• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    10Be exposure ages of Quaternary Glaciers in Antarctica

    2021-10-21 09:02:18WangJingNiZhiGangZhangJingXueGuoXueYuanTang
    Sciences in Cold and Arid Regions 2021年4期

    WangJing Ni,ZhiGang Zhang,JingXue Guo,XueYuan Tang

    1.School of Teacher Education,Nanjing Normal University,Nanjing,Jiangsu 210023,China

    2.School of Geographical Sciences,Nanjing Normal University,Nanjing,Jiangsu 210023,China

    3. Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing,Jiangsu 210023,China

    4. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing,Jiangsu 210023,China

    5.State Key Laboratory of Cryospheric Sciences,Northwest Insititute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    6.Polar Research Institute of China,451 Jinqiao Road,Pudong,Shanghai 200136,China

    ABSTRACT In situ terrestrial cosmogenic nuclides (TCN) have been widely applied to date the ages of Quaternary glacial depos‐its in Antarctica and plays an important role in reconstructing the glacial evolution and climate change. It helps to un‐derstand the Antarctic ice sheet's evolution process in Quaternary and shed light on the application of Cosmogenic Nuclide exposure dating technique in glacial geomorphology.In this paper,we retrieved 495 10Be age samples in Ant‐arctica from literature published between 2004 and 2020 and recalculated the TCN ages using version 3.0 online cal‐culator of Cosmic-Ray Produced Nuclide Systematics on Earth (CRONUS-Earth). Several conclusions can be drawn from the results: (1) 75% of the exposure ages are younger than 400 ka, and 91% younger than 1,100 ka. Northern Antarctic Peninsula exposure result is visibly younger than the main glaciers area in East Antarctica due to climate change and geological evaluation since the LGM (Last Glacial Maximum). (2) TCN ages are relevant to the samples'relative positions in the Antarctic continent, but a relationship between their ages and elevations is yet to be deter‐mined based on the collected data.

    Keywords: 10Be exposure ages;in situ terrestrial cosmogenic nuclides;Antarctica

    1 Introduction

    The Antarctic glaciers play a significant role in world climate change, especially in worldwide sealevel changes, oceanographic processes and global warming (Brunoet al., 1997).As it has the largest ice mass globally with the capacity to raise the sea level by up to 65 m(Finket al.,2006),even partial deglaci‐ation will lead to a destructive impact on Earth (Alt‐maieret al., 2010).Thus the reconstruction of Antarc‐tic glaciation history has become a targeted problem in polar research to forecast the future trend of glacier change.

    In recent 20 years, the development of in situ ter‐restrial cosmogenic nuclides (TCN) exposure dating enable the determinations of the ages of Quaternary glacial landforms. A series of isotope Accelerator Mass Spectrometry (AMS) standards have been de‐tailed and widely applied in TCN dating methods(Nishiizumi, 2004; Nishiizumiet al., 2007). Among these methods,10Be exposure dating is one of the most successful techniques used to measure the ages of Quaternary deposits. A number of online calcula‐tors are also built to visualize, evaluate and correct the surface exposure data,such as iceTEA,CREP,and the most commonly used one, the Cosmic-Ray Pro‐duced Nuclide Systematics on Earth (CRONUSEarth). TCN is now widely applied to determine the exposure ages of glacier retreat and becomes an essen‐tial dating method. However, due to technical limits and geomorphological complexity, TCN also has some unavoidable uncertainty associated with sam‐pling and post-processing procedures and erosion rates. Furthermore, the Online cosmogenic-nuclide calculator is also continually improved in stability and accuracy from version 2.2 to version 3, resulting in differences in calculating standards (Borcherset al.,2016; Balco, 2017). Besides, most of the former re‐searches in the Antarctic area are focused on the spe‐cific isotope records. There is still a lack of compre‐hensive studies on establishing an accurate chronolo‐gy in Antarctic deglaciation and a systematic theory to link the evidence of isotope exposure ages with the polar climate change(Suganumaet al.,2014).

    In this article, we re-analyze the collected10Be ex‐posure data from 2004 to 2020 using the newest ver‐sion of CRONUS-Earth (http://hess.ess.washington.edu) to unify the comparison standards. Based on the obtained results,we discuss the distribution of the gla‐cial landforms in the Antarctic region, the exposure ages, the evolution history of the paleo-glaciers, and the differences in glaciers' evolution in other regions.Furthermore, we explore the Antarctic ice sheet's evo‐lution process through a relationship between the ex‐posure ages and its corresponding altitude.

