• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pseudo-Predictor Feedback Control for Multiagent Systems with Both State and Input Delays

    2021-10-23 02:21:52QingsongLiu
    IEEE/CAA Journal of Automatica Sinica 2021年11期

    Qingsong Liu

    Abstract—This paper is concerned with the consensus problem for high-order continuous-time multiagent systems with both state and input delays.A novel approach referred to as pseudopredictor feedback protocol is proposed.Unlike the predictorbased feedback protocol which utilizes the open-loop dynamics to predict the future states,the pseudo-predictor feedback protocol uses the closed-loop dynamics of the multiagent systems to predict the future agent states.Full-order/reduced-order observer-based pseudo-predictor feedback protocols are proposed,and it is shown that the consensus is achieved and the input delay is compensated by the proposed protocols.Necessary and sufficient conditions guaranteeing the stability of the integral delay systems are provided in terms of the stability of the series of retarded-type time-delay systems.Furthermore,compared with the existing predictor-based protocols,the proposed pseudo-predictor feedback protocol is independent of the input signals of the neighboring agents and is easier to implement.Finally,a numerical example is given to demonstrate the effectiveness of the proposed approaches.

    I.INTRODUCTION

    SINCE multiagent systems have very wide applications in many problem domains,such as,sensor networks [1],power systems [2] and social networks [3],cooperative control of multiagent systems has received considerable attention in the past two decades.Consensus problem is one of the most important fundamental problems in cooperative control of multiagent systems.With the development of the consensus theoretical framework for the multiagent systems[4],the consensus problem has been widely studied and many important results have been reported in the literature [5]–[8].For example,in the mixed environment of communication and broadcast,the consensus problem for the scalar multiagent systems was considered in [9],by developing the gain scheduling approach and the self-triggered mechanism,the consensus of continuous-time multiagent systems with actuator saturation was studied in [10],[11],for the secondorder multiagent systems,the finite-time consensus problem was considered in [12] and the necessary and sufficient conditions for the consensus were proposed in [13],and the(average)consensus problem for the multiagent systems was investigated in [14],[15].

    Predictor-based feedback protocol is an efficient approach for studying the consensus problem of multiagent systems and the design of stabilizing controllers [16],and there are a large number of results reported in the literature.For instance,for multiagent systems with both input,output and/or communication delays,the leader-follower consensus problem was studied in [17] via the predictor based feedback protocols,and the consensus problem was addressed by the discrete-time predictor feedback protocols in [18],the observer-based predictor feedback approach was established in [19] to address the consensus problem of multiagent systems with input delays,for (nonlinear)multiagent systems with input delay,the consensus problem was considered by the Artstein reduction based predictor feedback approach in [20],and the same problem was studied via the truncated predictor feedback approach in [21],and the output/robust consensus for multiagent systems was investigated in [22]–[24] by some predictor-based feedback protocols.

    Time delays related to information transmission cannot be ignored in practical applications.Input delay is one source of time delay since the packets arriving at each agent require the processing and connecting time [25].Generally,predictorbased state feedback protocols can be utilized to compensate the input delay such that the consensus is achieved in multiagent systems.Unfortunately,the predictor-based feedback protocols contain integral terms of the control input,thus involve the input signals of the neighboring agents (see,e.g.[20],[24] and [26])and may suffer some implementation problems [27],which is the main defect of the predictor-based feedback protocols.In order to circumvent this defect,for the continuous-time multiagent systems with both input and communication delays,the truncated predictor feedback protocol and the full-order observer-based truncated predictor feedback protocol were proposed in [28],and the reducedorder observer-based truncated predictor feedback protocol was later established in [29].Recently,the nested predictor feedback protocol and observer-predictor feedback protocol were respectively proposed in [30],[31] to study the consensus problem for discrete-time multiagent systems.

    For the multiagent systems with both state and input delays,it is unfortunate that the predictor-based feedback protocols involve the input signals of the neighboring agents [20],[24],[26] and may suffer some implementation problems [27],and furthermore,the truncated predictor feedback protocol proposed in [28] may fail to solve the consensus problem.In order to overcome the main shortcoming of the predictorbased feedback protocols,the aim of this paper is to present an alternative protocol to consider the consensus problem for continuous-time multiagent systems with both state and input delays.Differently from the predictor-based feedback protocol which uses the open-loop dynamics to predict the future states,the proposed pseudo-predictor feedback protocol utilizes the closed-loop dynamics of the multiagent systems to predict the future agent states,and moreover,the proposed protocol is easier to implement since it is independent of the control signals of the neighboring agents and does not involve the integral terms of the control input.Full-order/reducedorder observer-based pseudo-predictor feedback protocols are also established,it is proved that the consensus is achieved and the input delay is compensated.In addition,necessary and sufficient conditions guaranteeing the stability of the integral delay systems are offered on the basis of the stability of the series of retarded-type time-delay systems.Finally,a numerical example is given to illustrate the effectiveness of the proposed protocols.

    The remainder of this paper is organized as follows:In Section II,we give some preliminaries and the problem formulation.The pseudo-predictor feedback protocol is established in Section III.Full-order/reduced-order observerbased pseudo-predictor feedback protocols are established in Section IV.In Section V,a numerical example is worked out to support the obtained theoretical results,and Section VI concludes this paper.

