• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxygen-Deficient β-MnO2@Graphene Oxide Cathode for High-Rate and Long-Life Aqueous Zinc Ion Batteries

    2021-10-21 03:31:00ShouxiangDingMingzhengZhangRunzhiQinJianjunFangHengyuRenHaocongYiLeleLiuWenguangZhaoYangLiLuYaoShunningLiQingheZhaoFengPan
    Nano-Micro Letters 2021年11期

    Shouxiang Ding ,Mingzheng Zhang ,Runzhi Qin ,Jianjun Fang ,Hengyu Ren ,Haocong Yi ,Lele Liu,Wenguang Zhao,Yang Li,Lu Yao,Shunning Li,Qinghe Zhao,Feng Pan

    ABSTRACT Recent years have witnessed a booming interest in grid-scale electrochemical energy storage,where much attention has been paid to the aqueous zinc ion batteries (AZIBs).Among various cathode materials for AZIBs,manganese oxides have risen to prominence due to their high energy density and low cost.However,sluggish reaction kinetics and poor cycling stability dictate against their practical application.Herein,we demonstrate the combined use of defect engineering and interfacial optimization that can simultaneously promote rate capability and cycling stability of MnO2 cathodes.β-MnO2 with abundant oxygen vacancies (VO) and graphene oxide (GO) wrapping is synthesized,in which VO in the bulk accelerate the charge/discharge kinetics while GO on the surfaces inhibits the Mn dissolution.This electrode shows a sustained reversible capacity of~ 129.6 mAh g-1 even after 2000 cycles at a current rate of 4C,outperforming the state-of-the-art MnO2-based cathodes.The superior performance can be rationalized by the direct interaction between surface VO and the GO coating layer,as well as the regulation of structural evolution of β-MnO2 during cycling.The combinatorial design scheme in this work offers a practical pathway for obtaining high-rate and long-life cathodes for AZIBs.

    KEYWORDS Manganese oxides;Oxygen defects;Surface optimization;Aqueous zinc battery

    1 Introduction

    The worldwide transition from fossil fuels to sustainable energy sources has spawned a rising demand for more reliable and low-cost batteries in the field of large-scale energy storage [1],where safety and economic issues are more of a concern than energy density.Rechargeable aqueous zinc ion batteries (AZIBs) [2],because of their non-flammability,cost effectiveness,environmental benignity,and abundant sources,offer a promising alternative to the lithium-ion battery technology in stationary grid-connected applications.Currently,the performance of AZIBs is largely limited by available cathode materials,of which renowned examples include manganese oxides [3],vanadium oxides [4],Prussian blue analogs [5,6],and organic species [7].Among them,polymorphs of MnO2have captured particular attention due to their outstanding theoretical capacity and a preferable theoretical voltage versus Zn anode [8-12].However,the development of MnO2cathodes has been impeded by scientific challenges related to the kinetic limitations and capacity fading,which can be ascribed to the sluggish Zn2+diffusion in the cathode [13] and the irreversible phase transformation [14],respectively.To realize high-rate and longlife AZIBs,it is therefore required to formulate new design strategies for MnO2-based cathode materials.

    Toward this goal,researchers have adopted various technologies,including pre-intercalation engineering [15],defect engineering [16,17],interfacial optimization [18,19],and metal-doping [20],etc.Especially,the incorporation of oxygen vacancies (VO) is an effective route to improve the rate performance of MnO2electrodes.Previous studies have suggested that electronic conductivity can be enhanced in the presence of VO[21,22] and that the under-coordinated Mn ions will potentially afford facile transport pathways for ionic charge carriers [23-26].It is worth mentioning that a recent study of β-MnO2cathode has revealed the massive proton insertion triggered by the introduction of VOinto the bulk lattice [27].These promising aspects enabled by oxygen deficiency may,however,be tarnished by a higher susceptibility to Mn dissolution,which is likely to incur phase transitions.In this regard,surface coating (SC) can be leveraged to inhibit the Mn ions diffusing into the electrolyte.For pristine MnO2cathodes,the benefits of SC have already been demonstrated in several reports with carbon-based coating materials ranging from graphene [28,29] to polymers [30,31].Yet,the pertinent combination of VOand SC has not been explored in AZIB cathodes up to date,despite its fascinating potential to promote rate capability and cycling stability at the same time.Moreover,how such coatings interact with MnO2is rarely discussed,thus depriving researchers of a rational understanding of the role played by SC.

    In this work,we report the combinatorial use of defect engineering and interfacial optimization to boost the electrochemical performance of β-MnO2cathode.Electrode with excessive VOand graphene oxide (GO) wrapping is directly synthesized via a simple hydrothermal reaction. VOplays the vital role in facilitating the transfer of electrons and protons,while GO coating suppresses the dissolution of Mn ions.As a consequence,the oxygen-deficient β-MnO2@graphene oxide architecture exhibits high capacity,superior charge/discharge rates,and excellent cycle stability.Our work highlights that the tight binding of GO to the surfaces of β-MnO2via the interaction with VOacts in synergy with the regulated formation of spinel ZnxMn2O4to guarantee the structural integrity of the electrode during long-term cycling.

    2 Experimental Section

    2.1 Synthesis of β-MnO2@GO Nanorods

    The β-MnO2@GO nanorod was synthesized via a typical hydrothermal method.30 mL 0.6 M MnSO4,2 mL 0.5 M H2SO4,and 4 mL 1 mg mL-1GO dispersed aqueous solutions were mixed and continuously stirred for 30 min.30 mL 0.1 M KMnO4was then added into the resultant solution dropwise,after which the solution was stirred at room temperature for another 30 min and then loaded into a 100 mL Teflon-lined autoclave and maintained at 120 °C for 12 h.Finally,the obtained products were collected by the filter and were washed with deionized water and absolute ethyl alcohol for three times,respectively,and then dried at 80 ℃for 12 h.The β-MnO2counterpart was synthesized with the same method without adding GO.