    2 Study area and data collection

    The study area covers almost the entire Antarctic continents,as shown in Figure 1.Based on the geolog‐ical and geomorphological differences in Antarctica and previous studies, the study area was divided into three regions: East Antarctic Ice Sheet (EAIS), West Antarctic Ice Sheet (WAIS) and Antarctic Peninsula(AP)(Ackert,2003;Andersonet al.,2020).

    Figure 1 Oblique Google Earth image showing the location of published TCN 10Be exposure ages study sites in Antarctica

    EAIS is known as the largest continental ice mass on Earth, with a volume of 21.76×106to 26×106km3(Huanget al., 2008; Donget al., 2016). WAIS, locat‐ed between longitude 180° to 60°W, is the only ma‐rine-based ice sheet occupying 10% of Antarctic ice volume (Mukhopadhyayet al., 2012; Lindowet al.,2014);thus,it is relatively more vulnerable to temper‐ature fluctuation compared with EAIS. AP is worth mentioning that, based on long-term observation and research, intense climate change, ice sheet melting,rapid glacier retreat,regional warming and ice shelves collapsing have been taking place in this area.

    In this article, 49510Be ages samples were collect‐ed from 18 studies published from 2004 to 2020.Among them, 282 (57.0%) is from bedrock, 180(36.4%) erratic, 18 (3.6%) small gravel, and 15(3.0%) blue-ice marine sediment core. We also ex‐tracted the relevant information about sampling lo‐cations (i.e., latitude, longitude, altitude, altitude flag, sample thickness, density, shielding correc‐tion and erosion, and measured parameters (i.e., the concentration of10Be, the uncertainty of10Be and10Be AMS standards). The sample sites extend from 54.64°S to 84.41°S and from 66.03°W to 164.30°E;the study areas(1?15)and their sources are shown in Table 1.

    Table 1 Information of TCN 10Be exposure ages studies of Antarctica

    Table 2 Statistical results of TCN 10Be exposure ages in Antarctica

    3 Results

    3.1 Recalculated 10Be ages

    The average10Be age of 495 samples is 16.6 ka.Approximately 65% of the exposure ages are less than 200 ka, 75% less than 400 ka, and 91% less than 1,100 ka. The results' distribution is not very central‐ized compared with the data set from the Tibetan Pla‐teau, where 97% of the recalculated ages are less than 200 ka(Zhanget al.,2018).Considering that the halflife of10Be is around 1.5×106a, we ignored the two largest data in the following analysis (R9204(Konget al.,2010),67(Altmaieret al.,2018)),which are obvi‐ously beyond the effective range of TCN results(Nishiizumiet al.,2007).

    3.2 Distribution of recalculated results

    There is an apparent difference between the TCN results of central and marginal Antarctic ice sheet(Figure 2). Study regions Sj?gren Boydellfjord, Dry‐galski Glacier, James Ross Island, Mackay Glacier,Campbell Glacier,Larsen B embayment are the six ar‐eas with the youngest ages in deglaciation history.The average exposure ages of these six areas are 16.6,11.4, 12.7, 9.9, 6.4 and 15.1 ka, respectively, with all maximum years under 90 ka.

    To further analyze the distribution of dating re‐sults,we created a 3D scatter graph of longitudes,lati‐tudes and TCN ages in Figure 3a. Data points from adjacent areas appear to be vertical columns and their heights reflect the history of exposure ages. Higher latitudes reflect closer distances to the polar region,and longitudes reflect the bearing of the continent.From Figure 3a, Study regions Sjo?gren Boydellfjord,Drygalski Glacier, James Ross Island, Larsen B em‐bayment (No.3, 4, 8 and 14), which all spread in the northern Antarctic Peninsula, are obviously younger than other areas..Besides,data from 70°S to 75°S tend to be older than the polar area, as this area is located in the continental margin of the Antarctic. Also, data in East Antarctic Ice Sheet are older than the western part.

    In Figure 3b, we illustrate how the exposure ages vary with the altitude. Most data points of this scatter plot are centered at 0?1,000 ka and 0?2,000 m above sea level (a.s.l.), as mentioned from former statistics.Considering the difficulty of collecting samples at high altitudes in Antarctica, this commonality can be ignored. On average, older ages (1,000?3,000 ka) ap‐pear along with higher altitudes, indicating that sam‐ples at higher altitudes have a larger possibility to be older.However,more samples are needed from the en‐tire continent to confirm this connection.