    Notations:The notations used in this paper are fairly standard.The identity matrix in Rn×nis denoted byIn.For two integerspandqwithp≤q,the symbol I [p,q] refers to the set{p,p+1,...,q}.Let L(f(t))denote the Laplace transformation of the time functionf(t).For a given complex number λ,λ?is the conjugate of λ.The symbol ? denotes the Kronecker product.For the variablexi∈Rn,denotes the predicted value ofxi(s),and,ifs≤0,then=xi(s).

    II.PROBLEM FORMULATION AND PRELIMINARIES

    A.Problem Formulation

    We consider the following multiagent system with both state and input delays

    wherexi∈Rn,yi∈Rp,ui∈Rmdenote respectively the state,the output and the control of agenti,A0,A1∈Rn×nandB∈Rn×mare constant matrices,h>0 is the state/input delay,andN≥1 is a given integer,which denotes the number of agents.

    In this paper,the weighted directed graph G(V,E,A)will be characterized as the communication topology among these agents,where V,E and A=[αij]∈RN×Ndenote the node set,the edge set and the weighted adjacency matrix,respectively,L=[lij]∈RN×Nis the corresponding Laplacian,and some other basic concepts and properties in graph theory can be found in [32].

    We assume that agentireceives the state,output,and input information of its neighboring agents under the following rule:

    wherei∈I[1,N].

    The aim of this paper is to design pseudo-predictor feedback protocols and full-order/reduced-order observer-based pseudopredictor feedback protocols such that multiagent system (1)achieves consensus.Hence,we first recall the definition of consensus below.

    Definition 1 [13]:The consensus of multiagent system (1)is achieved if=0,i,j∈I[1,N].

    Now,the problems to be solved in the present paper can be stated as follows.

    Problem 1:The consensus of multiagent system (1)can be achieved by the following designed pseudo-predictor feedback protocol

    ui(t)=F1(χi(t+θ)),i∈I[1,N]

    where θ∈[?h,0] and F1is a linear map.

    Problem 2:The consensus of multiagent system (1)can be achieved by the following designed (full-order/reduced-order)observer-based pseudo-predictor feedback protocol

    where θ∈[?h,0] and Fl,l∈I[2,5] are some linear maps,and moreover,limt→∞ηi(t)=0.

    ForA1=0,Problems 1 and 2 were studied in [32] by the truncated predictor feedback protocol and observer-based output feedback protocols.It is worth mentioning that the truncated predictor feedback protocol proposed in [32] may fail to solve the consensus problem for the multiagent systems with both state and input delays.Notice that the problem was solved by the conventional predictor feedback protocol (see,e.g.[20],[24] and [26]).Unfortunately,the predictor-based feedback protocolsui(t)depend on the input signals of the neighboring agentsuj(t),j∈I[1,N],i≠j,and involve the history information of the neighboring agentsuj(t+θ),θ ∈[?h,0],j∈I[1,N][20],[24],[26].In addition,the resulting protocols contain integral terms,such as

    which may suffer some implementation problems [27].In this paper,we will give a new solution to Problems 1 and 2 (see Section III and Section IV for details).

    B.Preliminaries

    In this subsection,we introduce some assumptions as follows.

    Assumption 1:The weighted directed graphG(V,E,A)contains a directed spanning tree.

    By the above assumption,there exists a nonsingular matrix Ψ=[1Nψ2··· ψN]∈CN×N,such that

    where λi,i∈I[1,N] denote the eigenvalues of the Laplacian matrixL,and ?i∈{0,1},i∈I[2,N?1].Let ?N=0.Assumption 1 implies that R e(λi)>0,i∈I[2,N].

    In what follows,we give another assumption which is also satisfied in [30].

    Assumption 2:There exist feedback gainsK0∈Rm×nandK1∈Rm×nsuch that,i∈I[1,N],

    are asymptotically stable.

    We mention that the design of the feedback gainsK0andK1in Assumption 2 is given by Lemma 1 in Appendix A,which is easily obtained by [33].

    To design the full-order observer-based pseudo-predictor feedback protocols,we present the following assumption which is also satisfied in [30],[34].

    Assumption 3:There exist two matricesF0∈Rn×pandF1∈Rn×psuch that

    is asymptotically stable.

    Notice that Assumption 3 is dual to Assumption 2 in the absence of λi.The design of the matricesF0andF1is given by Lemma 2 in Appendix A,which is easily obtained by applying Lemma 1 in Appendix A.

    In order to design the reduced-order observer-based pseudopredictor feedback protocols,we give the following assumption which is also satisfied in [30],[34].

    Assumption 4:There exist two matricesE0∈R(n?p)×(n?p)andE1∈R(n?p)×(n?p)such that

    is asymptotically stable.

    III.PSEUDO-PREDICTOR BASED STATE FEEDBACk PROTOCOLS

    In this section,we will establish the pseudo-predictor based state feedback protocol to solve Problem 1.Notice that

    Design a predictor-based feedback protocol as

    Clearly,we need to predict χi(t+h),i∈I[1,N] in (7).It then follows from the open-loop system (6)that χi(t+h),i∈I[1,N]can be predicted as

    by which,we can get

    However,protocol (9)depends on the signalsuj(t),j∈I[1,N],i≠j,and involves the history information ofuj(t+θ),θ ∈[?h,0],j∈I[1,N],and moreover,since protocol(9)contains integral terms (3),it may suffer some implementation problems [27].To solve this problem,we develop the pseudo-predictor feedback approach as follows[35],namely,using the closed-loop dynamics of the multiagent systems

    instead of (6)to predict the future agent states χi(t+h).By virtue of (8),whereA0is replaced by,A1is replaced by,andvi=0,we get

    which is referred to as pseudo-predictor feedback protocol.

