• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrolyte/Structure-Dependent Cocktail Mediation Enabling High-Rate/Low-Plateau Metal Sulfide Anodes for Sodium Storage

    2021-10-21 03:31:14YongchaoTangYueWeiAnthonyHollenkampMustafaMusamehAaronSeeberTaoJinXinPanHanZhangYananHouZongbinZhaoXiaojuanHaoJieshanQiuChunyiZhi
    Nano-Micro Letters 2021年11期

    Yongchao Tang ,Yue Wei ,Anthony F.Hollenkamp ,Mustafa Musameh ,Aaron Seeber ,Tao Jin,4,Xin Pan,Han Zhang,Yanan Hou,Zongbin Zhao,Xiaojuan Hao,Jieshan Qiu,Chunyi Zhi

    ABSTRACT As promising anodes for sodium-ion batteries,metal sulfides ubiquitously suffer from low-rate and high-plateau issues,greatly hindering their application in full-cells.Herein,exemplifying carbon nanotubes (CNTs)-stringed metal sulfides superstructure (CSC) assembled by nano-dispersed SnS2 and CoS2 phases,cocktail mediation effect similar to that of high-entropy materials is initially studied in ether-based electrolyte to solve the challenges.The high nano-dispersity of metal sulfides in CSC anode underlies the cocktail-like mediation effect,enabling the circumvention of intrinsic drawbacks of different metal sulfides.By utilizing ether-based electrolyte,the reversibility of metal sulfides is greatly improved,sustaining a long-life effectivity of cocktail-like mediation.As such,CSC effectively overcomes low-rate flaw of SnS2 and highplateau demerit of CoS2,simultaneously realizes a high rate and a low plateau.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1anode at 20 A g-1,far outperforming those of monometallic sulfides (SnS2,CoS2) and their mixtures.Compared with CoS2 phase and SnS2/CoS2 mixture,CSC shows remarkably lowered average charge voltage up to ca. 0.62 V.As-assembled CSC//Na1.5VPO4.8F0.7 full-cell shows a good rate capability(0.05~ 1.0 A g-1,120.3 mAh g-1electrode at 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics analysis verifies that the cocktail-like mediation effect largely boosts the charge transfer and ionic diffusion in CSC,compared with single phase and mixed phases.Further mechanism study reveals that alternative and complementary electrochemical processes between nano-dispersed SnS2 and CoS2 phases are responsible for the lowered charge voltage of CSC.This electrolyte/structure-dependent cocktail-like mediation effect effectively enhances the practicability of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    KEYWORDS Metal sulfide anode;Rate capability;Voltage plateau;Cocktail mediation effect;Sodium-ion batteries

    1 Introduction

    With the merits of high capacity and low cost,metal sulfides have been recognized as promising anode materials for sodium-ion batteries (SIBs) [1,2].However,most metal sulfide anodes examined to date exhibit poor high-rate performance and/or voltage behavior that trends rapidly to relatively high values.The result is full-cells that only operate well at a low rate (≤0.5 A g-1electrode) and maintain average output voltages typically ≤2 V _ENREF_6 [3-8].At this level of performance,such cells are only slightly better than a number of advantages in energy density over aqueous batteries (e.g.,zinc batteries) but noncomparable safety to the latter [9-12].Thus far,many studies on metal sulfide anodes still focus on the enhancement in reversible capacity,rate capability,and cyclability in half-cells.Even few studies concerning the properties of metal sulfide anodes in fullcells,most of them only roughly evaluate the performance of full-cells based on anodes instead of total electrodes.This could result in certain intrinsic flaws of metal sulfide anodes underrated [10].Therefore,from the perspective of full-cell,to solve the low-rate and high-plateau issues of metal sulfide anodes is crucial for the development of high-performance full-cells (Scheme 1a).

    Different metal sulfides usually show electrolyte/structure-dependent electrochemical properties,offering valuable inspiration to rationally design new architectures and investigate their properties in proper electrolyte [3,13,14].Compared with ester-based electrolytes,ether-based electrolytes can effectively inhibit3 the shuttle effect of polysulfides in situ formed during discharge/charge processes,thus more beneficial to obtain reversible properties of metal sulfides [1,13,15].Ferromagnetic metal (Fe,Co,Ni,etc.)sulfides (FMSs) are very promising conversion-reaction anode materials widely studied for SIBs [16-19].Compared with conventional hard carbon or red phosphorous anodes,FMS anodes can display ultrahigh-rate capability (≥20 A g-1) in ether-based electrolyte,holding a great promise in SIBs (Scheme 1b) [20-22].However,FMS anode usually suffers from severe voltage hysteresis and high plateau(~1.9 V vs Na/Na+),largely lowering the discharge plateau of full-cells (Scheme 1c).From this point,mono-component FMSs seem to be difficult to meet the requirements for high-performance full-cells.So far,despite many relevant studies,most of them are inclined to ignoring the severe intrinsic flaws of FMSs,emphasizing to enhance capacity and cyclability.By contrast,another series of metal (Sn,Sb,Bi,etc.) sulfides (AMSs) with conversion/alloying-reaction mechanisms can show acceptable voltage hysteresis and relatively lower voltage plateau [23-30].However,these AMSs always suffer from severe volume change during discharge/charge processes,resulting in poor rate capability and cyclability in ester-based electrolytes (Scheme 1b).Owing to latent catalysis over the decomposition of certain ether,such AMSs remain scarcely investigated in ether-based electrolyte [31,32].Encouragingly,by utilizing fluorine-containing sodium salt in ether solvents as electrolyte,the undesirable catalysis of AMSs can be effectively suppressed to allow a stable battery operation [33,34].The good compatibility enables the investigation of electrochemical properties of FMS/AMS composites in ether-based electrolytes.In the multi-component metal sulfide anodes,each component functions as active material and mutually compete.Thus,the electrochemical behaviors of multi-component metal sulfides are comprehensive results from individual component.Given that exotic properties beyond rule-of-mixtures(cocktail-like mediation effect) in multi-component highentropy nano-systems [35,36],to construct new superstructures assembled by nano-dispersed FMSs and AMSs and to study their properties in ether-based elctrolytes,could be an effective strategy toward high-performance full-cells.Additionally,the poor conductivity of most metal sulfides makes them essential to further combine with highly conductive carbon materials.Such combination can endow rational architectures with fast ion/electron transfer,which is conducive to obtaining satisfactory electrochemical properties [13,37-39].So far,despite some studies pertaining to FMS/AMS composites,the certain agglomeration or phase separation between FMS and AMS remains unsatisfactory to investigate their comprehensive impact.Additionally,such studies mostly involved the electrochemical properties of FMS/AMS composites in carbonate-based electrolytes[40-42].Thus,to study the voltage behavior of metal sulfide composites in ether-based electrolytes will provide a new perspective to pursue desired sodium storage properties.

