久视频精品免费| av女优亚洲男人天堂| 乱系列少妇在线播放| 一进一出抽搐动态| 给我免费播放毛片高清在线观看| 狂野欧美激情性xxxx在线观看| 久久久久久国产a免费观看| 少妇丰满av| 成人国产一区最新在线观看| 人妻制服诱惑在线中文字幕| 99热这里只有是精品50| 久久99热6这里只有精品| 性插视频无遮挡在线免费观看| 国产精品日韩av在线免费观看| www日本黄色视频网| 国产免费一级a男人的天堂| 内射极品少妇av片p| 尤物成人国产欧美一区二区三区| 桃色一区二区三区在线观看| 熟女人妻精品中文字幕| 美女高潮喷水抽搐中文字幕| 自拍偷自拍亚洲精品老妇| 又紧又爽又黄一区二区| 在线观看舔阴道视频| 中文字幕久久专区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区www在线观看 | 日韩欧美免费精品| 男女下面进入的视频免费午夜| 日本免费一区二区三区高清不卡| 伊人久久精品亚洲午夜| 淫妇啪啪啪对白视频| 免费看日本二区| 亚洲国产色片| 久久午夜福利片| 国产精品爽爽va在线观看网站| 色吧在线观看| 国产一区二区在线观看日韩| 亚洲成人久久性| 日韩精品中文字幕看吧| 亚洲av中文字字幕乱码综合| 婷婷丁香在线五月| 午夜激情欧美在线| 给我免费播放毛片高清在线观看| а√天堂www在线а√下载| 亚洲国产欧美人成| 一a级毛片在线观看| 亚洲专区中文字幕在线| 国产精品98久久久久久宅男小说| 日本一本二区三区精品| 干丝袜人妻中文字幕| 一本久久中文字幕| 国产一区二区亚洲精品在线观看| 久久欧美精品欧美久久欧美| 久久香蕉精品热| 国产精品亚洲美女久久久| 日韩一区二区视频免费看| 精品久久久噜噜| 国内久久婷婷六月综合欲色啪| 日韩 亚洲 欧美在线| 日本 欧美在线| 亚洲精品色激情综合| 中文字幕av成人在线电影| 亚洲成人免费电影在线观看| 搞女人的毛片| 赤兔流量卡办理| 欧美一级a爱片免费观看看| 又爽又黄无遮挡网站| 蜜桃亚洲精品一区二区三区| 精品日产1卡2卡| 内地一区二区视频在线| 如何舔出高潮| 日本一本二区三区精品| 婷婷亚洲欧美| 成人特级黄色片久久久久久久| 999久久久精品免费观看国产| 成人国产一区最新在线观看| 国产真实伦视频高清在线观看 | 99在线视频只有这里精品首页| 久99久视频精品免费| 乱系列少妇在线播放| 韩国av在线不卡| 亚洲一区高清亚洲精品| 99精品久久久久人妻精品| 成人av在线播放网站| 很黄的视频免费| 欧美色欧美亚洲另类二区| 日韩欧美精品免费久久| 亚洲精品久久国产高清桃花| 久久久久久久精品吃奶| 99久久精品热视频| 99久久久亚洲精品蜜臀av| 人人妻人人澡欧美一区二区| 18禁黄网站禁片免费观看直播| 欧美日韩精品成人综合77777| 日本五十路高清| 午夜影院日韩av| 美女免费视频网站| 亚洲成人中文字幕在线播放| 美女大奶头视频| 日韩精品青青久久久久久| 国产三级中文精品| 日本色播在线视频| 热99在线观看视频| 久久久久久伊人网av| 我要看日韩黄色一级片| 免费观看人在逋| 最近中文字幕高清免费大全6 | 午夜免费激情av| 99精品久久久久人妻精品| 桃色一区二区三区在线观看| aaaaa片日本免费| 99riav亚洲国产免费| 最近中文字幕高清免费大全6 | 美女cb高潮喷水在线观看| 国产成人aa在线观看| 精品久久久久久成人av| 国产精品一区二区免费欧美| 国产 一区 欧美 日韩| 高清在线国产一区| 亚洲av成人精品一区久久| 免费在线观看日本一区| 午夜视频国产福利| 成人欧美大片| av专区在线播放| 韩国av一区二区三区四区| 美女被艹到高潮喷水动态| 搡老熟女国产l中国老女人| 熟妇人妻久久中文字幕3abv| 国产精品98久久久久久宅男小说| 国产精品1区2区在线观看.