    To go further,define the following variables as

    The following theorem shows that the consensus of multiagent system (1)can be achieved by the pseudo-predictor feedback protocol (12).

    Theorem 1:Let Assumptions 1 and 2 be satisfied.Then,Problem 1 is solved by the pseudo-predictor feedback protocol(12)if the integral delay systems (IDSs)

    are all asymptotically stable.

    Proof:Notice that the characteristic equations for system(10)and IDSs (14)can be written as,respectively

    and

    where ?=In?.Clearly,multiagent system (6)and(7)can be rewritten as

    where ρ and μ are defined respectively by

    and

    It follows that

    and

    Notice that the closed-loop system (16)is the upper triangular structure.Then,we can get that system (16)is asymptotically stable if and only if

    are asymptotically stable,wherecan be predicted by the closed-loop dynamics of the multiagent systems,namely

    in which

    Note that

    wherePi(s)=L(σi(t)),by which,system (17)in the frequency domain can be represented as

    whereUi(s)=L(μi(t)),i∈I[2,N],and

    The characteristic equation of system (19)is then given by[36]

    where we have noticed that det(In+MN)=det(Im+NM)withMandNhaving appropriate dimensions.Hence,it follows from Assumption 2 that

    By (4),(13)and (18),we can get

    where

    Then,we have limt→∞∥xi(t)?ξ1(t)∥=0,i∈I[1,N] as the first column of Ψ is 1Nandx(t)=(Ψ?In)ξ(t). ■

    At the end of this section,the necessary and sufficient conditions guaranteeing the stability of IDSs (14)are obtained by the following corollary.

    Corollary 1:Under the assumption thatis Hurwitz,IDSs (14)are asymptotically stable if and only if

    are asymptotically stable.

    Proof:Notice that

    which is exactly the characteristic equation for system (23),where ? is defined in the proof of Theorem 1,we have noticed that (15)and det(In+MN)=det(Im+NM) withMandNhaving appropriate dimensions. ■

    Obviously,the pseudo-predictor feedback protocol (12)is independent of the signalsuj(t),j∈I[1,N],i≠j,and does not contain the history information ofuj(t+θ),θ ∈[?h,0],j∈I[1,N]and the integral term (3).

    IV.OBSERvER-BASED PSEUDO-PREDICTOR FEEDBACk PROTOCOLS

    In this section,we will solve Problem 2 by designing the observer-based pseudo-predictor feedback protocols.In terms of (1)and (13),we have

    Now,we present the main results in this section by the following theorem.

    Theorem 2:Let Assumptions 1–3 be satisfied.Then,Problem 2 is solved by the following protocol:

    Moreover,limt→∞∥ηi(t)∥=0,i∈I[1,N].

    Proof:In view of (13),we have

    where σ and ξ are defined respectively by (18)and (22).It follows from (4)and (26)that σ1(t)=0,

    where ξN+1(t)=0.Define the new variables as

    By (24)and (25),we get

    which implies that limt→∞∥ei(t)∥=0,i∈I[1,N] with the help of Assumption 3.Consider the following artificial protocol

    it then follows from (24)that

    by which,we can further get

    wheres∈[?2h,0] and Φ is a linear map.We note that system(30)is equivalent to=A0σ1(t)+A1σ1(t?h)and

    wherei∈I[2,N],σN+1=0,?N+1=0,(Ψ?1?In)e,and Φ1and Φ2are some linear maps.It follows from Assumption 2 that

    where we have noticed that σ1(t)=0 and limt→∞∥ei(t)∥=0,i∈I[1,N].By (27),we can get limt→∞∥ξi(t)∥=0,i∈I[2,N].Hence,we can further get

    which means that the consensus is achieved.In addition,we have

    where we have used limt→∞∥ei(t)∥=0 and limt→∞∥δi(t)∥=0,i∈I[1,N].

    In view of (29),we notice that

    which is equivalent to the protocolui(t)in (25)with the help of (28). ■

    Notice that the full-order observer-based pseudo-predictor feedback protocol is designed in Theorem 2.We mention that the consensus problem can also be solved by designing the reduced-order observer-based pseudo-predictor feedback protocol.

    Now,we present the main results by the following corollary,whose proof is moved to Appendix B.

    Corollary 2:Let Assumptions 1,2 and 4 be satisfied.Then,Problem 2 is solved by the following reduced-order observerbased pseudo-predictor feedback protocol:

    where (H,Pi,Pi,Ri,Ri,Qi,Qi,) satisfiesHA0?E0H=T0CandHA1?E1H=T1C,and

    in whichi∈I[1,N] ands∈[?h,0].Moreover,limt→∞∥ζi(t)∥=0,i∈I[1,N].