    Figure 2 Comparison of TCN10Be exposure ages among different regions in Antarctica(1:Mount Harding;2:Queen Maud Land;3:Sj?gren Boydellfjord;4:Drygalski Glacier;5:Dry Valleys;6:Pensacola Mountains;7:Prince Charles Mountains;8:James Ross Island;9:Terra Nova Bay;10:Shackleton Range;11:Hatherton Glacier;12:Mackay Glacier;13:Campbell Glacier;14:Larsen B embayment;15:Skelton Neve)

    Figure 3 Distribution of dating results along with location and latitude.(a)Distribution of dating results based on location;(b)Distribution of dating results based on latitude

    4 Discussions

    4.1 Evolution sequence of ancient Antarctic glaciers based on the results of cosmogenic nuclide 10Be

    The collected data are mainly concentrated in three regions,i.e., AP, EAIS and WAIS. EAIS con‐sists of some ice-free areas such as Dubris and Bibra valleys and Terra Nova Bay. Previous studies have shown that these areas witnessed at least four glacial advances and retreat since mid-Pleistocene (Joyet al., 2014). Due to the lack of field evidence and a maximum age being younger than the LGM in Ha‐therton Glacier, it can be concluded that the glacier in EAIS at the LGM was the same or maybe slightly smaller than its present scale. Another research in Queen Maud Land assumed that the successive thin‐ning of the ice shelf might be due to global cooling and less annual precipitation since the Pliocene and reverted a large-scale retreat in the relatively warmer Pliocene (Altmaieret al., 2010). Other conclusions drawn elsewhere, such as Mount Harding and Shack‐leton Range, were limited to recent glacier exposure ages and lack of more sample statistics and further analysis.

    4.2 Reasons for the relatively young dating results in the northern Antarctic Peninsula

    AP Ice Sheet (APIS) expanded to the continental shelf stage during Quaternary glacial stages (Bentley,1999) and experienced a fluctuation in the late Mio‐cene. The LGM glaciation's initial retreat began at around 18 ka B.P. (Davieset al., 2012) when most er‐ratic boulders were exposed in the TCN experiment.Another reason is the split of Northern Prince Gustav Ice Stream from the remaining James Ross Island,which turned the original grounded ice streams into floating ice shelf in the middle continental shelf areas of the northern Prince Gustav Channel (Nyvltet al.,2014).Afterward, the latest deglaciation in the north‐ern Antarctic Peninsula began. Thus, there is a miss‐ing period of exposure ages of earlier records in the lower-lying altitudes (<60 m a.s.l.) in James Ross Island(JRI).

    However, the specific start time of deglaciation in this area is not clear. The radiocarbon ages obtained for postglacial organic material is 10.6 to 13.9 ka B.P.(Czech Geological Survey, 2009; Robertset al.,2011). Data based on aquatic moss from northern JRI show the exposure age of 10.7 cal. ka B.P.. In con‐trast, data from in situ cosmogenic10Be is much younger,i.e., approximately 8?9 ka (Johnsonet al.,2011; Balco and Schaefer, 2013). Nyvltet al.recali‐brated the data in 2014, taking Schmidt hammer test‐ing to assess the weathering of erratic boulders, and the eventual weighted mean is 12.9±1.2 ka.

    In addition,AP is one of the places where the ice sheet melts fastest since the last century.The latest ar‐ticle regarding Larsen B embayment located in the eastern APIS suggests an unprecedented deglaciation procession from north to south (Jeonget al.,2018),as revealed in Figure 4. The TCN results in the southern area are visibly younger,as indicated by the lower po‐sition of the plotted dots,implying a north to south de‐glaciation process.

    Figure 4 Distribution of dating results along with longitude and latitude in Antarctic Peninsula

    Recent reported north-to-south retreat and col‐lapse of AP ice shelves also includes the Larsen A(LAIS) in 1995, the Larsen B (LBIS) in 2002, and the current thinning of Larsen C (LCIS) (Shepherdet al.,2003). Based on other published terrestrial and ma‐rine deglaciation ages, the northern AP area faces se‐vere instability in ice shelves and the potential risk of a continuously rising sea level in response not only to oceanic warming but also to local topography and ice configuration.

    4.3 Relationship between exposure ages and elevations

    Huanget al.(2008) studied the fluctuation history of EAIS based on the exposure ages of cosmogenic nuclides from different altitudes. The results showed that the exposure ages of cosmogenic nuclides from the two sections decreased with the decrease of alti‐tude,and the EAIS decreased by 200 m since the Mid‐dle Pliocene. Examination of the evolutionary history of the Antarctic ice sheet during the Quaternary through the exposure data of samples at different alti‐tudes did not reveal an obvious relationship. Firstly,due to the high latitude of Antarctica, elevation plays a less important role in temperature change. Many previous investigations have suggested that thinner ice sheets existed in EAIS since Plio-Pleistocene, in‐cluding higher snow lines (Finket al., 2006; Konget al., 2010). Yet, the temperature in the early Pleisto‐cene is approximately 3 °C warmer than present(Hay‐woodet al., 2013). One explanation is the poleward moisture transport due to the reorganization of South‐ern Ocean circulation(Suganumaet al.,2014).The in‐creased warm, moist air contributes to ice sheet growth, at which circumstance the effect of elevation change is minimal.