    2.2 Materials Characterization

    The prepared materials were characterized by X-ray diffraction (XRD,Bruker D8 ADVANCE) with Cu Kα radiation.Scanning electron microscopy (SEM,ZEISS SUPRA55) and transmission electron microscopy (TEM,JEM-3200FS) were employed to investigate the micromorphology and microstructure.The thermogravimetric analysis (TGA) data were recorded in O2atmosphere using a 10 ℃ min-1heating rate from 30 to 700 ℃.X-ray photoelectron spectroscopy (XPS,ESCALAB 250Xi) was used to conduct the element composition and electronic structure analysis,in company with the energy-dispersive spectroscopy (EDS,Oxford X-Max 20)and Fourier transform infrared spectroscopy (FTIR).Electron paramagnetic resonance (EPR,Bruker A300-10/12) was performed to characterize the unpaired electron.

    2.3 Electrochemical Tests

    Electrochemical performance was tested in CR2032-type coin cells which were assembled in air condition.The working cathodes were fabricated by blending active materials,acetylene black (AB) and polyvinylidene fluoride (PVDF) in a weight ratio of 7:2:1 with N-methyl-2-pyrrolidone (NMP)used as a solvent to form a viscous slurry and coat onto Ti foil.The areal active loading for both the β-MnO2and β-MnO2@GO is about~ 2 mg cm-2.The as-prepared electrodes were dried in vacuum oven of about 110 ℃ for 24 h.Zinc foil in 10 mm and glass fiber membrane in 16 mm were used as the anode and separator,respectively.The electrolyte contained 3 M ZnSO4and 0.2 M MnSO4in aqueous solution.The LAND-CT2001A battery-testing instrument was conducted for cycle and rate test with assembled cells.EIS was performed on a Chi 660e electrochemical workstation with frequency range from 100 kHz to 0.1 Hz.

    2.4 First Principles Calculations

    Density functional theory (DFT) calculations were carried out using projected augmented wave pseudopotentials and the generalized gradient approximation in the form of the Perdew-Burke-Ernzerhof exchange-correlation functional modified for solids (PBEsol),as embedded in Vienna ab initio simulation package (VASP).The van der Waals interactions were treated using Grimme’s correction (DFT-D3).To deal with the localization of d electrons on Mn ions,Hubbard-corrected PBEsol+U(+J) functional was employed.More details are given in the Supporting Information.

    3 Results and Discussion

    3.1 Material Characterization

    XRD patterns of the prepared β-MnO2and β-MnO2@GO are shown in Fig.1a,which match very well with the standard β-MnO2(tetragonal,space group of P42/mnm,PDF #42-0735).This result indicates that GO wrapping does not alter the crystal structure of the β-MnO2.SEM results show the nanorod morphologies of β-MnO2and β-MnO2@GO with several micrometers in length and 200-300 nm in width (Fig.S1).The high-resolution TEM(HRTEM) confirms the adhesion of GO to the surfaces of β-MnO2(Fig.1b).Two lattice fringes of (101) and (110)planes are observed for β-MnO2@GO (Fig.1c),with interlayer spacing values of~ 2.40 and~ 3.13 ?,respectively,consistent with the XRD results in Fig.1a.Similar lattice fringe results are also observed for β-MnO2(Fig.S2).There exist some ambiguous areas in β-MnO2@GO,which can be ascribed to the formation of a large number of defects.

    EDS,FTIR,and XPS further justify the successful wrapping of GO (Fig.1b) in the β-MnO2@GO sample.Figure 1d reveals the uniform distributions of Mn,O,and trace amount of C elements.Comparison of FTIR results in Fig.1e demonstrates the characteristic peaks of C-O(~ 1432 cm-1) and C=C (~ 1576 cm-1) [32] in β-MnO2@GO.Three clear peaks located at~ 284.8,~ 286.0,and~ 288.8 eV in XPS C 1 s spectrum of β-MnO2@GO(Fig.1f) indicate the existence of C-C/C=C,C-O,and O-C=O bonds,respectively.

    The formation of VOcan be implied by the XPS O 1sspectra (Fig.1g),where the characteristic peak of VO(~ 531.2 eV) in β-MnO2@GO is substantially higher than that in β-MnO2.EPR spectra (Fig.S3) showing an apparent symmetrical signal atg=2.0 also suggest the high concentration of VO[33].The TGA curves of β-MnO2and β-MnO2@GO in O2-containing atmosphere are shown in Fig.1h.In the temperature range of 200-600 °C,the TGA curve of β-MnO2@GO rises,indicating the filling of VOby oxygen,in contrast to the β-MnO2sample where the mass change is negligible.Here,we cannot rule out the possibility of GO decomposition,which will contribute to mass loss.Due to the formation of more VO,Mn ions in β-MnO2@GO show lower valence than those in β-MnO2,as revealed by Mn 3sspectra in Fig.S4.Such a remarkable increase in VOconcentration is associated with both the low average oxidation state of Mn (+2.7) in the reactant solution,and the deoxygenation of GO during hydrothermal process,which will develop a strong tendency to extract the surface O ions of the as-produced β-MnO2so as to compensate the abundant dangling bonds on the reduced GO.The functional groups on GO may also accelerate the formation of β-MnO2,in which case the fast kinetics will potentially give rise to offset from the equilibrium state,for example,in the form of bulk VO.This scenario is similar to the cases of TiO2@GO [34] and other MnO2@GO electrodes in previous report,where the generation of VOin the transition metal oxides can be triggered during their hydrothermal growth in the presence of GO [35-37].