    Herein,CNTs-stringed metal sulfides superstructure anode assembled by nano-dispersed SnS2and CoS2phases(CSC,C:CNT;S: SnS2;C: CoS2) is engineered to combine the merits of FMS-and AMS-type anode materials,aiming at simultaneously solving the dual-problems of poor rate capability/output-voltage characteristics (Scheme 1b-c).The highly nano-dispersed metal sulfides in CSC show remarkable cocktail-like mediation effect,effectively circumventing intrinsic drawbacks of different metal sulfides.The etherbased electrolyte greatly enhances the reversibility of metal sulfides,which can inhibit the aggregation of homogenous metal sulfides,enabling a long-life effectivity of cocktaillike mediation.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1at 20 A g-1,showing remarkably lowered average charge plateau up to 0.62 V vs Na/Na+,compared with CoS2phase and SnS2/CoS2mixture.The asassembled CSC//Na1.5VPO4.8F0.7full-cell shows a good rate capability (0.05~ 1.0 A g-1,120.3 mAh g-1electrodeat 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics and mechanism studies reveal that the cocktail mediation effect largely boosts the charge transfer and ionic diffusion in CSC;along the diffusion direction of Na+carriers,alternative and complementary electrochemical processes between different nano-dispersed metal sulfides (SnS2,CoS2) and Na+carriers are responsible for the lowered average charge plateau of CSC.This exhibited cocktail-like mediation effect evidently improves the practicability of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    Scheme 1 a Prototype of full-cells.b Rate capability comparison of typical metal sulfide anodes in half-cells.c Discharge plateau comparison in full-cells with different metal sulfide anodes showing the merits of FMS/AMS ultrastructure

    2 Results and Discussion

    2.1 Materials Preparation and Characterization

    The CSC was initially obtained by ion-exchange reaction between thiostannate (SnxSyn-) and cobalt-based zeolitic imidazolate framework (ZIF-67) followed by annealing treatment (Fig.1a).For an enhanced conductivity of the resulting CSC,the ZIF-67 particles (C-ZIF-67) are connected together (‘stringed’) by a network of CNTs (Fig.S1). Sn119NMR spectroscopy reveals that several tetravalent thiostannate species (SnS32-,SnS44-,and Sn2S64-)exist in solution and these are referred to collectively as‘SnxSyn-’ (Fig.S2) [43].Within the ion-exchange process,Co2+in ZIF-67 reacts rapidly with SnxSyn-species,forming a unique superstructure comprised of nano-dispersed CoS2and SnS2phases.The overall reaction follows Eq.(1):

    Fig.1 a Schematic illustration of fabrication process of CSC,inset (right) showing the reaction between ZIF-67 and SnxSyn-.b XRD patterns of CNTs and CSC.c Mass content of CoS2,SnS2,and CNTs in the CSC.d N2 adsorption isotherm of CSC and corresponding pore width distribution.e FE-SEM images of CSC (inset displaying the core/shell structure of CSC).f TEM image of CSC and g TEM-EDS element mapping of CSC including C,Co,Sn,and S.HR-TEM images of h shell and i core in CSC showing co-assembly of nano-CoS2 and -SnS2

    As shown in Fig.1b,X-ray diffraction (XRD) patterns exhibit the diffraction peaks of CoS2(PDF No.00-41-1471),SnS2(PDF No.00-23-0677),and carbon,verifying their presence in the CSC.Compared with standard phase,the reflection for the (0 0 1) plane of SnS2registers a slight shift toward lower angles,implying an expanded interlayer spacing [14,44].The expanded interlayer spacing could be associated with the use of thiostannate precursor and low-temperature ion-exchange process.The ion-exchange reaction of thiostannate with ZIF-67 typically occurs at-5 °C in 1 h,where fast reassembly of SnS2results in the expanded interlayer spacing.Also,the relatively low annealing temperature (450 °C) is beneficial to retain the expanded interlayer spacing of SnS2.The content of carbon nanotubes in CSC is obtained by thermogravimetric analysis (TGA),which is ca.3.75 wt% (Fig.S3).By inductively coupled plasma-mass spectrometry (ICP-MS),the elemental content of CSC is analyzed,revealing that the mole ratio of Co/Sn/S isca.1.00/1.73/5.46 (Table S1).The corresponding mass content of CoS2and SnS2in the CSC is 26.95 and 69.30wt%,respectively (Fig.1c).The type-IV N2adsorption isotherms of CSC present an evident hysteresis loop,indicating the presence of mesopores (Fig.1d).The corresponding pore width (inset) mainly centers in the range of 20-45 nm.The theoretical capacity of CSC anode (CT-CSC) can be evaluated roughly according to the equation: CT-CSC=xCT-CoS2+yCT-SnS2,wherexandyis the percentage content of CoS2and SnS2in the CSC.The CT-CoS2and CT-SnS2are the theoretical capacity of CoS2and SnS2,which is 872 and 1136 mAh g-1,respectively.Thus,CT-CSC=0.2695 × 872+0.695 × 1136=1024.5 mAh g-1.

    Figure 1e exhibits field emission scanning electron microscopy (FE-SEM) images of CSC,which consists of carbon nanotubes-stringed core/shell architecture (inset).Such core/shell structures are greatly influenced by precursors,solvents,reaction temperatures,and concentrations (Figs.S4-S6).The content of SnS2in the CSC can be tuned to some extent by varying the concentration of thiostannate solution (Fig.S6).Transmission electron microscope (TEM) image shows the typical radial morphology of the CSC (Fig.1f).Energy-dispersive spectrometer (EDS) elemental mapping yields a distribution of the elements C,Sn,Co,and S in the CSC,which correspond well with the TEM image (Fig.1g).The details of shell and core were further characterized by TEM.The shell is actually composed of nanosheets (Fig.S7a).As displayed in Fig.1h,high-resolution transmission electron microscope (HR-TEM) image clearly exhibits interplanar spacings of 0.248 and 0.615 nm for CoS2(2 1 0) and SnS2(0 0 1) lattice planes,verifying such nanosheets assembled by nano-dispersed SnS2(red) and CoS2(blue-green).The TEM-EDS line-scan profiles show matched peaks with Co,Sn,S elements,further suggesting the superstructure of shell co-assembled by SnS2and CoS2phases (Fig.S7b).Corresponding to SEM image of CSC (inset),the core of CSC shows an abundant microstructure,in which the pore(green) can be observed (Fig.S8a).As shown in Fig.1i,HR-TEM image of the core also exposes the lattice planes of SnS2(0 0 1) and CoS2(2 1 0),which accord with the corresponding selected area electron diffraction (SAED)pattern (Fig.S8b).Such results verify that the core of CSC is also assembled by nano-dispersed SnS2and CoS2phases.The CSC was further analyzed by X-ray photoelectron spectroscopy (XPS).As shown in Fig.S9,compared with commercial CoS2sample,the high-resolution of XPS of Co 2p of CSC shows aca.0.45 eV shift toward higher binding energy.Moreover,the high-resolution of XPS of Sn 3d of CSC also appears a 0.61 eV shift toward higher binding energy.Such results imply the presence of chemical effect between CoS2and SnS2in CSC anodes [45,46].