| 国产精品久久久久久亚洲av鲁大| 日韩中字成人| 欧美日韩中文字幕国产精品一区二区三区| 欧美一区二区亚洲| 色播亚洲综合网| 少妇猛男粗大的猛烈进出视频 | 欧美一区二区亚洲| 一级毛片久久久久久久久女| 日韩欧美免费精品| 一边摸一边抽搐一进一小说| 久久久久九九精品影院| 麻豆成人午夜福利视频| 欧美色欧美亚洲另类二区| 韩国av在线不卡| 特大巨黑吊av在线直播| 日韩欧美在线二视频| 国产色爽女视频免费观看| 在线观看舔阴道视频| 国产一区二区三区视频了| 12—13女人毛片做爰片一| 国内精品美女久久久久久| 国产高潮美女av| 日本五十路高清| 亚洲最大成人中文| 国产一区二区三区视频了| 久久久午夜欧美精品| 五月伊人婷婷丁香| 色在线成人网| 国产免费av片在线观看野外av| 高清日韩中文字幕在线| 少妇被粗大猛烈的视频| 久久人人爽人人爽人人片va| 久久久国产成人免费| 中文字幕久久专区| 国产午夜精品论理片| 999久久久精品免费观看国产| 亚洲乱码一区二区免费版| 99久久中文字幕三级久久日本| 国产亚洲91精品色在线| 我要搜黄色片| 午夜福利视频1000在线观看| 亚洲成人久久爱视频| 特大巨黑吊av在线直播| 小蜜桃在线观看免费完整版高清| 一个人看的www免费观看视频| 国产精品98久久久久久宅男小说| 欧美日韩瑟瑟在线播放| 国产成人一区二区在线| 日日摸夜夜添夜夜添av毛片 | 永久网站在线| 色哟哟哟哟哟哟| 成人毛片a级毛片在线播放| 国产精品久久久久久亚洲av鲁大| 亚洲精品日韩av片在线观看| 3wmmmm亚洲av在线观看| 高清日韩中文字幕在线| 色综合站精品国产| 国产黄色小视频在线观看| 日韩欧美精品v在线| 久久精品久久久久久噜噜老黄 | 人妻夜夜爽99麻豆av| 日韩欧美国产一区二区入口| 日韩精品青青久久久久久| 男女啪啪激烈高潮av片| 美女大奶头视频| 亚洲综合色惰| 国产亚洲91精品色在线| 我的女老师完整版在线观看| 日韩欧美一区二区三区在线观看| 日本精品一区二区三区蜜桃| 丰满乱子伦码专区| 日韩欧美一区二区三区在线观看| 久久久久久伊人网av| 日日撸夜夜添| 国产私拍福利视频在线观看| 99久久精品热视频| 少妇裸体淫交视频免费看高清| 国产精品一区www在线观看 | 黄色日韩在线| 日韩人妻高清精品专区| 国产免费av片在线观看野外av| 偷拍熟女少妇极品色| 亚洲五月天丁香| 一级黄片播放器| 日本在线视频免费播放| 真人做人爱边吃奶动态| 伦理电影大哥的女人| 亚洲乱码一区二区免费版| 久久人人爽人人爽人人片va| 日日干狠狠操夜夜爽| 可以在线观看的亚洲视频| 九九爱精品视频在线观看| 特级一级黄色大片| 国产老妇女一区| 精品人妻视频免费看| 十八禁网站免费在线| 日本 欧美在线| 国产人妻一区二区三区在| 亚洲精品乱码久久久v下载方式| 午夜免费男女啪啪视频观看 | 91在线观看av| 