    Fig.1 a XRD patterns of β-MnO2 and β-MnO2@GO.b-d TEM,HRTEM morphologies,and correlated EDS mapping results of β-MnO2@GO (the insets in b and c show the presence of GO layer and the diffraction pattern,respectively).e comparison of FTIR spectra of β-MnO2 and β-MnO2@GO.f XPS peaks of C 1s and g O 1s spectra.h TGA curves of β-MnO2 and β-MnO2@GO in an O2-containing atmosphere

    3.2 Electrochemical Performance

    Coin-type cells are assembled with Zn plate as anode and aqueous 3 M ZnSO4+0.2 M MnSO4as electrolyte.The role of the pre-added Mn2+in the electrolyte is to suppress the Mn2+dissolution upon discharge processes,and the optimized Mn2+concentration in electrolyte is~ 0.2 M (Fig.S5).Figure 2a compares the rate performance of the β-MnO2and β-MnO2@GO electrodes.It can be seen that both electrodes show similar capacity activation process in the initial eight cycles at a current of 0.1C (1C=308 mA g-1),indicating that GO wrapping shows little influence on the capacity delivery of β-MnO2at low current rates.After eight cycles,the discharge capacity of β-MnO2@GO is stabilized at~ 322.6 mAh g-1.Figure 2b shows the galvanostatic charge/discharge (GCD) curves of the β-MnO2and β-MnO2@GO electrodes at a current of 0.1C in the second cycle,indicating that GO wrapping can induce an elevated discharge platform,i.e.,a smaller polarization.Figures 2c and S6 show the GCD curves of the β-MnO2@GO and β-MnO2electrodes at various current rates,respectively.The discharge capacities of β-MnO2@GO are~ 312.4,~ 290.9,~ 2 59.6,~ 211.7,~ 158.6,~ 132.5,~ 106.8,and~ 94.9 mAh g-1at current rates of 0.25,0.5,1,2,4,6,8,and 10C,respectively,which are much higher than those of β-MnO2.

    Figure 2 d,e provides the cycling performances of β-MnO2and β-MnO2@GO electrodes at current rates of 1C and 4C,respectively.It can be seen that the cycling performances follow the similar trend:The discharge capacity is activated in the initial cycles and then continuously reduces in the subsequent cycles.This kind of capacity variation is similar to other manganese oxide electrodes in previous reports [38,39],and the initial capacity activation process can be attributed to the bulk-nanocrystalline evolution during cycling.For β-MnO2@GO,at a current rate of 1C,the discharge capacity first increases to~ 278.6 mAh g-1in 50 cycles and then reduces slowly to~ 236.6 mAh g-1in 200 cycles.Furthermore,at a current rate of 4C,the discharge capacity first increases to~ 166.9 mAh g-1in 220 cycles and then reduces slowly to~ 129.6 mAh g-1in 2000 cycles,with nearly no capacity fading as compared with the initial discharge capacity (~ 106.7 mAh g-1).The capacity,rate,and cycling performances of β-MnO2@GO are among the best reported manganese oxides (Table S1).Therefore,the combination of VOand GO wrapping on β-MnO2not only enhances the charge/discharge kinetics for superior rate performances,but also improves the cycling stability of the electrode.

    Fig.2 a,b Comparison of rate performances and the galvanostatic charge/discharge (GCD) curves at the second cycle (at current of 0.1C) of β-MnO2 and β-MnO2@GO electrodes.c GCD curves of β-MnO2@GO electrodes at various rate currents.Cycling performances of β-MnO2 and β-MnO2@GO electrodes at the rate currents of e 1C and f 4C

    3.3 Charge Storage Mechanism

    Insights into the charge storage mechanism is highly significant to understand the enhanced electrochemical performances of β-MnO2@GO.Herein,XRD,SEM,TEM,and XPS are comprehensively applied to reveal the charge storage mechanism and the correlated structural evolution of β-MnO2@GO upon cycles.Figure 3a shows the GCD curves of β-MnO2@GO electrode in the initial two cycles(at current rate of 0.1C),with the correlated XRD patterns at selected states (from point #A to #J) given in Fig.3b.It can be seen that the (110),(101),(211) peaks of β-MnO2@GO located at 28.62°,37.28°,56.60° shift negligibly upon discharge/charge processes.After discharge (i.e.,at point#B in the first cycle,and point #H in the second cycle),two diffraction peaks at 16.35° and 33.95° emerge,corresponding well to the monoclinic MnOOH (orthorhombic,Pnma(62),PDF #88-0648),a typical product of proton conversion in MnO2[40,41].Meanwhile,zinc sulfate hydroxide hydrate by-product (Zn4(OH)6·ZnSO4·xH2O,abbreviated as“ZSH,” PDF #44-0673) is generated upon discharge,featuring a set of strong diffraction peaks located at 8.12°,15.08°,21.56°,and 24.57°,which is a critical evidence for proton intercalation into the lattice framework of MnO2[20].The presence of ZSH on the electrode can be further confirmed by the morphology evolutions of β-MnO2@GO electrodes,(Figs.3c,S7),and the detailed analysis for the morphology evolutions is shown in Supporting Information.

    As reported previously,for β-MnO2,protons rather than Zn2+ions tend to intercalate into the [1 × 1] tunnel framework,owing to the large ion radius and high charge density of the divalent Zn2+ions [24].Hence,the charge storage in β-MnO2@GO is likely to be dominated by the proton intercalation/conversion reactions.When the amount of intercalated proton in surface area exceeds a threshold,it converts to the orthorhombic MnOOH,which explains the co-existence of diffraction patterns of MnOOH (surface area) and protonated β-HxMnO2(internal area) phases [27]upon discharge in Fig.3b.Furthermore,some weak peaks locating at 32.97° and 58.70° are observed upon discharge in the second cycle,which is indexed to the ZnMn2O4phase (hetaerolite,141/amd,PDF No.24-1133) [3,42].HRTEM is also applied to reveal the lattice structures of β-HxMnO2,MnOOH,and ZnMn2O4phases in the discharged electrode,as shown in Fig.3d-g.The nanorod morphology of β-MnO2@GO maintains well upon discharge.We note that the internal part (region I) remains the pristine crystal lattice of β-MnO2(Fig.3e),while the surface parts (i.e.,in region II and III) show a different scenario.The magnified HRTEM images and the correlated diffraction patterns in region II and III (Fig.3f,g)show the lattice fringes corresponding to (200) plane of MnOOH and (103) plane of ZnMn2O4,respectively.The detailed analyses of diffraction patterns from regions I to III are illustrated in Fig.S8.