    2.2 Half-Cell Properties

    The electrochemical properties of anode materials are firstly evaluated by testing half-cells with Na foil as counter electrode and ether-based electrolytes with fluorine-containing sodium salt.For comparison,commercial SnS2and CoS2powders with well-matched XRD patterns to standard phases are also tested (Fig.S10).Compared with the CSC,the N2isotherms of commercial SnS2and CoS2samples typically exhibit no evident hysteresis loop,whereby the corresponding pore diameter distributions display nonporous properties (Fig.S11).After initial three scans at 0.1 mV s-1,mono-component metal sulfides (CoS2and SnS2) and anodes composed of both compounds show gradually stabilized CV curves (Fig.S12).The initial CV curve of the CSC anode shows three oxidation peaks,which are associated with SnS2phase at 0.70-1.55 V and CoS2phase at 1.70-2.10 V,respectively.The reduction peak at 1.60-1.80 V is correlated with the CoS2phase,while the peaks at 0.50-1.10 V are linked to SnS2and formation of solid electrolyte interphase (Fig.S13a).In subsequent scans,the reduction peak related to CoS2gradually disappears,which could result from electrochemical activation of nano-dispersed SnS2and CoS2phases[16,22].As shown in Fig.2a,the activated CSC delivers a main oxidized peak potential range (0.75-1.65 V),which is close to that of SnS2(0.80-1.45 V) but remarkably lower than that of CoS2(1.30-2.18 V) and SnS2/CoS2mixture(1.25-2.15 V).Correspondingly,CSC anode displays an average charge voltage ofca.1.30 V,which is close to that of SnS2but lower than that of CoS2(ca.1.92 V) (Fig.2b).Compared with commercial SnS2/CoS2mixture with average charge voltage ofca.1.81 V,CSC anode also shows evident low-plateau merit (Fig.2c).This verifies that the construction of a superstructure assembled from nano-dispersed SnS2and CoS2phases is crucial for lowering the intrinsically high plateau of the CoS2phase.Specifically,as shown in Fig.2d,the introduction of nano-dispersed SnS2phase into CSC effectively lowers the intrinsic average charge voltage of CoS2up toca.0.62 V.This in turn will translate to a higher plateau voltage for full-cells,thereby improving their energy density.

    Fig.2 a CV curves and b,c corresponding discharge-charge curves of CSC,commercial SnS2 and CoS2,and SnS2/CoS2 mixture.d Histogram showing the average charge plateau voltages of various anodes in half-cells.e Capacity/charge plateau comparison of different anodes.f Rate capability of CSC,commercial SnS2 and CoS2 in half-cells.g Rate capability comparison of different anodes.h Long-life cyclability of CSC anode at 1 and 10 A g-1 (CE Coulombic efficiency)

    Compared with other metal chalcogenide anodes,CSC exhibits obvious high-capacity and low-plateau advantages(Fig.2e).Moreover,compared with commercial SnS2and CoS2,and mixtures of the two,CSC shows a remarkably improved rate capability,ranging from 0.5 to 20 A g-1with a high capacity of 327.6 mAh g-1anodeat 20 A g-1(Fig.2f).The corresponding discharge/charge curves are exhibited in Fig.S14.When tested with ester-based electrolyte,CSC shows similar CV curves to that in ether-based electrolyte,but the reversible capacity,to the same cutoffvoltage,shrinks markedly (Fig.S15).In addition,compared with in ether-based electrolyte,the rate capability of CSC is greatly deteriorated (Fig.S16),along with an increased resistance of charge transfer (Fig.S17).Such phenomena suggest the key role of ether-based electrolyte in stabilizing metal sulfide anodes and realizing fast charge transfer,which could be associated with good compatibility between metal sulfide and ether solvent [1,15].Evidently,the CSC anode effectively circumvents the intrinsic high voltage of CoS2and low-rate drawback of SnS2in etherbased electrolyte.Compared with other anode materials in half-cells,CSC also shows a remarkable high-rate capability(Fig.2g,Table S2)_ENREF_12_ENREF_13_ENREF_14_ENREF_15_ENREF_16_ENREF_17_ENREF_18 [47-54].The CSC can be cycled at high current densities (1 and 10 A g-1) with excellent long-life cyclability,specifically,410.8 mAh g-1anodeat 10 A g-1over 500 cycles without decay(Fig.2h).

    2.3 Electrochemical Kinetics

    The electrochemical kinetics of the CSC anode in half-cells is studied in detail by reference to the results of electrochemical impedance spectroscopy (EIS).Compared with electrodes made from commercial samples of SnS2and CoS2,the Nyquist curve for a typical CSC anode shows a semi-circle with smaller diameter,implying a faster charge transfer (Fig.3a).Based on the derived equivalent circuit,the resistances of charge transfer for CSC,commercial SnS2and CoS2anodes are 9.5,32.7,and 13.4 Ω,respectively(Fig.3b).To compare Na+diffusion coefficient (DNa+) in CSC and SnS2/CoS2mixture,galvanostatic intermittent titration technique (GITT) was conducted at 0.05 A g-1for 0.5 h,followed by relaxation for 2 h.The typical GITT discharge profiles of CSC and SnS2/CoS2mixture are shown in Fig.3c.As illustrated in Fig.3d,can be calculated following equationDNa+=,where L is Na+diffusion length(cm),τis the current impulse time (s),tis relaxation time(s),ΔESis steady-state potential change (V),ΔEtis the instantaneous potential change (V) used to deduce IR drop[55,56].Corresponding to the GITT profiles,the calculated averageDNa+isca.0.5 × 10-9cm2s-1,which is around twice that in half-cell with SnS2/CoS2mixture (Fig.3e).Evidently,compared with simply mixed SnS2/CoS2anode,the CSC assembly of nano-dispersed SnS2and CoS2particles shows remarkable superiority in terms of charge transfer kinetics and ionic diffusion.