    Secondly, even in the similar elevation of the same mountain, the TCN results show negative corre‐lations between the distance to the mountain and ex‐posure ages due to the changed direction of ice flow.In East Antarctica, the thickness of the ice sheet in general increases as a function of increasing eleva‐tions (Suganumaet al., 2014). The reason may be a limited sample collection area and amounts. We still can't find the potential rule of exposure ages and ele‐vations based on statistical induction of existing data.

    5 Conclusions

    This paper is based on the recalculated data of10Be ages in Antarctica and existing research results.The following conclusions can be drawn:

    (1) 75% of the exposure ages are younger than 400 ka, 91% younger than 1,100 ka. Compared with other areas,data from the Antarctic are less centralized.

    (2) The average exposure ages of the Antarctic Peninsula Ice Sheet are 14.1 ka,which is comparative‐ly younger than the mainland because of the split of the Northern Prince Gustav Ice Sheet.Recent tracking of the Antarctic Peninsula indicates an unprecedented melting rate in this area.

    (3) No close correlation can be found between ex‐posure ages and elevation based on existing data.

    The research on glaciation or deglaciation history of Antarctica has made significant progress due to the development of TCN and radiocarbon dating tech‐niques. However, there is still a long way to go in terms of exploring the Antarctic Land due to limita‐tions by climates and existing technical level.

    Acknowledgments:

    This work was supported by the National Natural Sci‐ence Foundation of China (No. 41971009 and No.41503054), the China Postdoctoral Science Founda‐tion (No. 2015M582728), and the Priority Academic Program Development of Jiangsu Higher Education Institutions(No.64320H116).