    V.A NUMERICAL EXAMpLE

    In this section,a numerical example is offered to illustrate the effectiveness of the proposed protocols.We consider four agents whose dynamics obeys the form of (1),where the coefficient matrices are set as

    andh=0.5.Let the weighted directed network be given by Fig.1,the corresponding Laplacian matrix is presented by

    and the eigenvalues of Laplacian matrixLare 0,2,2 and 2.

    Fig.1.Communication network.

    1)Pseudo-Predictor Feedback Protocol:By virtue of Lemma 1 in Appendix A,the feedback gain matricesK0andK1are given by

    K0=[?0.0096?0.6993 0.0845?0.4349]

    K1=[0.0007?0.9785?0.0087 0.0227].

    The initial conditions for the four agents are set asx1(0)=[1,?1,2,?3]T,x2(0)=[?2,1,?2,1]T,x3(0)=[?1,?2,1,2]Tandx4(0)=[2,1,?3,?1]T.The states trajectories ofxij?x1j,i∈I[2,4],j∈I[1,4] are recorded in Fig.2.The consensus of this multiagent system is clearly achieved and the input delay is compensated by the proposed pseudopredictor feedback protocol.To compare with the predictorbased feedback protocols,the states trajectories ofxij?x1j,i∈I[2,4],j∈I[1,4] for this multiagent system (1)with protocol (9)are also recorded in Fig.3.Unfortunately,the consensus of this multiagent system is not achieved by protocol (9).

    2)Observer-Based Pseudo-Predictor Feedback Protocol:In virtue of Lemma 2 in Appendix A,the observer gain matricesF0andF1can be designed as

    The initial conditions for the observer are set as η1(0)=[2,1,1,?2]T,η2(0)=[?1,?1,?1,2]T,η3(0)=[?2,?3,2,1]Tand η4(0)=[1,2,?2,?1]T.The states trajectories ofxij?x1j,i∈I[2,4],j∈I[1,4] are recorded in Fig.4,and the states trajectories of the observers are recorded in Fig.5.Obviously,the consensus is factually achieved and the input delay is compensated by the proposed observer-based pseudopredictor feedback protocol.

    By comparing Fig.2 with Fig.3,we can see that the consensus of this multiagent system is factually achieved by the proposed pseudo-predictor feedback protocol,and it is unfortunate that the consensus of this multiagent system is not achieved by the predictor-based feedback protocol (9).In addition,according to Figs.2,4 and 5,we can observe that the convergence rate ofxij?x1jcontrolled by the proposed pseudo-predictor feedback protocol is obviously faster than that controlled by the proposed observer-based pseudopredictor feedback protocol.

    VI.CONCLUSIONS

    This paper studied the consensus problem of continuoustime multiagent systems with both state and input delays.Differently from the conventional predictor feedback which utilizes the open-loop system to predict the future states,the proposed pseudo-predictor based state feedback protocols and full-order/reduced-order observer-based pseudo-predictor feedback protocols use the closed-loop dynamics of the multiagent systems to predict the future agent states,it was revealed that the consensus was achieved and the input delay was compensated,and the proposed protocol was independent of the control signals of the neighboring agents and was easier to implement than the existing predictor-based protocols.Moreover,necessary and sufficient conditions guaranteeing the stability of the integral delay systems were established in the light of the series of retarded-type time-delay systems.A numerical example was worked out to support the obtained theoretical results.

    AppENDIX A THE DESIGN OF THE FEEDBACk GAINS

    Lemma 1:If there exist symmetric matricesP>0,Q>0,Z>0,and two matricesG0andG1such that

    Fig.2.Differences between the states of Agent 1 and those of other agents (pseudo-predictor feedback protocol).

    Fig.3.Differences between the states of Agent 1 and those of other agents (predictor-based feedback protocol).

    are feasible,i∈I[1,N],then linear time-delay systems (10)are asymptotically stable,where ?2=.Moreover,K0=G0P?1andK1=G1P?1.

    Lemma 2:If there exist symmetric matricesP>0,Q>0,Z>0,and two matricesU0andU1such that

    is feasible,then linear time-delay system (5)is asymptotically stable,where Θ=.Moreover,F0=P?1U0andF1=P?1U1.

    AppENDIX B THE PROOF OF COROLLARY 2

    Proof:Letei(t)=ζi(t)?Hδi(t),it then follows from (24)and (31)that

    Fig.4.Differences between the states of Agent 1 and those of other agents (observer based output feedback protocol).

    Fig.5.States of the observer.

    which implies limt→∞∥ei(t)∥=0,i∈I[1,N] in terms of Assumption 4.Consider the following artificial protocol:

    it yields from (24)that

    Then,

    wheres∈[?2h,0] and Φ0is a linear map.We note that system(33)is equivalent to=A0σ1(t)+A1σ1(t?h)and

    wherei∈I[2,N],σiand ?ihave been defined in the proof of Theorem 2,σN+1=0,?N+1=0,and Φ3and Φ4are some linear maps.It yields from Assumption 2 that

    where we have noticed that σ1(t)=0 and limt→∞∥ei(t)∥=0,i∈I[1,N].By (27),we can getlimt→∞∥ξi(t)∥=0,i∈I[2,N].Hence,we can further get

    which means the consensus is achieved.In addition,we have limt→∞∥ζi(t)∥=0,i∈I[1,N],with the help of limt→∞∥ei(t)∥=0 and limt→∞∥δi(t)∥=0,i∈I[1,N].Finally,by (32),we note that