    Fig.3 a Galvanostatic charge/discharge curves at 0.1C in the initial two cycles,and b,c XRD patterns and SEM morphologies of β-MnO2@GO electrode at pristine,points #H and #J.d-g TEM and HRTEM images of β-MnO2@GO at fully discharged state in the first cycle.h,i XPS analyses of O 1s and Zn 2p spectra at selected points.Scale bars in c are~ 2 μm

    The proton storage behavior in β-MnO2@GO can be further confirmed by XPS analyses.Before the XPS tests,the ZSH on electrode is removed by dilute acid to eliminate the influence of by-products.Figure 3h shows the evolution of O 1sspectra in initial two cycles,where the peaks near 531.9 eV (referring to Mn-O-H bonds on [MnO6] octahedron units) increase upon discharge and decrease upon charge,which is correlated with the regular variation in Mn valence (Fig.S9).Accompanying with the proton insertion/extraction processes,the inevitable Mn3+disproportionation occurs upon discharge.As a consequence,some Mn2+ions dissolve and migrate into the electrolyte,resulting in Mn vacancies on the surface of β-MnO2.In the subsequent discharge process,Zn2+ions can easily insert into the defective structure and give rise to the transformation into ZnxMn2O4(x< 1) spinel phase in the surface region.

    Figure 3i shows the evolution of Zn 2pspectra in the initial two cycles.It can be seen that the Zn 2ppeaks become obvious starting from the second discharge process (since point #F),indicating that Zn2+cannot insert into the lattice framework of β-MnO2until there are some Mn vacancies generated after the first discharge process.The Zn2+ions in ZnxMn2O4are largely unextractable,demonstrating a low reversibility of Zn2+insertion/extraction.Similar charge storage behavior in β-MnO2is also characterized in Figs.S10-S12.Moreover,after long-term cycles,the proton storage reactions still dominate the charge storage of β-MnO2@GO electrode (Figs.S13-S15,Tables S2,S3) despite such structural evolution. VOand SC will significantly influence the proton storage behavior and ZnxMn2O4formation process,which will be discussed in the following part.

    3.4 Superior Reaction Kinetics

    As displayed in Fig.2a,the boosted rate performance is mainly attributed to the incorporation of VOin β-MnO2@GO.Figure 4a shows the calculated electron density of states of β-MnO2and β-MnO2+VOby DFT calculations.The pristine β-MnO2has a bandgap of~ 0.25 eV,while a lower value of~ 0.12 eV is obtained after introducing a VOin the supercell,indicating an enhanced electronic conductivity of β-MnO2+VO.Consistent with the above result,the β-MnO2@GO electrode presents much lower charge transfer impedance of~ 365.3 Ω cm2when compared with that of the β-MnO2electrode (~ 604.3 Ω cm2).The galvanostatic intermittent titration technique (GITT) measurements are further applied to illustrate the proton insertion kinetics (Fig.4c,d),and the detailed calculation processes of diffusion coefficients are illustrated in SI.The β-MnO2@GO electrode shows average diffusion coefficients of~ 1.13 × 10-11cm2s-1in region I (from 1.8 to 1.35 V) and~ 4.00 × 10-14cm2s-1in region II (from 1.35 to 1.05 V),which are consistently higher than that of β-MnO2electrode (~ 4.25 × 10-12cm2s-1in region I and~ 2.57 × 10-14cm2s-1in region II).

    Fig.4 a Calculated electron density of states of β-MnO2 with and without VO.Energies are referenced to the Fermi level.b EIS spectra of electrodes with β-MnO2 and β-MnO2@GO as active materials.c,d GITT curves and calculated diffusion coefficients

    3.5 Enhanced Cycling Stability

    As illustrated in Fig.2d,e,the GO wrapping can dramatically enhance the cycling stability.In this part,the mechanism of such enhancement is comprehensively investigated.DFT calculations are applied to reveal the interaction between β-MnO2and GO.In the absence of an ether oxygen on GO,the graphene layer is weakly bound to the β-MnO2surfaces via van der Waals forces,with adsorption energies ranging from 0.21 to 0.44 eV (Fig.S16).Surface VOof β-MnO2cannot contribute to sufficiently strong interaction.However,when there exist surface VOand an ether oxygen in the vicinity,chemical bonding is established featuring Mn-O-C configuration,which pushes the adsorption energy to as high as 0.95-1.52 eV (Fig.5a).It can be drawn that VOin β-MnO2and ether oxygen on GO work in synergy to achieve an intimate self-assembled wrapping of GO on β-MnO2,which provides a direct physical barrier rendering the Mn ions tightly confined beneath the surfaces even at low valence states.

    Figure 5 b shows the structure evolution of the β-MnO2electrodes.During cycling,the characteristic peaks of β-MnO2at 28.7° and 37.5° decrease gradually and disappear after 50 cycles.Meanwhile,the characteristic peaks of ZnMn2O4at 18.7° and 36.3° emerge and increase gradually upon cycling.These results indicate a progressive structure evolution from bulk β-MnO2to ZnMn2O4spinel.Figure 5c,d shows the TEM/HRTEM images and correlated diffraction pattern of the active material in β-MnO2after 200 cycles.We observe a severe degradation on the structural integrity of β-MnO2,and the active material has completely converted into a bulk (or long-range-ordered) ZnxMn2O4spinel (x=1.000,from ICP result),as confirmed by the clear lattice fringe of (101) plane,as well as the apparent diffraction spots representing the (101),(211),and (312)plane (diffraction pattern shown in the inset of Fig.5d).The TEM EDS mapping in Fig.S17 further indicates the uniform distribution of Zn,O,and Mn elements,substantiating the generation of ZnMn2O4spinel after long-term cycling.