    Next,the pseudocapacitive contribution to charge storage in the Na//CSC half-cell was evaluated,on the basis that this component gives rise to faster charge transfer kinetics.CV curves at different rates are shown in Fig.3f,and the correlation of peak currents (i) and scan rates (v) was assessed against the relationshipi=avb,whereaandbare adjustable constants [57].As shown in Fig.3g,the resultantb-values are 0.98,0.81,and 0.93,respectively,which implies the presence of a substantial pseudocapacitive contribution.The latter can be quantified through the equationi=k1v+k2v1/2,wherek1vandk2v1/2represent pseudocapacitive and iondiffusion controlled contribution,respectively [57-59].As shown in Fig.3h,CSC anodes exhibit dominant pseudocapacitive contributions at scan rates of 0.1,0.2,0.4,0.8,and 1.5 mV s-1,specifically,64.0%,67.0%,71.6%,78.3%,and 86.3%,respectively.Figure 3i displays the CV curves of Na//CSC at 1.5 mV s-1,in which the shaded region represents the pseudocapacitive contribution.This,together with the small charge transfer resistance and highDNa+,explains the excellent rate capability of the CSC anode.

    Fig.3 a Nyquist plots of different anodes in half-cells and b corresponding equivalent circuit and charge transfer resistance (Rct).c GITT profiles of Na//CSC half-cell discharged and d typical profile in a single GITT test.e Na+ diffusion coefficient distribution corresponding to a typical discharge curve of Na//CSC half-cell (inset).f CV curves of Na//CSC half-cell at different scan rates.g b-values obtained by fitting peak current-scan rate correlation based on CV curves of Na//CSC half-cell.h Pseudocapacitive contribution (pseudocapa.contri.) of Na//CSC at different scan rates.i CV profiles of Na//CSC at 1.5 mV s-1 and corresponding pseudocapacitive contribution (shaded region)

    2.4 Electrochemical Mechanism

    To investigate the mechanism that underpins the superior electrochemical behavior of CSC anodes,samples were at various states-of-(dis)charge characterized by ex situ XRD.The copper current collector in a Na//Cu half-cell discharged to 0.4 V shows only the intrinsic diffraction peaks for metallic copper,verifying no evident electrochemical reaction between Na and Cu collector in etherbased electrolyte (Fig.S18).Compared with original samples (CSC,commercial SnS2and CoS2),the samples after electrochemical activation exhibit dramatically different XRD patterns,indicating the occurrence of phase transition (Fig.S19).For CoS2,the relevant electrochemical reactions are as follows: CoS2+xNa++xe-→ NaxCoS2,NaxCoS2+(4 -x)Na++(4 -x)e-? 2Na2S+Co [60].For SnS2,the corresponding electrochemical reactions are as follows:xNa++SnS2+xe-→ NaxSnS2,NaxSnS2+(4-x)Na++(4-x)e-? 2Na2S+Sn,Sn+yNa++ye-? NaySn[40,61].Compared with single phases,the CSC anode shows similar featured diffraction peaks to pure SnS2,while the peaks from the CoS2diffraction pattern are difficult to discern.This could be associated with differences in crystallinity between products derived from SnS2and CoS2.For investigating the mechanism of activated CSC,original CSC anodes were activated for at least 3 cycles to obtain phase-transformed materials.Corresponding to the discharge-charge-time curves in Fig.4a,the activated CSC anodes at various states-of-charge show repeatable XRD patterns,implying good reversibility during the discharge/charge processes (Fig.4b).The peak intensity of XRD pattern of anode (such as C-0.97 V,blue) is lower than that of initially charged anode (such as C-0.97 V,pink),which could be associated with the decreased diameter and gradually aggravated amorphization of metal sulfide phases.Similar phenomena have been reported in other metal chalcogenide anodes such as CoSe2and CoS2[13,60].At different (dis)charge states,the corresponding XRD of anodes shows different patterns,which should be correlated to the successive formation of different products.

    As shown in Fig.4c,HR-TEM image of CSC discharged to 0.4 V displays interplanar spacings of 0.569 and 0.316 nm,corresponding to lattice plane (0 0 4) of Na29.58Sn8and (1 0 1) of Co.Selected area electron diffraction (SAED) patterns reveal the lattice plane (2 1 1)of Co,(5 1 3) and (1 3 1) of Na29.58Sn8in the discharged product (Fig.4d).When charged back to 2.9 V,the crystalline domains in the resulting product are remarkably smaller than those in the discharged state.As shown in Fig.4e,HR-TEM image of CSC charged to 2.9 V displays interplanar spacings of 0.184 and 0.295 nm,which are assigned to lattice plane of (2 2 1)’ of NaxCoS2and (0 0 2)’ of NaxSnS2(with CoS2and SnS2standard phases as reference),respectively.The SAED pattern exhibits typical polycrystalline features,in which lattice plane (2 2 0) of NaxCoS2,(1 0 3) and (1 0 0) of NaxSnS2can be identified (Fig.4f).Based on the characterization above,the progress of electrochemical reduction,followed by oxidation,for the CSC electrode is illustrated in Fig.4g.Typically,SnS2and CoS2phases in CSC experience an initial phase transition to Na+-intercalated intermediates(NaxMS2,M=Sn,Co),which act as active materials for subsequent discharge/charge cycles.Based on the analysis above,the exotic property mediation beyond rule-of-mixtures [35,36] (cocktail mediation effect) among nanodispersed SnS2and CoS2phases in CSC is schematically illustrated in Fig.4h-i.Specifically,along the different ionic diffusion directions,the nano-dispersed SnS2and CoS2phases in CSC will alternatively react with Na+carriers,as schematically illustrated in Fig.4i.The nanodispersion of SnS2and CoS2phases effectively shortens the ion diffusion path,which can kinetically boost electrochemical processes of both metal sulfide anodes.Due to intrinsic thermodynamics difference,the electrochemical competition is present between SnS2and CoS2phases.Also,it does not exclude one of the two phases could show local kinetic merit owing to the diameter difference between them.Thus,in the CSC anode,the alternative electrochemical reaction processes could coexist between the two phases.It enables complementary charge voltage plateau of different metal sulfide phases,resulting in lowered charge plateau of CSC anode.