熟女电影av网| 精品人妻1区二区| av国产免费在线观看| 天堂√8在线中文| 欧美zozozo另类| 校园人妻丝袜中文字幕| 成人性生交大片免费视频hd| 男人狂女人下面高潮的视频| 中文在线观看免费www的网站| 国产午夜精品论理片| 日韩欧美 国产精品| 最新中文字幕久久久久| 69av精品久久久久久| 欧美色欧美亚洲另类二区| 国产av麻豆久久久久久久| 日本黄色视频三级网站网址| 欧美日韩精品成人综合77777| 成人特级av手机在线观看| 亚洲av免费高清在线观看| 免费黄网站久久成人精品| 中文字幕av在线有码专区| 亚洲一区二区三区色噜噜| 亚洲18禁久久av| 一本久久中文字幕| 国产在线精品亚洲第一网站| 在线观看舔阴道视频| 麻豆久久精品国产亚洲av| 男女下面进入的视频免费午夜| 亚洲精品国产成人久久av| 成人午夜高清在线视频| av女优亚洲男人天堂| 乱码一卡2卡4卡精品| 国产精品国产高清国产av| 日韩精品青青久久久久久| 亚洲熟妇中文字幕五十中出| 99国产精品一区二区蜜桃av| 欧美3d第一页| 人人妻人人看人人澡| 身体一侧抽搐| 久久精品国产清高在天天线| 欧美zozozo另类| 韩国av在线不卡| 人妻丰满熟妇av一区二区三区| av天堂中文字幕网| 精品人妻视频免费看| 欧美日韩中文字幕国产精品一区二区三区| 99riav亚洲国产免费| 极品教师在线视频| 国产伦一二天堂av在线观看| 悠悠久久av| 国产主播在线观看一区二区| 国内精品美女久久久久久| 免费电影在线观看免费观看| av视频在线观看入口| 免费看av在线观看网站| 午夜日韩欧美国产| 男女啪啪激烈高潮av片| 久久久久久久久久黄片| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有是精品在线观看| 欧美日韩国产亚洲二区| 男人舔奶头视频| 日本精品一区二区三区蜜桃| 99久久精品国产国产毛片| 国产 一区 欧美 日韩| 一个人看的www免费观看视频| 午夜福利18| а√天堂www在线а√下载| 女同久久另类99精品国产91| 十八禁网站免费在线| 国产v大片淫在线免费观看| 国产成人a区在线观看| 九九在线视频观看精品| 久久这里只有精品中国| 少妇裸体淫交视频免费看高清| 免费在线观看成人毛片| 免费一级毛片在线播放高清视频| 三级国产精品欧美在线观看| 国产精品久久久久久精品电影| 午夜老司机福利剧场| 午夜精品一区二区三区免费看| 亚洲成人精品中文字幕电影| 亚洲av一区综合| 国产在视频线在精品| 身体一侧抽搐| av视频在线观看入口| 最近最新中文字幕大全电影3| 97碰自拍视频| 色哟哟·www| 热99re8久久精品国产| 99久久精品一区二区三区| 午夜影院日韩av| 久久午夜亚洲精品久久| 18+在线观看网站| 国产精品,欧美在线| 能在线免费观看的黄片| 欧美日韩国产亚洲二区| 亚洲欧美精品综合久久99| 黄色一级大片看看| 久久精品国产清高在天天线| 在线观看午夜福利视频| 看片在线看免费视频| 少妇丰满av| 日本欧美国产在线视频| 国产精品不卡视频一区二区| 人妻夜夜爽99麻豆av| 成人三级黄色视频| 国产精品爽爽va在线观看网站| 亚洲精华国产精华精| 高清在线国产一区| 又紧又爽又黄一区二区| 在线免费观看的www视频| 国产亚洲精品久久久com| 国产综合懂色| 