    免费久久久久久久精品成人欧美视频| 午夜精品国产一区二区电影| 久久影院123| 黄色a级毛片大全视频| 国产99久久九九免费精品| 亚洲 欧美一区二区三区| 国产成人精品久久二区二区免费| 国产精品免费视频内射| 欧美精品啪啪一区二区三区 | 久9热在线精品视频| 日韩一区二区三区影片| 国产精品熟女久久久久浪| 国产极品粉嫩免费观看在线| 黑丝袜美女国产一区| 中文字幕人妻丝袜一区二区| 久久久久久久国产电影| 国产亚洲一区二区精品| 亚洲av片天天在线观看| 欧美另类亚洲清纯唯美| 久久精品成人免费网站| www.av在线官网国产| 国产精品影院久久| av国产精品久久久久影院| 日韩大片免费观看网站| 黄色片一级片一级黄色片| 亚洲五月婷婷丁香| 亚洲性夜色夜夜综合| 午夜福利,免费看| 99热全是精品| 国产日韩一区二区三区精品不卡| 国产在线免费精品| 精品少妇一区二区三区视频日本电影| 最黄视频免费看| 一级毛片电影观看| 视频区欧美日本亚洲| 日韩欧美一区视频在线观看| 美女主播在线视频| 9热在线视频观看99| 欧美成狂野欧美在线观看| 国产男女超爽视频在线观看| 少妇被粗大的猛进出69影院| 激情视频va一区二区三区| 9191精品国产免费久久| 欧美另类一区| 久久精品久久久久久噜噜老黄| 精品福利永久在线观看| 亚洲成人国产一区在线观看| 国产野战对白在线观看| 天堂俺去俺来也www色官网| 人妻人人澡人人爽人人| 我的亚洲天堂| 亚洲国产中文字幕在线视频| 99精品久久久久人妻精品| 天天操日日干夜夜撸| 国产精品久久久人人做人人爽| 少妇粗大呻吟视频| 国产无遮挡羞羞视频在线观看| 男男h啪啪无遮挡| 午夜激情久久久久久久| 日本vs欧美在线观看视频| 日本wwww免费看| 伊人亚洲综合成人网| 久久女婷五月综合色啪小说| 国产淫语在线视频| 无遮挡黄片免费观看| 老司机深夜福利视频在线观看 | 精品国产乱子伦一区二区三区 | 丰满饥渴人妻一区二区三| 午夜精品久久久久久毛片777| 韩国高清视频一区二区三区| 午夜日韩欧美国产| 一级毛片精品| 国产精品一区二区免费欧美 | 男女午夜视频在线观看| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲国产一区二区在线观看 | 丰满人妻熟妇乱又伦精品不卡| 午夜福利乱码中文字幕| 另类精品久久| 高清视频免费观看一区二区| 91大片在线观看| 国产97色在线日韩免费| 精品国产一区二区久久| 热99re8久久精品国产| 啦啦啦 在线观看视频| 少妇粗大呻吟视频| 亚洲午夜精品一区,二区,三区| 亚洲国产欧美网| 免费在线观看黄色视频的| 国产三级黄色录像| 97精品久久久久久久久久精品| 不卡av一区二区三区| 午夜91福利影院| 99九九在线精品视频| 亚洲欧美成人综合另类久久久| 人成视频在线观看免费观看| 女性生殖器流出的白浆| 搡老岳熟女国产| 午夜91福利影院| av天堂久久9| 正在播放国产对白刺激| 国产精品 欧美亚洲| 精品欧美一区二区三区在线| 国产精品偷伦视频观看了| 亚洲av电影在线进入| 久久天堂一区二区三区四区| avwww免费| 丝瓜视频免费看黄片| 妹子高潮喷水视频| 久热爱精品视频在线9| av不卡在线播放| 中文字幕高清在线视频| 久久综合国产亚洲精品| 国产成人啪精品午夜网站| e午夜精品久久久久久久| 欧美97在线视频| 男人爽女人下面视频在线观看| 真人做人爱边吃奶动态| 亚洲情色 制服丝袜| 美女扒开内裤让男人捅视频| 十分钟在线观看高清视频www| 日本vs欧美在线观看视频| 亚洲国产av新网站| 久久久国产成人免费| 操美女的视频在线观看| 国产精品亚洲av一区麻豆| 法律面前人人平等表现在哪些方面 | 交换朋友夫妻互换小说| av有码第一页| 人人妻人人澡人人爽人人夜夜| 国产又色又爽无遮挡免| 一区二区日韩欧美中文字幕| h视频一区二区三区| 99久久人妻综合| 韩国精品一区二区三区| 伊人久久大香线蕉亚洲五| 国产精品一二三区在线看| 亚洲中文字幕日韩| 亚洲成人免费电影在线观看| 妹子高潮喷水视频| 精品少妇一区二区三区视频日本电影| 久久国产精品影院| 欧美日韩av久久| 国产老妇伦熟女老妇高清| 岛国在线观看网站| 色婷婷久久久亚洲欧美| 亚洲精品成人av观看孕妇| 亚洲欧美日韩另类电影网站| 九色亚洲精品在线播放| 日韩 亚洲 欧美在线| 老司机在亚洲福利影院| 美女国产高潮福利片在线看| 在线十欧美十亚洲十日本专区| 国产精品久久久久成人av| 亚洲三区欧美一区| 亚洲欧美精品综合一区二区三区| 久久精品亚洲熟妇少妇任你| 亚洲中文日韩欧美视频| 色老头精品视频在线观看| 美女福利国产在线| 久久 成人 亚洲| 丰满饥渴人妻一区二区三| 精品亚洲成国产av| 日韩欧美一区视频在线观看| 蜜桃在线观看..