    Fig.4 a Discharge-charge-time curve and b ex situ XRD patterns of CSC anode at different potentials.c HR-TEM image and d SAED pattern of CSC discharged to 0.4 V.e HR-TEM image and f SAED pattern of CSC charged to 2.9 V.g Schematic illustration of discharge/charge mechanisms of CSC anode.h Schematic illustration of reaction route and charge voltage change trend of CoS2 anode.i Schematic illustration of reaction route and charge voltage change trend of CSC anode,showing cocktail mediation effect among nano-dispersed metal sulfide phases in CSC

    2.5 Full-Cell Properties

    To verify the practicability of the CSC anode,a highvoltage cathode material Na1.5VPO4.8F0.7was employed to assemble CSC//Na1.5VPO4.8F0.7full-cells.Synthesis of Na1.5VPO4.8F0.7followed a modified literature method(Supporting Information),and yielded a micro-particle morphology with a well-matched XRD pattern with the standard phase (Fig.S20) [33].Corresponding to CV curves,Na1.5VPO4.8F0.7cathode showsca.3.9 V discharge plateau with low electrochemical polarization,which is suitable for demonstrating the practicability of different anodes (Fig.S21a,b).The Na1.5VPO4.8F0.7cathode delivers a good rate capability from 0.05 to 0.5 A g-1,showing a high reversible capacity of 124.1 mAh g-1electrodeat 0.05 A/g (Fig.S21c,d).Over 350 cycles at 0.1 A g-1,the Na1.5VPO4.8F0.7cathode shows a capacity of 106.4 mAh g-1electrode,corresponding to a low capacity decay of 0.02%per cycle (Fig.S22).Figure 5a shows the typical CV curves of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7full-cells at 0.5 mV s-1.Evidently,the main redox peaks of CoS2//Na1.5VPO4.8F0.7appear at 1.0-2.5 V,implying that its average discharge voltage is in the range.In contrast,the ranges of main redox peaks of SnS2//Na1.5VPO4.8F0.7and CSC//Na1.5VPO4.8F0.7full-cells are in 2.0-4.0 V,which imply a higher average discharge voltage than that of the former.Figure 5b shows that the discharge capacity available from the CSC//Na1.5VPO4.8F0.7cell,while the voltage is above 2 V,isca.61.7 mAh g-1electrode,which is 1.62 times that of CoS2//Na1.5VPO4.8F0.7.As displayed in Fig.5c,CSC//Na1.5VPO4.8F0.7full-cells present an average discharge voltage of 2.57 V,which is close to that of SnS2//Na1.5VPO4.8F0.7andca.0.62 V higher than that with CoS2anode.The CSC anode confers a significantly higher average voltage during discharge of full-cells when compared with CoS2cells.Compared with other full-cells reported previously,CSC//Na1.5VPO4.8F0.7full-cells also show obvious merits in terms of discharge voltage and capacity (Fig.5d).Moreover,CSC//Na1.5VPO4.8F0.7full-cells show a high-rate capability from 0.05 to 1 A g-1,delivering a high capacity of 120.3 mAh g-1electrodeat 0.05 A g-1(Fig.5e).The corresponding discharge/charge curves are shown in Fig.S23,where the voltage plateaus are well-retained.As exhibited in Fig.5f,compared with other full-cells with different electrode materials,CSC//Na1.5VPO4.8F0.7full-cell delivers comparable merits in terms of energy/power density.[62-67]Specifically,~106.1 Wh kg-1electrode/1278.3 W kg-1electrodeare achieved at 1 A g-1.When operated over 120 cycles at 0.25 A g-1,CSC//Na1.5VPO4.8F0.7full-cell shows a high capacity of 63.0 mAh g-1electrodewith a low decay of 0.20%per cycle (Fig.5g).Such results suggest a good practicability of CSC in full-cells.

    Fig.5 a CV curves of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7 full-cells at 0.5 mV s-1.b Corresponding discharge/charge curves and c discharge plateaus of full-cells at 0.05 A g-1.d Discharge plateau/capacity comparison of different full-cells.e Rate capability of CoS2//Na1.5VPO4.8F0.7,SnS2//Na1.5VPO4.8F0.7,and CSC//Na1.5VPO4.8F0.7 full-cells.f Ragone plots comparison of different fullcells.g Long-life cyclability of CSC//Na1.5VPO4.8F0.7 full-cells at 0.25 A g-1

    3 Conclusions

    Despite with high-capacity and low-cost merits,the ubiquitous low-rate and high-plateau issues greatly lower the practicability of metal sulfide anodes in full-cells.Herein,enlightened by electrolyte/structure-dependent properties of metal sulfides,CSC anode assembled by nano-dispersed SnS2and CoS2phases is engineered as a case study in ether-based electrolyte,simultaneously realizing high-rate and low-plateau properties.The high nano-dispersity of metal sulfides endows CSC anode with evident cocktail mediation effect similar to high-entropy materials,effectively circumventing intrinsic drawbacks of different metal sulfides.The utilized ether-based electrolyte greatly enhances the reversibility of metal sulfides,sustaining a long-life effectivity of cocktail-like mediation.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1anodeat 20 A g-1and remarkably lowered average charge voltage up toca.0.62 V,far outperforming CoS2phase and SnS2/CoS2mixture.The as-assembled CSC//Na1.5VPO4.8F0.7full-cell shows a good rate capability (0.05-1.0 A g-1,120.3 mAh g-1electrodeat 0.05 A g-1) and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics and mechanism studies further verify that the cocktail-like mediation effect largely boosts charge transfer and ionic diffusion in CSC,while alternative and complementary electrochemical processes between different nano-dispersed metal sulfides (SnS2and CoS2) and Na+carriers account for the lowered charge plateau of CSC.This work shows a unique electrolyte/structure-dependent cocktaillike mediation effect of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries.

    AcknowledgementsThis work was supported by Guangdong Basic and Applied Basic Research Foundation,China (No.2019A1515110980),research project from the National Natural Science Foundation of China (No.21361162004),China Scholarship Council,and CSIRO.We acknowledge Dr Yesim Gozukara,Dr Malisja de Vries,and Dr Yunxia Yang from CSIRO (Clayton)for their help with material characterization training.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http:// creat iveco mmons.org/ licen ses/ by/4.0/.

    Supplementary InformationThe online version contains supplementary material available at https:// doi.org/ 10.1007/s40820-021-00686-4.