    婷婷色麻豆天堂久久| 制服丝袜香蕉在线| 成人黄色视频免费在线看| 久久精品国产鲁丝片午夜精品| 在线观看三级黄色| 中文天堂在线官网| 精品少妇黑人巨大在线播放| 亚洲精华国产精华液的使用体验| 欧美日韩av久久| 午夜激情av网站| 水蜜桃什么品种好| 亚洲av综合色区一区| 天天躁狠狠躁夜夜躁狠狠躁| 美女午夜性视频免费| 午夜福利乱码中文字幕| 人妻 亚洲 视频| 赤兔流量卡办理| 飞空精品影院首页| 乱人伦中国视频| 99久久人妻综合| 丝袜在线中文字幕| 精品人妻一区二区三区麻豆| 亚洲图色成人| 巨乳人妻的诱惑在线观看| 亚洲,欧美,日韩| 99精国产麻豆久久婷婷| 久久久久久伊人网av| 亚洲av福利一区| 啦啦啦在线免费观看视频4| 亚洲欧美精品综合一区二区三区 | 新久久久久国产一级毛片| 亚洲男人天堂网一区| 久久99一区二区三区| 性少妇av在线| 我的亚洲天堂| 亚洲精品在线美女| 亚洲国产精品999| 亚洲欧美一区二区三区黑人 | 最近2019中文字幕mv第一页| 亚洲精品中文字幕在线视频| 国产精品不卡视频一区二区| 国产男女超爽视频在线观看| 日本wwww免费看| 久久综合国产亚洲精品| 黄色毛片三级朝国网站| 午夜精品国产一区二区电影| 性高湖久久久久久久久免费观看| 亚洲精品自拍成人| 亚洲综合色惰| 午夜久久久在线观看| 午夜激情久久久久久久| 日韩电影二区| 日韩不卡一区二区三区视频在线| 国产日韩一区二区三区精品不卡| 考比视频在线观看| 熟妇人妻不卡中文字幕| 国产精品免费视频内射| 九色亚洲精品在线播放| 天天躁日日躁夜夜躁夜夜| 午夜福利影视在线免费观看| 曰老女人黄片| 久久国内精品自在自线图片| 日韩成人av中文字幕在线观看| av在线app专区| 91精品国产国语对白视频| 色播在线永久视频| 精品国产国语对白av| 欧美另类一区| 久久午夜综合久久蜜桃| 亚洲成人手机| 久久人人爽人人片av| av在线播放精品| 久久热在线av| 啦啦啦在线免费观看视频4| 97人妻天天添夜夜摸| 韩国精品一区二区三区| 18+在线观看网站| 大陆偷拍与自拍| 69精品国产乱码久久久| 夫妻午夜视频| 一二三四中文在线观看免费高清| 国产男人的电影天堂91| 久久久国产一区二区| 日韩成人av中文字幕在线观看| 久久青草综合色| 国产老妇伦熟女老妇高清| 成年人午夜在线观看视频| 天堂俺去俺来也www色官网| 国产日韩欧美亚洲二区| 午夜免费男女啪啪视频观看| 丁香六月天网| 国产探花极品一区二区| 精品国产露脸久久av麻豆| 这个男人来自地球电影免费观看 | 亚洲av日韩在线播放| 永久免费av网站大全| 大香蕉久久成人网| 看免费成人av毛片| 精品人妻在线不人妻| 亚洲成色77777| 99香蕉大伊视频| 日日撸夜夜添| 国产精品秋霞免费鲁丝片| 午夜免费鲁丝| 久久韩国三级中文字幕| 国产成人av激情在线播放| 日日爽夜夜爽网站| 一级毛片我不卡| 美女福利国产在线| 91精品伊人久久大香线蕉| 亚洲 欧美一区二区三区| 老司机亚洲免费影院| 国产亚洲最大av| 欧美中文综合在线视频| 国产一区二区三区综合在线观看| 午夜精品国产一区二区电影| 国产伦理片在线播放av一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 一区福利在线观看| 99国产综合亚洲精品| av网站免费在线观看视频| 中文欧美无线码| 免费观看在线日韩| 日本欧美视频一区| 久久av网站| 交换朋友夫妻互换小说| 欧美精品亚洲一区二区| 免费日韩欧美在线观看| 久久韩国三级中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 免费不卡的大黄色大毛片视频在线观看| 免费人妻精品一区二区三区视频| 女性生殖器流出的白浆| 久久久久久久久久久久大奶| 香蕉国产在线看| 熟女少妇亚洲综合色aaa.