    Fig.5 a DFT calculated binding configuration and adsorption energies (Ea) of GO on β-MnO2 (110),(101),(100),and (001) terraces with a surface VO.b XRD patterns of β-MnO2 electrodes of pristine and at charged state after 50,100,150,and 200 cycles at current of 1C.c,d TEM morphologies of active material in β-MnO2 electrode after 200 cycles at current of 1C,showing a degradation on structural integrity,and the corresponding HRTEM images (inset,diffraction pattern of ZnMn2O4 spinel).e XRD patterns of β-MnO2@GO electrodes of pristine and at charged state after 50,100,150,and 200 cycles at current of 1C.f,g TEM morphologies of active material in β- MnO2@GO electrode after 200 cycles at current of 1C,showing a well-maintained nanorod morphology,and the corresponding HRTEM images (inset,diffraction rings showing (211) and (101) planes of nanocrystalline ZnxMn2O4 spinel)

    For β-MnO2@GO,the structural evolution is different from that of the β-MnO2,as illustrated in Fig.5e.The characteristic peaks of β-MnO2@GO retain well after 100 cycles,demonstrating the beneficial effect of GO wrapping on stabilizing the pristine lattice framework.The relative intensities of the characteristic peaks of ZnMn2O4in β-MnO2@GO electrode are much lower than that in β-MnO2electrode,indicating that GO wrapping can effectively inhibit ZnMn2O4accumulation upon long-term cycling.The nanorod morphology of β-MnO2@GO is well preserved even after 200 cycles (Fig.5f),showing an enhanced structural integrity.Figure 5g shows the HRTEM morphologies and correlated diffraction patterns of the active material,which shows vague lattice fringes referring to the (101) and(211) planes of ZnxMn2O4(x=0.846,from ICP result) spinel with lattice spacing of~ 4.90 ? and~ 2.48 ?,respectively.The correlated diffraction pattern shows two diffraction rings(inset in Fig.5g),indicating the nanocrystalline (or shortterm ordered) feature that favors proton intercalation/conversion reactions.EDS mapping results show a uniformly distributed Zn,O,and Mn elements in the active material of β-MnO2@GO electrode after 200 cycles (Fig.S18),confirming the generation of nanocrystalline ZnMn2O4.

    Overall,the combinatorial incorporation of VOand SC in β-MnO2could help in achieving better electrochemical performance on the following mechanistic aspects:(1) both VOand GO wrapping could facilitate electron transport;(2)intimate adhesion of GO on the defective surface could pose barrier to the dissolution of Mn ions;(3) combination of VOand GO wrapping can retard the ZnxMn2O4accumulation and regulate the structural evolution.

    4 Conclusions

    In this work,the concurrent application of both defect engineering and interfacial optimization to a manganese oxide electrode for AZIBs is for the first time demonstrated.Oxygen vacancies are spontaneously introduced into β-MnO2during its synthesis in the presence of GO that eventually builds a coating layer on the active material.For the as-prepared oxygen-deficient β-MnO2@GO cathode,the successful suppression of Mn dissolution during electrochemical cycling is made possible,along with an apparent enhancement in charge/discharge kinetics.This electrode delivers a capacity of~ 129.6 mAh g-1even after 2000 cycles at a current rate of 4C,which is much superior than that of pristine β-MnO2electrode.The excellent cycle stability is rooted in the strong binding between the surface VOand ether oxygen on GO,as well as the regulated structural evolution into the nanocrystalline ZnxMn2O4phase.The results in this work highlight the advantages of integrating multiple strategies in the design of AZIB electrodes via bottom-up synthetic approaches,which will cast light on the feasibility of AZIBs in meeting the high-rate and long-life requirements for large-scale energy storage applications.

    AcknowledgementsThis work is financially supported by the Stable Support Funding for Universities in Shenzhen (Nos.GXWD20201231165807007-20200807111854001).

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http:// creat iveco mmons.org/ licen ses/ by/4.0/.

    Supplementary InformationThe online version contains supplementary material available at https:// doi.org/ 10.1007/s40820-021-00691-7.