    天天躁狠狠躁夜夜躁狠狠躁| 国产午夜精品论理片| 无限看片的www在线观看| 欧美三级亚洲精品| 草草在线视频免费看| 在线观看美女被高潮喷水网站 | 91麻豆精品激情在线观看国产| а√天堂www在线а√下载| 别揉我奶头~嗯~啊~动态视频| 日韩欧美国产在线观看| 亚洲精品456在线播放app | 久久中文字幕人妻熟女| 可以在线观看的亚洲视频| 中文在线观看免费www的网站| 亚洲自偷自拍图片 自拍| 此物有八面人人有两片| 成人特级av手机在线观看| 精品欧美国产一区二区三| 欧美大码av| 一二三四在线观看免费中文在| 在线观看一区二区三区| 免费搜索国产男女视频| 国产激情久久老熟女| 91九色精品人成在线观看| 亚洲成人免费电影在线观看| 国产精品久久久久久精品电影| 免费人成视频x8x8入口观看| 精品久久蜜臀av无| 搞女人的毛片| 日本五十路高清| 琪琪午夜伦伦电影理论片6080| 男插女下体视频免费在线播放| 国产精品精品国产色婷婷| 国产精品一区二区三区四区免费观看 | av女优亚洲男人天堂 | 亚洲专区字幕在线| 午夜福利欧美成人| 久久国产乱子伦精品免费另类| 久久久国产成人免费| 天堂动漫精品| 18禁观看日本| 精品欧美国产一区二区三| 亚洲av熟女| 亚洲中文字幕一区二区三区有码在线看 | 两性夫妻黄色片| 国语自产精品视频在线第100页| 久久久国产精品麻豆| 久久人妻av系列| 一二三四社区在线视频社区8| 熟女少妇亚洲综合色aaa.| 可以在线观看的亚洲视频| 欧美成人一区二区免费高清观看 | 男人的好看免费观看在线视频| 噜噜噜噜噜久久久久久91| 黄片小视频在线播放| 波多野结衣高清无吗| 特级一级黄色大片| 久久国产精品人妻蜜桃| 一a级毛片在线观看| 1024手机看黄色片| 国产精品久久久人人做人人爽| 久久欧美精品欧美久久欧美| 国产精品一区二区精品视频观看| 国产精品99久久久久久久久| 久久久国产成人免费| 亚洲中文字幕一区二区三区有码在线看 | 欧美成人一区二区免费高清观看 | 欧美色视频一区免费| 淫秽高清视频在线观看| 国产私拍福利视频在线观看| 国产主播在线观看一区二区| 亚洲中文字幕日韩| 日本熟妇午夜| 久久久久精品国产欧美久久久| 成人性生交大片免费视频hd| 色精品久久人妻99蜜桃| 亚洲狠狠婷婷综合久久图片| 舔av片在线| 亚洲熟妇中文字幕五十中出| 18禁黄网站禁片免费观看直播| 欧美+亚洲+日韩+国产| 又粗又爽又猛毛片免费看| 悠悠久久av| 国产激情偷乱视频一区二区| 国产激情欧美一区二区| 三级男女做爰猛烈吃奶摸视频| 一区二区三区高清视频在线| 村上凉子中文字幕在线| 亚洲熟妇中文字幕五十中出| АⅤ资源中文在线天堂| 亚洲精品中文字幕一二三四区| 黄色片一级片一级黄色片| 久久草成人影院| 淫妇啪啪啪对白视频| 老司机在亚洲福利影院| 1000部很黄的大片| 精品久久久久久,| 美女黄网站色视频| 两个人视频免费观看高清| 久久中文字幕人妻熟女| 亚洲国产欧美网| 亚洲七黄色美女视频| 国产亚洲欧美在线一区二区| 国产高清视频在线观看网站| 色综合亚洲欧美另类图片| 99热只有精品国产| 国产又色又爽无遮挡免费看| 国语自产精品视频在线第100页| 国产aⅴ精品一区二区三区波| 亚洲第一欧美日韩一区二区三区| 亚洲成人久久爱视频| tocl精华| 亚洲精品久久国产高清桃花| a级毛片在线看网站| 极品教师在线免费播放| 女生性感内裤真人,穿戴方法视频| 草草在线视频免费看| 久久这里只有精品中国| 色哟哟哟哟哟哟| 两个人视频免费观看高清| 国产三级中文精品| 国产综合懂色| 亚洲成av人片免费观看| 色精品久久人妻99蜜桃| 最近最新免费中文字幕在线| 亚洲欧美日韩卡通动漫| 夜夜夜夜夜久久久久| 操出白浆在线播放| 久久中文字幕人妻熟女| 99国产精品一区二区蜜桃av| 在线观看美女被高潮喷水网站 | 亚洲精品粉嫩美女一区| 男人舔奶头视频| 亚洲av五月六月丁香网| 麻豆一二三区av精品| 欧美3d第一页| 亚洲国产欧美人成| 男人舔奶头视频| 熟妇人妻久久中文字幕3abv| 熟女少妇亚洲综合色aaa.| 无人区码免费观看不卡| 色播亚洲综合网| 琪琪午夜伦伦电影理论片6080| 亚洲国产欧洲综合997久久,| 老汉色∧v一级毛片| 超碰成人久久| 搞女人的毛片| 日本一本二区三区精品| 人妻久久中文字幕网| 精品欧美国产一区二区三| 国产精品爽爽va在线观看网站| 精品久久久久久久人妻蜜臀av| 91麻豆av在线| 国产精品久久久久久人妻精品电影| 亚洲中文字幕日韩| 久久人妻av系列| 亚洲人成电影免费在线| 亚洲av日韩精品久久久久久密| 国产精品久久久久久精品电影| 亚洲专区国产一区二区| 男女那种视频在线观看| 狂野欧美白嫩少妇大欣赏| 天天添夜夜摸| 久久久久久人人人人人| 蜜桃久久精品国产亚洲av| 日本一二三区视频观看| 一本一本综合久久| 久久久久久国产a免费观看| 久久久成人免费电影| av在线蜜桃| 婷婷亚洲欧美| 天堂网av新在线| x7x7x7水蜜桃| 亚洲五月天丁香| 亚洲,欧美精品.| 1000部很黄的大片| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美网| 一级毛片女人18水好多| 成人av在线播放网站| 亚洲aⅴ乱码一区二区在线播放| 亚洲狠狠婷婷综合久久图片| 成人三级黄色视频| 搞女人的毛片| 国产午夜福利久久久久久| 亚洲午夜理论影院| 又黄又粗又硬又大视频| 麻豆一二三区av精品| 欧美一级毛片孕妇| 九九热线精品视视频播放| 又粗又爽又猛毛片免费看| 亚洲国产高清在线一区二区三| 精品国产亚洲在线| www日本在线高清视频| 亚洲va日本ⅴa欧美va伊人久久| 啦啦啦韩国在线观看视频| 热99re8久久精品国产| 久久久久国内视频| 国产成人福利小说| 午夜福利欧美成人| 久久久久久九九精品二区国产| 亚洲人成网站在线播放欧美日韩| 欧美高清成人免费视频www| 国产日本99.