| 亚洲 欧美一区二区三区| 国产黄色视频一区二区在线观看| 一二三四在线观看免费中文在| a级毛片黄视频| 亚洲国产成人一精品久久久| 波多野结衣av一区二区av| 久久99热这里只频精品6学生| 国产成人午夜福利电影在线观看| av不卡在线播放| 亚洲av综合色区一区| 日韩视频在线欧美| 亚洲第一av免费看| 亚洲精品美女久久av网站| 亚洲av日韩在线播放| 女人精品久久久久毛片| 91精品伊人久久大香线蕉| 国产欧美日韩一区二区三区在线| 精品人妻一区二区三区麻豆| 老女人水多毛片| 久久久精品免费免费高清| 你懂的网址亚洲精品在线观看| 亚洲欧美精品自产自拍| 大话2 男鬼变身卡| 国产精品秋霞免费鲁丝片| 国产精品久久久久久av不卡| 久久韩国三级中文字幕| 久久久久久久精品精品| 久久久精品区二区三区| 国产又爽黄色视频| 国产不卡av网站在线观看| 满18在线观看网站| 国产精品成人在线| 少妇人妻 视频| 国产精品人妻久久久影院| 国产精品人妻久久久影院| 少妇被粗大猛烈的视频| 国产精品无大码| 国产黄频视频在线观看| 亚洲av福利一区| 国语对白做爰xxxⅹ性视频网站| av国产精品久久久久影院| 9热在线视频观看99| 丝袜喷水一区| 青春草视频在线免费观看| 久久久久久久大尺度免费视频| 99热全是精品| 国产精品国产三级国产专区5o| 亚洲精品国产av蜜桃| 成年女人在线观看亚洲视频| 亚洲人成77777在线视频| 日本午夜av视频| 欧美中文综合在线视频| 在线观看免费高清a一片| 精品国产超薄肉色丝袜足j| 夜夜骑夜夜射夜夜干| 只有这里有精品99| 久久久a久久爽久久v久久| 三上悠亚av全集在线观看| 午夜免费观看性视频| 久久国产精品大桥未久av| 日韩伦理黄色片| 久久人人爽av亚洲精品天堂| 97人妻天天添夜夜摸| 欧美97在线视频| 日本-黄色视频高清免费观看| 国产黄色免费在线视频| 99久久中文字幕三级久久日本| 各种免费的搞黄视频| 亚洲国产欧美网| 成人二区视频| 亚洲国产欧美日韩在线播放| 欧美老熟妇乱子伦牲交| av网站免费在线观看视频| 一级片'在线观看视频| 亚洲av免费高清在线观看| 国产xxxxx性猛交| 高清黄色对白视频在线免费看| 美女大奶头黄色视频| 国产男女内射视频| 最近2019中文字幕mv第一页| 999精品在线视频| 性高湖久久久久久久久免费观看| 亚洲精品aⅴ在线观看| 精品国产一区二区久久| 日韩成人av中文字幕在线观看| 久久韩国三级中文字幕| 亚洲国产最新在线播放| 久久国产精品男人的天堂亚洲| 另类亚洲欧美激情| 天堂中文最新版在线下载| 国产男人的电影天堂91| 亚洲av电影在线观看一区二区三区| 99久久综合免费| 久久久a久久爽久久v久久| 久久久精品免费免费高清| 国产免费福利视频在线观看| 18禁裸乳无遮挡动漫免费视频| 人人妻人人添人人爽欧美一区卜| 国产av国产精品国产| 香蕉精品网在线| 午夜免费男女啪啪视频观看| 精品亚洲乱码少妇综合久久| 久久鲁丝午夜福利片| 亚洲av电影在线进入| 99热国产这里只有精品6| 亚洲 欧美一区二区三区| 亚洲精品国产av蜜桃| 欧美人与善性xxx| 国产成人精品在线电影| 欧美bdsm另类| 美女大奶头黄色视频| 亚洲美女黄色视频免费看| 成人影院久久| 少妇熟女欧美另类| 一二三四在线观看免费中文在| 国产无遮挡羞羞视频在线观看| 久久久久久免费高清国产稀缺| 丝袜在线中文字幕| 亚洲国产日韩一区二区| 国产黄色免费在线视频| 一级片'在线观看视频| 一二三四在线观看免费中文在| 18禁观看日本| 美女高潮到喷水免费观看| av免费观看日本| 搡女人真爽免费视频火全软件| 一边亲一边摸免费视频| xxxhd国产人妻xxx| 性色av一级| 人人妻人人爽人人添夜夜欢视频| av线在线观看网站| 精品人妻熟女毛片av久久网站| 久久精品国产鲁丝片午夜精品| 黄色 视频免费看| 十八禁网站网址无遮挡| 免费播放大片免费观看视频在线观看| 国产男人的电影天堂91| 久久国产亚洲av麻豆专区| 久久久国产欧美日韩av| 人体艺术视频欧美日本| 天堂中文最新版在线下载| 99香蕉大伊视频| 丝袜美足系列| 97在线人人人人妻| 亚洲第一区二区三区不卡| 免费在线观看黄色视频的| 亚洲色图综合在线观看| 久久精品国产a三级三级三级| av在线老鸭窝| 不卡视频在线观看欧美| 美女大奶头黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 大片电影免费在线观看免费| 日韩 亚洲 欧美在线| 伊人久久大香线蕉亚洲五| 国产精品.