    日韩高清综合在线| 女人被狂操c到高潮| 国产又黄又爽又无遮挡在线| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩黄片免| 少妇被粗大的猛进出69影院| 精品免费久久久久久久清纯| 两人在一起打扑克的视频| 久久热在线av| 亚洲一区二区三区色噜噜| 国产一区二区在线观看日韩 | 午夜日韩欧美国产| 国产爱豆传媒在线观看 | 色综合婷婷激情| 免费在线观看影片大全网站| 国产精品,欧美在线| 亚洲七黄色美女视频| 国产日本99.免费观看| 啦啦啦观看免费观看视频高清| 黑人巨大精品欧美一区二区mp4| 男人舔女人下体高潮全视频| 日本 欧美在线| 成熟少妇高潮喷水视频| 国语自产精品视频在线第100页| 亚洲国产精品999在线| 嫩草影院精品99| 欧美乱妇无乱码| 国产激情久久老熟女| 亚洲va日本ⅴa欧美va伊人久久| 国产野战对白在线观看| 性色av乱码一区二区三区2| 免费在线观看成人毛片| 国产午夜精品论理片| 波多野结衣高清无吗| 日韩三级视频一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久免费视频了| 久久久久久人人人人人| 欧美性猛交黑人性爽| 亚洲一卡2卡3卡4卡5卡精品中文| 精品高清国产在线一区| 色在线成人网| 精品国产乱码久久久久久男人| 免费在线观看亚洲国产| 一本综合久久免费| 一a级毛片在线观看| 国产黄色小视频在线观看| 亚洲免费av在线视频| 91在线观看av| 日韩欧美精品v在线| 俄罗斯特黄特色一大片| 成人三级做爰电影| 精品福利观看| 丰满人妻一区二区三区视频av | 免费在线观看完整版高清| 一边摸一边抽搐一进一小说| 国内精品久久久久精免费| 不卡一级毛片| 国产一区二区三区在线臀色熟女| 国产成人欧美在线观看| 国产黄片美女视频| 美女高潮喷水抽搐中文字幕| 国产精华一区二区三区| 黄色毛片三级朝国网站| 国产亚洲精品第一综合不卡| 国产精品精品国产色婷婷| 在线看三级毛片| 亚洲av成人一区二区三| 亚洲成人中文字幕在线播放| a级毛片在线看网站| 欧美国产日韩亚洲一区| 老汉色∧v一级毛片| 天堂动漫精品| 免费在线观看亚洲国产| 白带黄色成豆腐渣| 99热只有精品国产| 99热6这里只有精品| 一区二区三区国产精品乱码| 搡老岳熟女国产| 国产伦人伦偷精品视频| 正在播放国产对白刺激| 日韩欧美 国产精品| 19禁男女啪啪无遮挡网站| 国产成人aa在线观看| 天堂av国产一区二区熟女人妻 | 久久精品91无色码中文字幕| 91老司机精品| 国内少妇人妻偷人精品xxx网站 | e午夜精品久久久久久久| 亚洲国产日韩欧美精品在线观看 | 大型黄色视频在线免费观看| or卡值多少钱| 一卡2卡三卡四卡精品乱码亚洲| 色老头精品视频在线观看| 啦啦啦免费观看视频1| 免费人成视频x8x8入口观看| 精品久久久久久久久久久久久| 欧美成人午夜精品| 波多野结衣高清作品| 1024手机看黄色片| 国产伦一二天堂av在线观看| 免费在线观看黄色视频的| 可以在线观看毛片的网站| 欧美一区二区精品小视频在线| 久久久久久国产a免费观看| 很黄的视频免费| 国产伦一二天堂av在线观看| 男女下面进入的视频免费午夜| 午夜福利在线观看吧| 制服人妻中文乱码| 亚洲 国产 在线| 极品教师在线免费播放| 特大巨黑吊av在线直播| 亚洲精品中文字幕在线视频| 亚洲九九香蕉| 国内久久婷婷六月综合欲色啪| 精品少妇一区二区三区视频日本电影| 免费在线观看完整版高清| 国产真实乱freesex| 色综合婷婷激情| 国产成人系列免费观看| 亚洲精品久久国产高清桃花| 制服人妻中文乱码| av天堂在线播放| 男女之事视频高清在线观看| 观看免费一级毛片| 成人国产一区最新在线观看| a级毛片在线看网站| 久久久久久久久免费视频了| 男人舔奶头视频| 少妇裸体淫交视频免费看高清 | 男女午夜视频在线观看| 人成视频在线观看免费观看| 国产精品一区二区免费欧美| 亚洲真实伦在线观看| 日本a在线网址| 成人18禁在线播放| 日韩欧美国产一区二区入口| 午夜福利在线观看吧| 高潮久久久久久久久久久不卡| 伊人久久大香线蕉亚洲五| 成在线人永久免费视频| 欧美大码av| 精品电影一区二区在线| 男女之事视频高清在线观看| 高潮久久久久久久久久久不卡| 日韩欧美国产一区二区入口| 国产成人精品无人区| 亚洲欧洲精品一区二区精品久久久| 精品国产超薄肉色丝袜足j| 欧美一区二区国产精品久久精品 | www.自偷自拍.com| 成人午夜高清在线视频| 精品国产乱子伦一区二区三区| 男人舔奶头视频| 亚洲av熟女| 国产又黄又爽又无遮挡在线| 色在线成人网| 亚洲成av人片免费观看| 熟妇人妻久久中文字幕3abv| www.999成人在线观看| 美女 人体艺术 gogo| 欧美性长视频在线观看| 国产精品一区二区三区四区久久| 欧美色欧美亚洲另类二区| 亚洲一区中文字幕在线| 国产一区二区激情短视频| 又爽又黄无遮挡网站| 日本成人三级电影网站| 中文字幕熟女人妻在线| 日韩欧美国产在线观看| 男女午夜视频在线观看| 欧美色视频一区免费| 搡老熟女国产l中国老女人| 一区福利在线观看| tocl精华| 婷婷亚洲欧美| 国产av不卡久久| 亚洲一区高清亚洲精品| 国产亚洲精品久久久久久毛片| 国产午夜精品久久久久久| 欧美3d第一页| 国产精品久久久久久久电影 | 国产高清视频在线观看网站| 可以免费在线观看a视频的电影网站| 国产视频一区二区在线看| 国产亚洲欧美在线一区二区| 欧美极品一区二区三区四区| 亚洲成人久久性| 91av网站免费观看| 国产aⅴ精品一区二区三区波| 麻豆久久精品国产亚洲av| 香蕉丝袜av| 级片在线观看| 久久国产乱子伦精品免费另类| 在线观看午夜福利视频| 不卡av一区二区三区| 亚洲,欧美精品.