免费观看| 美女高潮的动态| 中亚洲国语对白在线视频| 黄频高清免费视频| 久久99热这里只有精品18| 亚洲熟妇熟女久久| 91麻豆精品激情在线观看国产| 国内揄拍国产精品人妻在线| 99久国产av精品| 真人一进一出gif抽搐免费| 禁无遮挡网站| 国产精品女同一区二区软件 | 欧美黑人巨大hd| 嫩草影院精品99| 天堂√8在线中文| 亚洲欧美一区二区三区黑人| 国产精品一及| 久久亚洲精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| 男人舔奶头视频| 99re在线观看精品视频| 丁香欧美五月| 日韩成人在线观看一区二区三区| 久久久久久九九精品二区国产| 午夜福利18| 欧美av亚洲av综合av国产av| 欧美日韩综合久久久久久 | 男人舔女人的私密视频| 色老头精品视频在线观看| 少妇的逼水好多| 成熟少妇高潮喷水视频| 99精品久久久久人妻精品| 亚洲人成网站在线播放欧美日韩| 午夜久久久久精精品| 精品久久久久久久久久久久久| 桃色一区二区三区在线观看| 久久草成人影院| 日本免费a在线| 国产黄a三级三级三级人| 国产高清视频在线观看网站| 久久久久久久午夜电影| 国产精品,欧美在线| 午夜a级毛片| 色综合亚洲欧美另类图片| 久久国产乱子伦精品免费另类| 免费看a级黄色片| 我的老师免费观看完整版| 欧美三级亚洲精品| 欧美日韩精品网址| 国产成+人综合+亚洲专区| 99久久成人亚洲精品观看| 天堂网av新在线| 91在线观看av| 高清在线国产一区| 成熟少妇高潮喷水视频| 欧美大码av| 国产亚洲欧美98| 亚洲国产色片| 淫秽高清视频在线观看| 九九久久精品国产亚洲av麻豆 | 日韩人妻高清精品专区| 成人国产一区最新在线观看| 亚洲成人免费电影在线观看| 亚洲第一电影网av| 久久久国产成人免费| 国产精品爽爽va在线观看网站| 香蕉av资源在线| 亚洲自偷自拍图片 自拍| 亚洲自偷自拍图片 自拍| 免费一级毛片在线播放高清视频| 日日夜夜操网爽| 日本一本二区三区精品| 国产97色在线日韩免费| 99久久精品国产亚洲精品| 成人性生交大片免费视频hd| 老司机午夜十八禁免费视频| www.熟女人妻精品国产| 97超级碰碰碰精品色视频在线观看| 精品国产美女av久久久久小说| av中文乱码字幕在线| 国产一区二区三区视频了| 亚洲真实伦在线观看| 国产精品av视频在线免费观看| 人人妻,人人澡人人爽秒播| 嫩草影视91久久| 午夜影院日韩av| 中文字幕人成人乱码亚洲影| 在线十欧美十亚洲十日本专区| 亚洲色图av天堂| 一二三四在线观看免费中文在| 亚洲欧美日韩无卡精品| www日本黄色视频网| 丰满人妻一区二区三区视频av | 久久久色成人| 亚洲成a人片在线一区二区| 午夜精品久久久久久毛片777| 在线观看免费午夜福利视频| 国产精品久久久久久人妻精品电影| 国产成人影院久久av| 非洲黑人性xxxx精品又粗又长| 亚洲在线观看片| 黄色日韩在线| 日本成人三级电影网站| 麻豆久久精品国产亚洲av| 精品国产亚洲在线| 日韩人妻高清精品专区| h日本视频在线播放| 动漫黄色视频在线观看| 亚洲 国产 在线| 在线视频色国产色| 欧美黄色片欧美黄色片| 日韩 欧美 亚洲 中文字幕| 国产真人三级小视频在线观看| 午夜福利在线在线| www.自偷自拍.com| 久久久国产欧美日韩av| 国产高清激情床上av| 伊人久久大香线蕉亚洲五| av天堂中文字幕网| 国产高清videossex| 亚洲第一电影网av| 欧美另类亚洲清纯唯美| 一本精品99久久精品77| 91九色精品人成在线观看| 精品国产超薄肉色丝袜足j| 精品电影一区二区在线| 国产男靠女视频免费网站| 一区二区三区高清视频在线| 99久久综合精品五月天人人| 一进一出抽搐动态| 国产日本99.免费观看| 久久午夜亚洲精品久久| 高清毛片免费观看视频网站| 免费搜索国产男女视频| 制服丝袜大香蕉在线| 久久久久久久久久黄片| 神马国产精品三级电影在线观看| 日韩免费av在线播放| 亚洲 欧美 日韩 在线 免费| 小说图片视频综合网站| 亚洲av五月六月丁香网| 欧美乱色亚洲激情| 婷婷精品国产亚洲av| 99视频精品全部免费 在线 | 久久久久久人人人人人| 2021天堂中文幕一二区在线观| 亚洲精品一区av在线观看| 黄色女人牲交| 亚洲精品美女久久av网站| 成人特级av手机在线观看| 国产一区二区在线av高清观看| 欧美性猛交黑人性爽| 九色成人免费人妻av| 啦啦啦免费观看视频1| 中文字幕人成人乱码亚洲影| 久久中文看片网| 亚洲熟妇中文字幕五十中出| 久久香蕉国产精品| 免费搜索国产男女视频| 亚洲国产色片| 色视频www国产| 久久久久国产一级毛片高清牌| 最近最新中文字幕大全电影3| 最新在线观看一区二区三区| 99热这里只有精品一区 | 观看免费一级毛片| 国产探花在线观看一区二区| 色视频www国产| 精品99又大又爽又粗少妇毛片 | 亚洲成av人片在线播放无| 不卡av一区二区三区| 色哟哟哟哟哟哟| 在线观看一区二区三区| 亚洲精品粉嫩美女一区| 天天添夜夜摸| 亚洲国产精品999在线| 在线观看舔阴道视频| 国内精品一区二区在线观看| 欧美绝顶高潮抽搐喷水| 亚洲国产欧美网| 国产av麻豆久久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 制服人妻中文乱码| 国产亚洲精品综合一区在线观看| 老熟妇乱子伦视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品在线美女| 91字幕亚洲| 少妇人妻一区二区三区视频| 亚洲av免费在线观看| 男女床上黄色一级片免费看| 国产免费av片在线观看野外av| 黄色女人牲交| 久久香蕉国产精品| www.www免费av| 99久久综合精品五月天人人| 亚洲在线自拍视频| 国产伦在线观看视频一区| 国内少妇人妻偷人精品xxx网站 | 亚洲av电影在线进入| 欧美成人一区二区免费高清观看 | 欧美黑人巨大hd| 久久九九热精品免费| 特大巨黑吊av在线直播| 国产精品电影一区二区三区| 