| 欧美日韩中文字幕国产精品一区二区三区 | 黑人巨大精品欧美一区二区mp4| 国产精品久久久久久精品电影小说| 国产视频一区二区在线看| 亚洲精品一卡2卡三卡4卡5卡 | 人人妻,人人澡人人爽秒播| 精品少妇一区二区三区视频日本电影| 女人被躁到高潮嗷嗷叫费观| 男人添女人高潮全过程视频| 精品人妻熟女毛片av久久网站| 亚洲性夜色夜夜综合| 免费高清在线观看视频在线观看| 亚洲免费av在线视频| 淫妇啪啪啪对白视频 | 亚洲国产av影院在线观看| 一级片免费观看大全| 伊人亚洲综合成人网| 色精品久久人妻99蜜桃| 51午夜福利影视在线观看| 一级片免费观看大全| 色精品久久人妻99蜜桃| 免费高清在线观看视频在线观看| 色婷婷av一区二区三区视频| av网站在线播放免费| 丰满人妻熟妇乱又伦精品不卡| 精品久久久精品久久久| 色播在线永久视频| 高清欧美精品videossex| 水蜜桃什么品种好| 国产精品国产三级国产专区5o| 久久久久久免费高清国产稀缺| 不卡一级毛片| 999久久久国产精品视频| 男女午夜视频在线观看| 午夜影院在线不卡| www.999成人在线观看| 色94色欧美一区二区| 黄色视频不卡| 天堂中文最新版在线下载| 久久人妻熟女aⅴ| 中国美女看黄片| tocl精华| 在线av久久热| 久久久国产一区二区| 中文字幕人妻熟女乱码| 国产精品秋霞免费鲁丝片| 老司机午夜十八禁免费视频| 性少妇av在线| 首页视频小说图片口味搜索| 一级毛片电影观看| 久久99热这里只频精品6学生| 美女视频免费永久观看网站| 啦啦啦免费观看视频1| 国产男女超爽视频在线观看| 久久精品久久久久久噜噜老黄| 亚洲情色 制服丝袜| 老司机靠b影院| 人人妻人人爽人人添夜夜欢视频| 国产成人精品无人区| 中文精品一卡2卡3卡4更新| 亚洲午夜精品一区,二区,三区| 亚洲国产毛片av蜜桃av| 99国产综合亚洲精品| 中文精品一卡2卡3卡4更新| 欧美 亚洲 国产 日韩一| 十八禁高潮呻吟视频| 亚洲人成77777在线视频| 十分钟在线观看高清视频www| 曰老女人黄片| 在线观看一区二区三区激情| 亚洲视频免费观看视频| 午夜福利乱码中文字幕| 宅男免费午夜| 久久久欧美国产精品| 精品一区二区三卡| 99国产极品粉嫩在线观看| 久久久久久久国产电影| 亚洲三区欧美一区| 精品少妇一区二区三区视频日本电影| 亚洲国产毛片av蜜桃av| 国产一区二区三区综合在线观看| 亚洲一码二码三码区别大吗| 操出白浆在线播放| 中文精品一卡2卡3卡4更新| 高清欧美精品videossex| 国产成+人综合+亚洲专区| 国产精品一区二区精品视频观看| 丰满饥渴人妻一区二区三| 国产亚洲av片在线观看秒播厂| 国产又色又爽无遮挡免| 国产精品一区二区在线观看99| 嫁个100分男人电影在线观看| 久久久国产一区二区| 高潮久久久久久久久久久不卡| 亚洲欧洲精品一区二区精品久久久| 淫妇啪啪啪对白视频 | av在线播放精品| 老汉色∧v一级毛片| 久久亚洲精品不卡| 91麻豆精品激情在线观看国产 | 他把我摸到了高潮在线观看 | 国产欧美日韩一区二区三 | 亚洲国产日韩一区二区| 老鸭窝网址在线观看| 最黄视频免费看| 中文字幕色久视频| 国精品久久久久久国模美| 欧美成人午夜精品| 亚洲国产看品久久| 黄频高清免费视频| 久久久精品国产亚洲av高清涩受| 狂野欧美激情性xxxx| av在线播放精品| 五月天丁香电影| 欧美亚洲日本最大视频资源| 午夜影院在线不卡| 日本黄色日本黄色录像| 亚洲欧美精品自产自拍| 免费不卡黄色视频| 啦啦啦视频在线资源免费观看| 侵犯人妻中文字幕一二三四区| 国产高清视频在线播放一区 | 中国美女看黄片| 1024视频免费在线观看| 亚洲免费av在线视频| 99热网站在线观看| 一区二区av电影网| 91成年电影在线观看| 日本欧美视频一区| 巨乳人妻的诱惑在线观看| 国产亚洲av片在线观看秒播厂| 久久久久久免费高清国产稀缺| 黄网站色视频无遮挡免费观看| 国产精品1区2区在线观看. | 波多野结衣一区麻豆| 1024视频免费在线观看| 高清黄色对白视频在线免费看| 精品久久久久久久毛片微露脸 | 美女午夜性视频免费| 日韩欧美国产一区二区入口| 韩国高清视频一区二区三区| www日本在线高清视频| 精品高清国产在线一区| 欧美日韩av久久| 亚洲精品国产av蜜桃| 久久久精品免费免费高清| 国产精品一区二区在线观看99| 欧美亚洲 丝袜 人妻 在线| 欧美黄色淫秽网站| 国产成人精品久久二区二区免费| 亚洲国产精品成人久久小说| 自线自在国产av| 蜜桃在线观看..