| x7x7x7水蜜桃| 国产一级毛片七仙女欲春2| 91av网站免费观看| 欧美一级a爱片免费观看看 | 精品国内亚洲2022精品成人| 国产蜜桃级精品一区二区三区| 一进一出抽搐动态| 黄色成人免费大全| 久久中文字幕人妻熟女| 成人欧美大片| 精品国产美女av久久久久小说| bbb黄色大片| 色老头精品视频在线观看| 天堂√8在线中文| 99久久综合精品五月天人人| 悠悠久久av| а√天堂www在线а√下载| 欧美一级a爱片免费观看看 | 男男h啪啪无遮挡| 久久精品91蜜桃| 天堂√8在线中文| 国产成人欧美在线观看| 亚洲午夜精品一区,二区,三区| 在线永久观看黄色视频| 少妇的丰满在线观看| 亚洲精品在线美女| 男女之事视频高清在线观看| 在线国产一区二区在线| 亚洲国产欧洲综合997久久,| 法律面前人人平等表现在哪些方面| 国产高清视频在线播放一区| 日本一二三区视频观看| 久久久久国产精品人妻aⅴ院| 亚洲精品美女久久久久99蜜臀| 国产单亲对白刺激| 欧美又色又爽又黄视频| 麻豆成人午夜福利视频| 一边摸一边做爽爽视频免费| 色播亚洲综合网| 天堂av国产一区二区熟女人妻 | 欧美一级毛片孕妇| 日本五十路高清| 俺也久久电影网| 欧美乱色亚洲激情| 色综合站精品国产| 免费在线观看日本一区| 香蕉av资源在线| 成年免费大片在线观看| 少妇粗大呻吟视频| 99riav亚洲国产免费| 亚洲自偷自拍图片 自拍| 亚洲18禁久久av| 国产v大片淫在线免费观看| 我的老师免费观看完整版| 日韩av在线大香蕉| 国产精品亚洲美女久久久| 岛国视频午夜一区免费看| 色综合欧美亚洲国产小说| 大型黄色视频在线免费观看| 久9热在线精品视频| 婷婷亚洲欧美| 香蕉丝袜av| 脱女人内裤的视频| 亚洲激情在线av| 成年免费大片在线观看| 日韩免费av在线播放| 亚洲一码二码三码区别大吗| 91在线观看av| 欧美性猛交黑人性爽| 久久热在线av| 宅男免费午夜| 国产精品永久免费网站| 97人妻精品一区二区三区麻豆| 久久香蕉激情| 色哟哟哟哟哟哟| 老鸭窝网址在线观看| netflix在线观看网站| 中文字幕人妻丝袜一区二区| 日韩欧美国产在线观看| 国产蜜桃级精品一区二区三区| 欧美黄色淫秽网站| 日韩精品青青久久久久久| 在线观看免费日韩欧美大片| 久久国产精品影院| cao死你这个sao货| 99久久综合精品五月天人人| 亚洲精品在线观看二区| 国产精品美女特级片免费视频播放器 | 国产麻豆成人av免费视频| 国产精品亚洲一级av第二区| 琪琪午夜伦伦电影理论片6080| 国产69精品久久久久777片 | 国产精品,欧美在线| 午夜福利成人在线免费观看| 波多野结衣高清无吗| 91国产中文字幕| 精品福利观看| 夜夜爽天天搞| 免费无遮挡裸体视频| or卡值多少钱| 日韩欧美在线乱码| videosex国产| 黄色毛片三级朝国网站| 亚洲精品国产精品久久久不卡| 正在播放国产对白刺激| 免费av毛片视频| 人妻久久中文字幕网| 亚洲精品一区av在线观看| 亚洲人成电影免费在线| 精品一区二区三区视频在线观看免费| 亚洲欧美一区二区三区黑人| 国产亚洲精品一区二区www| 麻豆国产97在线/欧美 | 免费看a级黄色片| 久9热在线精品视频| 熟女电影av网| 这个男人来自地球电影免费观看| 久热爱精品视频在线9| 亚洲一码二码三码区别大吗| 久久久久国产精品人妻aⅴ院| 国产精品,欧美在线| 欧美日韩一级在线毛片| 国产99久久九九免费精品| 国产激情欧美一区二区| 9191精品国产免费久久| 午夜免费观看网址| 久久久久久国产a免费观看| 人妻久久中文字幕网| 一区二区三区高清视频在线| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| 午夜两性在线视频| videosex国产| 欧美中文综合在线视频| 日本黄色视频三级网站网址| 亚洲av成人av| 免费看日本二区| 亚洲欧美精品综合一区二区三区| 天堂动漫精品| 精品欧美一区二区三区在线| 一区二区三区激情视频| a级毛片a级免费在线| 成年女人毛片免费观看观看9| 国产亚洲av高清不卡| 亚洲人成77777在线视频| 欧美国产日韩亚洲一区| 伊人久久大香线蕉亚洲五| 亚洲国产欧美一区二区综合| 欧美最黄视频在线播放免费| 五月伊人婷婷丁香| 久久久国产成人免费| 特级一级黄色大片| www.999成人在线观看| 成年女人毛片免费观看观看9| 妹子高潮喷水视频| 日韩欧美免费精品| 久久热在线av| 国产精品久久久av美女十八| 亚洲色图 男人天堂 中文字幕| 欧美性长视频在线观看| 国产伦人伦偷精品视频| 亚洲国产精品合色在线| 国产精品 国内视频| 亚洲va日本ⅴa欧美va伊人久久| 国产精品自产拍在线观看55亚洲| 91在线观看av| 性色av乱码一区二区三区2| 国产免费男女视频| 69av精品久久久久久| 天天一区二区日本电影三级| 欧美zozozo另类| 亚洲欧美日韩东京热| 欧美性猛交╳xxx乱大交人| 在线国产一区二区在线| 日韩欧美免费精品| 欧美绝顶高潮抽搐喷水| 日韩av在线大香蕉| 国内精品一区二区在线观看| 黄频高清免费视频| 国产精品乱码一区二三区的特点| 一个人观看的视频www高清免费观看 | 成人av在线播放网站| 午夜视频精品福利| 午夜精品在线福利| 好男人电影高清在线观看| 午夜免费激情av| 国产午夜福利久久久久久| 日本一二三区视频观看| 身体一侧抽搐| 国产真实乱freesex| 亚洲成人久久性| 久9热在线精品视频| 一区二区三区高清视频在线| 免费在线观看成人毛片| 亚洲成人精品中文字幕电影| 99热这里只有精品一区 | 波多野结衣高清作品| 看免费av毛片| 色综合站精品国产| 欧美乱色亚洲激情| 国产成人精品久久二区二区91| 欧美绝顶高潮抽搐喷水| 一级片免费观看大全| 国产亚洲精品一区二区www| 极品教师在线免费播放| 亚洲欧美日韩东京热| 免费搜索国产男女视频| av福利片在线观看| 亚洲色图 男人天堂 中文字幕| 三级国产精品欧美在线观看 | 特大巨黑吊av在线直播| 在线永久观看黄色视频| 午夜福利视频1000在线观看| 我的老师免费观看完整版| 国产成人aa在线观看| 人人妻,人人澡人人爽秒播| 