97碰自拍视频| 丝袜美腿在线中文| 欧洲精品卡2卡3卡4卡5卡区| 悠悠久久av| 国产高清有码在线观看视频| 国产精品永久免费网站| 国产免费男女视频| 日本五十路高清| 国产精华一区二区三区| 天堂网av新在线| 亚洲人成网站在线播放欧美日韩| 九色成人免费人妻av| 国产69精品久久久久777片| 欧美激情久久久久久爽电影| 国产精品,欧美在线| 桃色一区二区三区在线观看| av天堂中文字幕网| or卡值多少钱| 高清在线国产一区| 日本与韩国留学比较| 嫁个100分男人电影在线观看| 成人国产综合亚洲| 最近视频中文字幕2019在线8| 九九爱精品视频在线观看| 欧美+亚洲+日韩+国产| 久久午夜亚洲精品久久| 久久久久精品国产欧美久久久| 亚洲性久久影院| or卡值多少钱| 亚洲在线观看片| 亚洲av.av天堂| 日本在线视频免费播放| 国产伦精品一区二区三区视频9| 99久国产av精品| 人人妻人人澡欧美一区二区| 久久久久性生活片| 国产一区二区三区视频了| 久久久久国内视频| 国产乱人伦免费视频| 久久久久性生活片| 国产午夜福利久久久久久| www.www免费av| 婷婷亚洲欧美| 日本免费a在线| 成人一区二区视频在线观看| 88av欧美| 很黄的视频免费| 日韩国内少妇激情av| 精品午夜福利在线看| 亚洲天堂国产精品一区在线| 日本色播在线视频| 国产美女午夜福利| 国产精品一区二区三区四区免费观看 | 国产日本99.免费观看| 两个人的视频大全免费| 亚洲五月天丁香| 亚洲国产精品合色在线| 日本爱情动作片www.在线观看 | av天堂中文字幕网| 欧美xxxx黑人xx丫x性爽| 亚洲av.av天堂| 欧美日本亚洲视频在线播放| 能在线免费观看的黄片| 九九在线视频观看精品| 国模一区二区三区四区视频| 精品不卡国产一区二区三区| 久久6这里有精品| 欧美激情国产日韩精品一区| 女生性感内裤真人,穿戴方法视频| 成人亚洲精品av一区二区| 亚洲国产高清在线一区二区三| 女人十人毛片免费观看3o分钟| 国内精品一区二区在线观看| 欧美一区二区亚洲| 国产成人一区二区在线| 最近视频中文字幕2019在线8| 麻豆一二三区av精品| 成人特级av手机在线观看| 黄色欧美视频在线观看| 免费高清视频大片| 国产精品一区二区免费欧美| 精品乱码久久久久久99久播| 精品久久久久久久久久久久久| 婷婷色综合大香蕉| 国产精品久久久久久久久免| 亚洲欧美日韩无卡精品| 99精品久久久久人妻精品| 成人av一区二区三区在线看| 精品欧美国产一区二区三| 成人毛片a级毛片在线播放| 欧美成人一区二区免费高清观看| 国产高清不卡午夜福利| 男女视频在线观看网站免费| av福利片在线观看| 久久久久国内视频| 麻豆成人av在线观看| 在线观看美女被高潮喷水网站| 国产亚洲精品综合一区在线观看| 色哟哟·www| 欧美xxxx性猛交bbbb| 午夜福利在线观看免费完整高清在 | 韩国av在线不卡| 国产三级中文精品| 亚洲av免费高清在线观看| 日本黄色视频三级网站网址| 午夜福利视频1000在线观看| 亚洲第一区二区三区不卡| 色精品久久人妻99蜜桃| 伦精品一区二区三区| 天堂动漫精品| 女的被弄到高潮叫床怎么办 | 日本欧美国产在线视频| 亚洲中文字幕一区二区三区有码在线看| 午夜福利在线观看吧| 欧美区成人在线视频| 桃红色精品国产亚洲av| 日本黄大片高清| 