久久久| 亚洲成人av在线免费| 又大又黄又爽视频免费| 黄色 视频免费看| 亚洲av日韩在线播放| 看免费av毛片| 高清视频免费观看一区二区| 一边亲一边摸免费视频| 欧美日韩av久久| 最近中文字幕2019免费版| 9色porny在线观看| 国产xxxxx性猛交| 一级毛片 在线播放| 成人二区视频| 美女脱内裤让男人舔精品视频| 一本—道久久a久久精品蜜桃钙片| 在线免费观看不下载黄p国产| 捣出白浆h1v1| 我的亚洲天堂| 久久精品国产亚洲av涩爱| 爱豆传媒免费全集在线观看| 亚洲欧美精品综合一区二区三区 | 久久精品国产亚洲av高清一级| 有码 亚洲区| 中文字幕精品免费在线观看视频| 国产 精品1| 伦精品一区二区三区| 叶爱在线成人免费视频播放| 日本wwww免费看| 一区二区三区乱码不卡18| 国产精品麻豆人妻色哟哟久久| 国产成人一区二区在线| 男女免费视频国产| 亚洲国产精品一区三区| 日日啪夜夜爽| 成人毛片60女人毛片免费| 久久久久精品久久久久真实原创| 久久午夜综合久久蜜桃| 国产精品蜜桃在线观看| 最近中文字幕2019免费版| 欧美另类一区| 男人舔女人的私密视频| 午夜福利在线免费观看网站| 日本猛色少妇xxxxx猛交久久| 亚洲欧美一区二区三区久久| 黑人巨大精品欧美一区二区蜜桃| 欧美97在线视频| 国产精品偷伦视频观看了| 国产免费一区二区三区四区乱码| 亚洲精品成人av观看孕妇| 欧美激情 高清一区二区三区| 肉色欧美久久久久久久蜜桃| 久久久久视频综合| 九色亚洲精品在线播放| 日韩在线高清观看一区二区三区| 国产成人精品久久久久久| 一级,二级,三级黄色视频| 成人影院久久| 黄网站色视频无遮挡免费观看| 天美传媒精品一区二区| 日韩大片免费观看网站| 欧美 亚洲 国产 日韩一| 成年女人在线观看亚洲视频| 亚洲激情五月婷婷啪啪| 狠狠婷婷综合久久久久久88av| 美女脱内裤让男人舔精品视频| 国产熟女午夜一区二区三区| 免费观看性生交大片5| 久久精品aⅴ一区二区三区四区 | 交换朋友夫妻互换小说| 一二三四中文在线观看免费高清| 麻豆乱淫一区二区| 亚洲成人一二三区av| 午夜福利乱码中文字幕| 午夜免费观看性视频| 精品国产乱码久久久久久小说| 国产97色在线日韩免费| 人妻系列 视频| 在线观看人妻少妇| 男女啪啪激烈高潮av片| 欧美日韩亚洲国产一区二区在线观看 | 99久久综合免费| 国产精品久久久av美女十八| 国产极品天堂在线| 91久久精品国产一区二区三区| 日韩免费高清中文字幕av| 国产伦理片在线播放av一区| 大片电影免费在线观看免费| 久久人人97超碰香蕉20202| 伊人亚洲综合成人网| 卡戴珊不雅视频在线播放| 久久久久久人妻| 国产成人精品无人区| 亚洲国产精品一区三区| 在线观看免费视频网站a站| 免费播放大片免费观看视频在线观看| 又粗又硬又长又爽又黄的视频| 久久青草综合色| 中文字幕制服av| 久久国产精品男人的天堂亚洲| 女人被躁到高潮嗷嗷叫费观| 亚洲精品自拍成人| 欧美日韩亚洲国产一区二区在线观看 | 精品久久久久久电影网| 国产综合精华液| 97精品久久久久久久久久精品| 一区二区三区激情视频| 国产精品久久久av美女十八| 免费观看av网站的网址| 欧美国产精品一级二级三级| 欧美日韩亚洲高清精品| 成人毛片60女人毛片免费| 国产精品偷伦视频观看了| 午夜福利视频精品| 久久精品熟女亚洲av麻豆精品| 国产又色又爽无遮挡免| 欧美人与性动交α欧美精品济南到 | 成人手机av| 丰满少妇做爰视频| 宅男免费午夜| 大码成人一级视频| 欧美亚洲日本最大视频资源| 国产成人精品久久久久久| 各种免费的搞黄视频| 香蕉精品网在线| 欧美精品一区二区大全| 人人妻人人澡人人看| 午夜激情av网站| 国产在线视频一区二区| 少妇的丰满在线观看| 热re99久久精品国产66热6| 亚洲一码二码三码区别大吗| av国产精品久久久久影院| 国产精品香港三级国产av潘金莲 | 人人澡人人妻人| 国产成人欧美| 最近最新中文字幕大全免费视频 | 黄色怎么调成土黄色| 人妻 亚洲 视频| 又大又黄又爽视频免费| 9热在线视频观看99| 波野结衣二区三区在线| 看免费成人av毛片| 十八禁网站网址无遮挡| 国产欧美日韩综合在线一区二区| 国产成人免费观看mmmm| 妹子高潮喷水视频| 国产精品国产三级专区第一集| 久久精品久久久久久噜噜老黄| av国产久精品久网站免费入址| 亚洲成人手机| 1024香蕉在线观看| 亚洲一级一片aⅴ在线观看| 人妻人人澡人人爽人人| 国产成人午夜福利电影在线观看| 亚洲av欧美aⅴ国产| 啦啦啦在线免费观看视频4| 男女无遮挡免费网站观看| 日本av免费视频播放| 99九九在线精品视频| 久久青草综合色| av电影中文网址| 国产av一区二区精品久久| 午夜激情久久久久久久| 天天躁夜夜躁狠狠躁躁| 亚洲人成电影观看| 国产免费一区二区三区四区乱码| 在线 av 中文字幕| 亚洲男人天堂网一区| 熟女少妇亚洲综合色aaa.