| 久久精品成人免费网站| 精品久久蜜臀av无| 国产成人啪精品午夜网站| 亚洲中文日韩欧美视频| 亚洲精品国产av蜜桃| 欧美黑人精品巨大| 欧美精品一区二区大全| 精品久久蜜臀av无| 天天躁日日躁夜夜躁夜夜| 久久人人爽人人片av| 啦啦啦免费观看视频1| 黄色视频,在线免费观看| 视频区图区小说| 人人澡人人妻人| 亚洲欧美日韩另类电影网站| 精品国产一区二区三区四区第35| 成人免费观看视频高清| 中文欧美无线码| 一级片'在线观看视频| 一本久久精品| 黄色视频在线播放观看不卡| 男人舔女人的私密视频| 女人久久www免费人成看片| 美女主播在线视频| 日日爽夜夜爽网站| 欧美+亚洲+日韩+国产| 老汉色av国产亚洲站长工具| 亚洲成av片中文字幕在线观看| 久久中文字幕一级| 午夜老司机福利片| 人人妻人人添人人爽欧美一区卜| 日韩 亚洲 欧美在线| 亚洲少妇的诱惑av| 国产免费现黄频在线看| 91av网站免费观看| 老鸭窝网址在线观看| 老司机福利观看| 国产老妇伦熟女老妇高清| 男女无遮挡免费网站观看| 一级片免费观看大全| 亚洲欧洲日产国产| 亚洲欧美精品综合一区二区三区| 精品一品国产午夜福利视频| 狠狠婷婷综合久久久久久88av| 久久99一区二区三区| 性少妇av在线| 王馨瑶露胸无遮挡在线观看| videos熟女内射| videosex国产| 婷婷丁香在线五月| svipshipincom国产片| 曰老女人黄片| 天天躁狠狠躁夜夜躁狠狠躁| 高清黄色对白视频在线免费看| 久久久久久亚洲精品国产蜜桃av| 99久久99久久久精品蜜桃| 伊人久久大香线蕉亚洲五| 欧美日本中文国产一区发布| 麻豆国产av国片精品| 亚洲avbb在线观看| 一级a爱视频在线免费观看| 久久天堂一区二区三区四区| 黄色视频,在线免费观看| 亚洲一码二码三码区别大吗| 午夜激情久久久久久久| 9191精品国产免费久久| 国产亚洲av片在线观看秒播厂| 蜜桃在线观看..| 天天操日日干夜夜撸| 熟女少妇亚洲综合色aaa.| 亚洲午夜精品一区,二区,三区| 久久狼人影院| 又大又爽又粗| 日本猛色少妇xxxxx猛交久久| a级毛片黄视频| 精品一品国产午夜福利视频| 国产黄色免费在线视频| 久久ye,这里只有精品| 美女视频免费永久观看网站| 成人亚洲精品一区在线观看| 日韩大片免费观看网站| 中国国产av一级| 亚洲欧美精品综合一区二区三区| av欧美777| 国产精品偷伦视频观看了| 亚洲色图综合在线观看| 婷婷成人精品国产| 在线天堂中文资源库| 欧美成狂野欧美在线观看| 亚洲欧美日韩高清在线视频 | 成人影院久久| 欧美精品啪啪一区二区三区 | 亚洲国产欧美一区二区综合| 免费久久久久久久精品成人欧美视频| 国产精品免费视频内射| 黄片小视频在线播放| 99久久国产精品久久久| 99九九在线精品视频| 国产日韩欧美在线精品| 亚洲七黄色美女视频| 欧美中文综合在线视频| 欧美日韩av久久| 国产又爽黄色视频| 成人国产av品久久久| 黄色a级毛片大全视频| 一本一本久久a久久精品综合妖精| 女人高潮潮喷娇喘18禁视频| 亚洲,欧美精品.| 国产成人系列免费观看| videosex国产| 69精品国产乱码久久久| 久久青草综合色| 动漫黄色视频在线观看| 99国产精品免费福利视频| 国产av又大| 日日摸夜夜添夜夜添小说| 午夜精品国产一区二区电影| 成年人免费黄色播放视频| 亚洲伊人久久精品综合| 99国产精品99久久久久| 老司机靠b影院| 精品国产乱码久久久久久男人| 多毛熟女@视频| 免费在线观看影片大全网站| 久久人妻熟女aⅴ| 精品国产乱子伦一区二区三区 | av网站免费在线观看视频| 99国产精品99久久久久| 国产免费av片在线观看野外av| 欧美精品一区二区免费开放| 久久热在线av| 久热爱精品视频在线9| 宅男免费午夜| 欧美日韩福利视频一区二区| 欧美国产精品va在线观看不卡| 日韩欧美一区二区三区在线观看 | 国产成人免费无遮挡视频| 欧美av亚洲av综合av国产av| 母亲3免费完整高清在线观看| 久久久久久久精品精品| 精品亚洲乱码少妇综合久久| 天天操日日干夜夜撸| 黄色怎么调成土黄色| 欧美av亚洲av综合av国产av| 男人操女人黄网站| 