免费无遮挡裸体视频| 一进一出抽搐gif免费好疼| 精品乱码久久久久久99久播| 19禁男女啪啪无遮挡网站| 免费大片18禁| 午夜免费激情av| 久久久色成人| 国产高清videossex| 免费在线观看视频国产中文字幕亚洲| 一区二区三区激情视频| 一级a爱片免费观看的视频| 天堂动漫精品| 国产成人影院久久av| 亚洲成a人片在线一区二区| svipshipincom国产片| 成人国产综合亚洲| 国产精品香港三级国产av潘金莲| 亚洲狠狠婷婷综合久久图片| 一级毛片精品| 精品久久久久久久久久免费视频| 757午夜福利合集在线观看| 我的老师免费观看完整版| 在线视频色国产色| 免费电影在线观看免费观看| 色在线成人网| 国产蜜桃级精品一区二区三区| 午夜福利免费观看在线| 国产97色在线日韩免费| 9191精品国产免费久久| 亚洲专区中文字幕在线| 国产精品一区二区三区四区久久| 国产精品爽爽va在线观看网站| 久久久国产成人免费| 免费在线观看亚洲国产| 成人av在线播放网站| 一个人免费在线观看电影 | 午夜福利视频1000在线观看| 在线观看日韩欧美| 久久久久九九精品影院| 悠悠久久av| 嫁个100分男人电影在线观看| 成人18禁在线播放| 看黄色毛片网站| 国产午夜福利久久久久久| 精品国产亚洲在线| 99国产精品一区二区三区| 久久精品人妻少妇| 亚洲av美国av| 免费搜索国产男女视频| 久久伊人香网站| 夜夜看夜夜爽夜夜摸| www日本黄色视频网| 亚洲七黄色美女视频| 国内精品久久久久久久电影| 欧美不卡视频在线免费观看| 深夜精品福利| 男女床上黄色一级片免费看| 精品欧美国产一区二区三| 日日夜夜操网爽| 好男人电影高清在线观看| 久久久久久大精品| 狂野欧美白嫩少妇大欣赏| 久久久精品大字幕| 又黄又爽又免费观看的视频| 91av网一区二区| 久久久久国内视频| 最新美女视频免费是黄的| 国产乱人视频| 欧美黑人欧美精品刺激| 天天躁日日操中文字幕| 亚洲avbb在线观看| 日本成人三级电影网站| 国产精品一区二区三区四区久久| 久久中文字幕人妻熟女| 日韩 欧美 亚洲 中文字幕| 国产精品av久久久久免费| 亚洲国产中文字幕在线视频| 日本黄色视频三级网站网址| www.www免费av| 国内精品一区二区在线观看| 久久中文字幕人妻熟女| netflix在线观看网站| 久久香蕉国产精品| 99久久精品一区二区三区| 天堂动漫精品| 精品99又大又爽又粗少妇毛片 | 女生性感内裤真人,穿戴方法视频| a级毛片在线看网站| 精品国内亚洲2022精品成人| 一二三四社区在线视频社区8| 成年女人毛片免费观看观看9| 国产一区在线观看成人免费| 色av中文字幕| avwww免费| 久久午夜综合久久蜜桃| 久久精品影院6| 国产激情偷乱视频一区二区| 亚洲无线在线观看| 国产亚洲精品av在线| 神马国产精品三级电影在线观看| 欧美性猛交黑人性爽| 成人18禁在线播放| 又粗又爽又猛毛片免费看| 亚洲七黄色美女视频| 中文字幕av在线有码专区| 综合色av麻豆| 欧美中文综合在线视频| 久久久久久人人人人人| АⅤ资源中文在线天堂| 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av| av天堂中文字幕网| 欧美+亚洲+日韩+国产| 99国产综合亚洲精品| 久久国产精品人妻蜜桃| 成人av一区二区三区在线看| 极品教师在线免费播放| 成人18禁在线播放| 国产三级中文精品| 丝袜人妻中文字幕| 国产精品乱码一区二三区的特点| 黄色女人牲交| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 午夜精品在线福利| 国产精品精品国产色婷婷| 两性夫妻黄色片| 国产成+人综合+亚洲专区| 丰满的人妻完整版| 狂野欧美白嫩少妇大欣赏| 成人国产综合亚洲| 亚洲国产精品999在线| 九九在线视频观看精品| 男人舔女人下体高潮全视频| 欧美色视频一区免费| 麻豆一二三区av精品| 亚洲熟妇中文字幕五十中出| www.熟女人妻精品国产| 757午夜福利合集在线观看| 久久婷婷人人爽人人干人人爱| 午夜激情福利司机影院| 91九色精品人成在线观看| 久久精品国产清高在天天线| 两人在一起打扑克的视频| 久久香蕉精品热| 久久中文字幕一级| 免费一级毛片在线播放高清视频| 深夜精品福利| 国产 一区 欧美 日韩| 亚洲av成人不卡在线观看播放网| 色精品久久人妻99蜜桃| 亚洲无线观看免费| 亚洲18禁久久av| 欧美成人免费av一区二区三区| 人妻夜夜爽99麻豆av| 麻豆av在线久日| 天天一区二区日本电影三级| 国产av不卡久久| 在线观看免费午夜福利视频| 美女cb高潮喷水在线观看 | 这个男人来自地球电影免费观看| www日本在线高清视频| 婷婷精品国产亚洲av在线| 亚洲黑人精品在线| 看片在线看免费视频| 国产成人福利小说| 真实男女啪啪啪动态图| 精华霜和精华液先用哪个| 国产美女午夜福利| 麻豆久久精品国产亚洲av| 我要搜黄色片| 制服人妻中文乱码| 国内揄拍国产精品人妻在线| 亚洲九九香蕉| 无限看片的www在线观看| 亚洲18禁久久av| 一卡2卡三卡四卡精品乱码亚洲| 嫩草影视91久久| 99国产精品一区二区蜜桃av| 国产激情偷乱视频一区二区| 国产又色又爽无遮挡免费看| 国产亚洲欧美98| 成年女人看的毛片在线观看| 18禁美女被吸乳视频| 窝窝影院91人妻| 国产精品久久久久久精品电影| 欧美色欧美亚洲另类二区| 亚洲 国产 在线| 老汉色av国产亚洲站长工具| 99久久综合精品五月天人人| 伊人久久大香线蕉亚洲五| 无人区码免费观看不卡| 国产精品一区二区精品视频观看| 男女之事视频高清在线观看| 9191精品国产免费久久| 国产精品爽爽va在线观看网站| 亚洲专区字幕在线| 亚洲九九香蕉| 久久热在线av| 搡老岳熟女国产| 在线观看日韩欧美| 国产亚洲av高清不卡| 色播亚洲综合网| 香蕉久久夜色| 欧美成人性av电影在线观看| 一级毛片高清免费大全| 国产午夜精品久久久久久|