| 精品亚洲成国产av| 亚洲欧美成人综合另类久久久| av卡一久久| 日本欧美视频一区| 成人国语在线视频| www.自偷自拍.com| 欧美精品一区二区免费开放| 亚洲av免费高清在线观看| 波野结衣二区三区在线| 亚洲伊人久久精品综合| 亚洲精品国产av蜜桃| 在线观看免费日韩欧美大片| 成年人午夜在线观看视频| 国产欧美亚洲国产| 一级毛片电影观看| 成年av动漫网址| 岛国毛片在线播放| 久久精品久久久久久噜噜老黄| 日本av手机在线免费观看| 欧美 日韩 精品 国产| 国产精品 国内视频| 免费日韩欧美在线观看| videosex国产| www.熟女人妻精品国产| 精品人妻一区二区三区麻豆| 亚洲在久久综合| 如日韩欧美国产精品一区二区三区| 国产视频首页在线观看| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 黄片播放在线免费| 亚洲国产毛片av蜜桃av| 七月丁香在线播放| 国产精品蜜桃在线观看| 亚洲精品日韩在线中文字幕| 国产老妇伦熟女老妇高清| 97在线人人人人妻| 国产熟女午夜一区二区三区| 日韩免费高清中文字幕av| 18+在线观看网站| 亚洲av福利一区| av在线app专区| 国产精品成人在线| 少妇 在线观看| 99精国产麻豆久久婷婷| 男女国产视频网站| 国产精品麻豆人妻色哟哟久久| 90打野战视频偷拍视频| 9色porny在线观看| 亚洲国产毛片av蜜桃av| av福利片在线| 欧美亚洲日本最大视频资源| 国产精品偷伦视频观看了| 免费看av在线观看网站| 欧美xxⅹ黑人| 日本免费在线观看一区| 国产高清国产精品国产三级| 丝瓜视频免费看黄片| 桃花免费在线播放| 午夜福利视频在线观看免费| 性少妇av在线| av在线老鸭窝| 69精品国产乱码久久久| 欧美日韩亚洲高清精品| 永久免费av网站大全| 国产精品免费视频内射| 91国产中文字幕| 午夜激情av网站| 亚洲人成电影观看| 婷婷色av中文字幕| 国产精品 国内视频| 日韩一区二区三区影片| 国产熟女欧美一区二区| 天堂8中文在线网| 高清视频免费观看一区二区| 男男h啪啪无遮挡| 欧美日韩av久久| 男女免费视频国产| 建设人人有责人人尽责人人享有的| 亚洲成人av在线免费| 一级毛片我不卡| 国产在线免费精品| 在线观看免费高清a一片| 精品国产露脸久久av麻豆| 午夜老司机福利剧场| 日本免费在线观看一区| 人妻少妇偷人精品九色| 亚洲精品在线美女| 大香蕉久久网| 热re99久久国产66热| 色94色欧美一区二区| www日本在线高清视频| 男女下面插进去视频免费观看| 免费黄色在线免费观看| 大话2 男鬼变身卡| 亚洲欧美一区二区三区国产| 国产精品无大码| 精品国产国语对白av| 在线天堂最新版资源| 亚洲精品日本国产第一区| 国产在线免费精品| 性色avwww在线观看| 午夜福利网站1000一区二区三区| 9191精品国产免费久久| 叶爱在线成人免费视频播放| 天美传媒精品一区二区| 国产日韩欧美亚洲二区| 国产麻豆69| 国产亚洲一区二区精品| 波野结衣二区三区在线| 久久精品亚洲av国产电影网| 色吧在线观看| 午夜精品国产一区二区电影| 看非洲黑人一级黄片| 热re99久久国产66热| 不卡视频在线观看欧美| 欧美另类一区| 成年女人在线观看亚洲视频| 国产av国产精品国产| 黄色一级大片看看| 丝袜人妻中文字幕| 女人被躁到高潮嗷嗷叫费观| 69精品国产乱码久久久| 在线观看免费高清a一片| 纵有疾风起免费观看全集完整版| 国语对白做爰xxxⅹ性视频网站| 久久人人97超碰香蕉20202| 国产精品亚洲av一区麻豆 | 69精品国产乱码久久久| 国产日韩欧美视频二区| 香蕉国产在线看| 久久人人97超碰香蕉20202| 亚洲成国产人片在线观看| 97在线人人人人妻| 色哟哟·www| 亚洲美女搞黄在线观看| 精品国产一区二区久久| 黄色 视频免费看| 亚洲国产av影院在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 日韩制服骚丝袜av| 下体分泌物呈黄色| 亚洲精品aⅴ在线观看| 一二三四在线观看免费中文在| 国产又色又爽无遮挡免| 国产成人av激情在线播放| 老熟女久久久| 看十八女毛片水多多多| 国产男人的电影天堂91| 亚洲精品成人av观看孕妇| 一区二区三区精品91| 2021少妇久久久久久久久久久| 18禁国产床啪视频网站| 亚洲精品国产一区二区精华液|