老司机亚洲免费影院| 啦啦啦 在线观看视频| 国产男女内射视频| 成人av一区二区三区在线看 | 美女福利国产在线| 80岁老熟妇乱子伦牲交| 美女主播在线视频| 欧美激情久久久久久爽电影 | 爱豆传媒免费全集在线观看| 婷婷色av中文字幕| 满18在线观看网站| 国产成人精品久久二区二区免费| av视频免费观看在线观看| 精品久久久久久电影网| 下体分泌物呈黄色| 在线天堂中文资源库| 久久久久视频综合| 免费在线观看影片大全网站| 久久免费观看电影| 亚洲国产欧美网| 精品亚洲成国产av| 日本a在线网址| 国产高清国产精品国产三级| 国产精品影院久久| 超色免费av| 成人三级做爰电影| 人妻人人澡人人爽人人| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品粉嫩美女一区| 亚洲av男天堂| 精品少妇一区二区三区视频日本电影| 日韩三级视频一区二区三区| av片东京热男人的天堂| 国产精品一区二区精品视频观看| 十八禁网站网址无遮挡| 一本色道久久久久久精品综合| 久热爱精品视频在线9| 91成年电影在线观看| 国产精品欧美亚洲77777| 在线亚洲精品国产二区图片欧美| 欧美在线一区亚洲| 国产免费视频播放在线视频| 久热这里只有精品99| 狂野欧美激情性xxxx| 成年av动漫网址| 欧美日韩成人在线一区二区| 我要看黄色一级片免费的| 国产精品99久久99久久久不卡| 亚洲精品粉嫩美女一区| 欧美久久黑人一区二区| av天堂在线播放| 青草久久国产| 女性被躁到高潮视频| 亚洲国产日韩一区二区| 大片电影免费在线观看免费| 91字幕亚洲| 大香蕉久久成人网| 日韩 亚洲 欧美在线| 欧美在线一区亚洲| 亚洲自偷自拍图片 自拍| 欧美日韩中文字幕国产精品一区二区三区 | 黄网站色视频无遮挡免费观看| 最近中文字幕2019免费版| 亚洲国产精品一区三区| 男人添女人高潮全过程视频| 18禁裸乳无遮挡动漫免费视频| 亚洲专区国产一区二区| 久久av网站| 国产高清国产精品国产三级| 午夜福利乱码中文字幕| 人人妻人人澡人人看| 水蜜桃什么品种好| 久久国产精品大桥未久av| 91大片在线观看| 国产日韩欧美在线精品| 99精品久久久久人妻精品| 亚洲午夜精品一区,二区,三区| videosex国产| 91老司机精品| 男人添女人高潮全过程视频| 菩萨蛮人人尽说江南好唐韦庄| 日韩 亚洲 欧美在线| 精品国产乱码久久久久久男人| 国产99久久九九免费精品| avwww免费| 日本vs欧美在线观看视频| 性色av一级| 一级片免费观看大全| 美国免费a级毛片| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 老熟女久久久| 亚洲人成电影观看| 国产老妇伦熟女老妇高清| videosex国产| 亚洲精品久久午夜乱码| 久热这里只有精品99| 中文字幕色久视频| av线在线观看网站| 色精品久久人妻99蜜桃| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品一二三| 搡老乐熟女国产| 国产精品久久久人人做人人爽| 高清av免费在线| 人妻 亚洲 视频| 法律面前人人平等表现在哪些方面 | 一二三四社区在线视频社区8| 国产成人啪精品午夜网站| 亚洲少妇的诱惑av| 麻豆av在线久日| 男人爽女人下面视频在线观看| 99国产综合亚洲精品| 99国产精品99久久久久| 90打野战视频偷拍视频| 99久久综合免费| 老汉色av国产亚洲站长工具| 天堂8中文在线网| 中文字幕人妻丝袜一区二区| 国产成人av激情在线播放| 美女高潮喷水抽搐中文字幕| 欧美久久黑人一区二区| 亚洲视频免费观看视频| 亚洲精品国产色婷婷电影| 久热这里只有精品99| 亚洲精品国产色婷婷电影| 亚洲av美国av| 欧美另类一区| 国产真人三级小视频在线观看| av又黄又爽大尺度在线免费看| 青春草视频在线免费观看| 中文字幕人妻熟女乱码| 日韩欧美国产一区二区入口| 欧美日韩视频精品一区| a 毛片基地| 亚洲精品国产精品久久久不卡| 亚洲精品久久午夜乱码| 日韩三级视频一区二区三区| 窝窝影院91人妻| 中文字幕人妻丝袜一区二区| 人人澡人人妻人| 亚洲av美国av| 精品少妇久久久久久888优播| 亚洲少妇的诱惑av| 可以免费在线观看a视频的电影网站| 天天影视国产精品| 一级片'在线观看视频| 国产不卡av网站在线观看| 亚洲情色 制服丝袜| 久久久水蜜桃国产精品网| 国产av国产精品国产| 欧美午夜高清在线|