久久久久久亚洲精品国产蜜桃av| 中文字幕人成人乱码亚洲影| 日韩欧美国产在线观看| 国产黄a三级三级三级人| 人人妻人人看人人澡| 在线观看美女被高潮喷水网站 | 国产午夜精品久久久久久| 日日摸夜夜添夜夜添小说| 深夜精品福利| 免费观看精品视频网站| av有码第一页| 特级一级黄色大片| 精品久久久久久久末码| 精品国产超薄肉色丝袜足j| av福利片在线| 久久久久久免费高清国产稀缺| 日韩av在线大香蕉| 精品福利观看| 男女之事视频高清在线观看| 国产激情偷乱视频一区二区| 久久精品aⅴ一区二区三区四区| 黄色丝袜av网址大全| 亚洲男人天堂网一区| 亚洲 欧美一区二区三区| 中文字幕熟女人妻在线| 又黄又爽又免费观看的视频| 日本一二三区视频观看| 国产三级中文精品| 精品午夜福利视频在线观看一区| 色综合亚洲欧美另类图片| 久久热在线av| 一个人免费在线观看的高清视频| 久久久久国产精品人妻aⅴ院| 人成视频在线观看免费观看| 国产三级中文精品| 在线观看日韩欧美| 午夜免费成人在线视频| 精品久久久久久成人av| 深夜精品福利| 女人爽到高潮嗷嗷叫在线视频| 69av精品久久久久久| 变态另类成人亚洲欧美熟女| 欧美日韩一级在线毛片| 美女大奶头视频| 国产高清videossex| 九色成人免费人妻av| netflix在线观看网站| 欧美zozozo另类| 日韩中文字幕欧美一区二区| 美女 人体艺术 gogo| 精华霜和精华液先用哪个| 国产精品永久免费网站| 国产三级黄色录像| 欧美日韩瑟瑟在线播放| 国产亚洲av嫩草精品影院| 伊人久久大香线蕉亚洲五| 久久久久国产一级毛片高清牌| 国产欧美日韩一区二区三| 看免费av毛片| 51午夜福利影视在线观看| 国产视频一区二区在线看| 亚洲成人久久爱视频| 欧美av亚洲av综合av国产av| 亚洲欧洲精品一区二区精品久久久| 变态另类丝袜制服| 亚洲专区字幕在线| 久久精品成人免费网站| 大型黄色视频在线免费观看| 欧美极品一区二区三区四区| 十八禁网站免费在线| 久久久久免费精品人妻一区二区| 男女视频在线观看网站免费 | 桃色一区二区三区在线观看| 久久亚洲精品不卡| 日韩大尺度精品在线看网址| 少妇裸体淫交视频免费看高清 | 99国产精品一区二区蜜桃av| 精品国产亚洲在线| 亚洲免费av在线视频| 色综合亚洲欧美另类图片| 丁香六月欧美| 日韩av在线大香蕉| 午夜视频精品福利| 午夜福利成人在线免费观看| 哪里可以看免费的av片| 熟妇人妻久久中文字幕3abv| 在线观看免费日韩欧美大片| 亚洲乱码一区二区免费版| 国产高清videossex| 久久精品综合一区二区三区| 激情在线观看视频在线高清| 麻豆成人午夜福利视频| 巨乳人妻的诱惑在线观看| 国产在线精品亚洲第一网站| 在线观看美女被高潮喷水网站 | 色播亚洲综合网| 老司机靠b影院| 亚洲一区高清亚洲精品| 亚洲,欧美精品.| 搡老熟女国产l中国老女人| 免费看十八禁软件| 久久欧美精品欧美久久欧美| 久久久久精品国产欧美久久久| 国产精品日韩av在线免费观看| 亚洲午夜精品一区,二区,三区| 麻豆国产av国片精品| 午夜福利18| 天堂影院成人在线观看| 极品教师在线免费播放| 国产精品久久久久久久电影 | 久99久视频精品免费| 美女大奶头视频| 午夜精品一区二区三区免费看| 日本免费a在线| 精品一区二区三区视频在线观看免费| 又爽又黄无遮挡网站| 久久久久久久久久黄片| 国产伦在线观看视频一区| 18禁裸乳无遮挡免费网站照片| 国产三级中文精品| 亚洲欧洲精品一区二区精品久久久| 精品久久久久久久毛片微露脸| 一级黄色大片毛片| 97超级碰碰碰精品色视频在线观看| 91麻豆精品激情在线观看国产| 国产成人精品久久二区二区免费| 久久天躁狠狠躁夜夜2o2o| 此物有八面人人有两片| 在线播放国产精品三级| 国产精品爽爽va在线观看网站| 一级黄色大片毛片| 97超级碰碰碰精品色视频在线观看| 午夜免费观看网址| 国产精品亚洲美女久久久| 久久九九热精品免费| 久久国产乱子伦精品免费另类| 亚洲在线自拍视频| 两个人视频免费观看高清| 国产精品综合久久久久久久免费| 午夜成年电影在线免费观看| 一个人免费在线观看的高清视频| 久久香蕉精品热| e午夜精品久久久久久久| 久久久久久久久久黄片| 亚洲欧美日韩东京热| 欧美人与性动交α欧美精品济南到| 一级a爱片免费观看的视频| 欧美最黄视频在线播放免费| 一个人观看的视频www高清免费观看 | 白带黄色成豆腐渣| 中文字幕精品亚洲无线码一区| 久久婷婷人人爽人人干人人爱| 人人妻人人看人人澡| 十八禁人妻一区二区| 午夜福利18| 免费在线观看日本一区| 一级片免费观看大全| 日本五十路高清| 亚洲av成人精品一区久久| 亚洲一码二码三码区别大吗| 久久精品人妻少妇| 欧美大码av| 日本a在线网址| 999久久久国产精品视频| 久久久久精品国产欧美久久久| 国内毛片毛片毛片毛片毛片| 黄色 视频免费看| 欧美日韩亚洲国产一区二区在线观看| 亚洲av日韩精品久久久久久密| 亚洲人成网站在线播放欧美日韩| 可以免费在线观看a视频的电影网站| 国产av不卡久久| av福利片在线观看| 国产精品亚洲av一区麻豆| 亚洲熟妇中文字幕五十中出| 午夜激情av网站| 国产亚洲欧美98| 亚洲18禁久久av| 亚洲色图av天堂| av片东京热男人的天堂| 亚洲精品美女久久久久99蜜臀| 777久久人妻少妇嫩草av网站| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区三区四区久久| 白带黄色成豆腐渣| 两人在一起打扑克的视频| 久久精品影院6| 在线a可以看的网站| 久久久久久亚洲精品国产蜜桃av| 哪里可以看免费的av片| 三级男女做爰猛烈吃奶摸视频| 少妇的丰满在线观看| 视频区欧美日本亚洲| 国产视频一区二区在线看| 欧美成人免费av一区二区三区| a级毛片a级免费在线| 国产一区二区三区视频了| svipshipincom国产片| 制服丝袜大香蕉在线| 少妇粗大呻吟视频| 欧美大码av|