精品人妻熟女av久视频| 男人舔奶头视频| 久久久久性生活片| 国产精品福利在线免费观看| 成人鲁丝片一二三区免费| 日本与韩国留学比较| 亚洲一区高清亚洲精品| 亚洲自拍偷在线| 欧美丝袜亚洲另类 | 精品人妻熟女av久视频| 一区二区三区激情视频| 简卡轻食公司| 老熟妇仑乱视频hdxx| 美女 人体艺术 gogo| 成人毛片a级毛片在线播放| 在线免费十八禁| 欧美日韩亚洲国产一区二区在线观看| 午夜福利在线在线| 欧美色欧美亚洲另类二区| 国产午夜精品久久久久久一区二区三区 | 午夜免费男女啪啪视频观看 | 日本爱情动作片www.在线观看 | 黄色丝袜av网址大全| 一级a爱片免费观看的视频| 熟女人妻精品中文字幕| 在线观看66精品国产| 色播亚洲综合网| 亚洲成av人片在线播放无| 国产精品人妻久久久影院| 国产综合懂色| 99热只有精品国产| 国产精品久久久久久久久免| 中文字幕av成人在线电影| 一本一本综合久久| 白带黄色成豆腐渣| 亚洲av第一区精品v没综合| 免费av观看视频| 精品久久久久久久久av| 亚洲天堂国产精品一区在线| 日韩欧美国产一区二区入口| 高清毛片免费观看视频网站| 欧美激情久久久久久爽电影| 成人特级av手机在线观看| 免费人成在线观看视频色| 国产男靠女视频免费网站| 丝袜美腿在线中文| 国内精品久久久久精免费| 91麻豆精品激情在线观看国产| 精品久久久久久成人av| 精品国产三级普通话版| 最新在线观看一区二区三区| 不卡一级毛片| 亚洲四区av| 夜夜看夜夜爽夜夜摸| 给我免费播放毛片高清在线观看| 午夜日韩欧美国产| 一个人免费在线观看电影| 日日摸夜夜添夜夜添小说| 国产一区二区激情短视频| 美女被艹到高潮喷水动态| 欧美日韩中文字幕国产精品一区二区三区| 国产探花在线观看一区二区| 嫩草影视91久久| 一个人观看的视频www高清免费观看| 不卡视频在线观看欧美| 免费看美女性在线毛片视频| 国产免费男女视频| 日本a在线网址| 欧美日韩瑟瑟在线播放| 亚洲国产精品成人综合色| 国语自产精品视频在线第100页| 91久久精品国产一区二区成人| 久久久久国产精品人妻aⅴ院| 免费搜索国产男女视频| 国产老妇女一区| 99久久精品国产国产毛片| 国产一级毛片七仙女欲春2| 国内精品宾馆在线| 在线观看免费视频日本深夜| 一个人免费在线观看电影| 亚洲欧美日韩东京热| 国产黄色小视频在线观看| 亚洲最大成人中文| 男女之事视频高清在线观看| 久久久久免费精品人妻一区二区| 听说在线观看完整版免费高清| 国产午夜精品论理片| 久久6这里有精品| 少妇高潮的动态图| 久久天躁狠狠躁夜夜2o2o| 日韩国内少妇激情av| 少妇裸体淫交视频免费看高清| 国产免费男女视频| 国产精品一区二区三区四区久久| 精品一区二区三区av网在线观看| 亚洲综合色惰| 亚洲天堂国产精品一区在线| 日韩欧美一区二区三区在线观看| 蜜桃久久精品国产亚洲av| 一a级毛片在线观看| 精品无人区乱码1区二区| 国产三级中文精品| 可以在线观看的亚洲视频| 身体一侧抽搐| 一本一本综合久久| 国产熟女欧美一区二区| 夜夜爽天天搞| 少妇熟女aⅴ在线视频| 欧美一区二区亚洲| 日日摸夜夜添夜夜添av毛片 | 成年免费大片在线观看| 99国产极品粉嫩在线观看| 国语自产精品视频在线第100页| 男女之事视频高清在线观看| 免费无遮挡裸体视频| 久久久久九九精品影院|