• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction calculations for the first criticality of the HTR-PM using the PANGU code

    2021-10-18 01:48:28DingSheBingXiaJiongGuoChunLinWeiJianZhangFuLiLeiShiZuoYiZhang
    Nuclear Science and Techniques 2021年9期

    Ding She ? Bing Xia ? Jiong Guo ? Chun-Lin Wei ? Jian Zhang ?Fu Li ? Lei Shi ? Zuo-Yi Zhang

    Abstract The high-temperature reactor pebble-bed module (HTR-PM) is a modular high-temperature gas-cooled reactor demonstration power plant.Its first criticality experiment is scheduled for the latter half of 2021.Before performing the first criticality experiment,a prediction calculation was performed using PANGU code.This paper presents the calculation details for predicting the HTR-PM first criticality using PANGU,including the input model and parameters,numerical results,and uncertainty analysis.The accuracy of the PANGU code was demonstrated by comparing it with the high-fidelity Monte Carlo solution,using the same input configurations.It should be noted that keff can be significantly affected by uncertainties in nuclear data and certain input parameters,making the criticality calculation challenge.Finally,the PANGU is used to predict the critical loading height of the HTR-PM first criticality under design conditions,which will be evaluated in the upcoming experiment later this year.

    Keywords HTR-PM · First criticality · Prediction ·PANGU

    1 Introduction

    The high-temperature reactor pebble-bed module(HTRPM) [1] is the world’s first 200 MWe modular pebble-bed high-temperature gas-cooled reactor (HTGR) in a demonstration power plant with the safety features of fourthgeneration nuclear energy systems.It was designed by the Institute of Nuclear and New Energy Technology (INET),Tsinghua University,based on technologies and experiences obtained from the 10 MW high-temperature gascooled test reactor (HTR-10) [2].

    As one milestone of the HTR-PM project,the first criticality experiment is scheduled for the latter half of 2021.According to the design,the first criticality of the HTR-PM will be reached by loading a mixture of fuel pebbles and graphite pebbles into the core in an air atmosphere at ambient pressure.The critical loading height,or the number of mixed pebbles,will be experimentally obtained.

    The HTR-PM first criticality experiment provides a good opportunity to validate computer codes for analyzing the physics of HTGR reactors.At the beginning of the 2000s,prior to the HTR-10 first criticality,INET published the HTR-10 first criticality benchmark and invited the international reactor physics community to submit prediction calculations [3].Although the result predicted by INET was reportedly very close to the experimental result[4],the overall benchmark exercise yielded a deviation of ± 4% in the effective multiplication factor (keff),which indicates that reactor physics analysis in pebble-bed HTGRs is far from a well-established art [5].Since the HTR-PM is a scaled-up and developed version of the HTR-10,it has particular value for reactor physics analysis in large commercial pebble-bed HTGRs.

    The prediction calculation of the HTR-PM first criticality was recently performed using PANGU [6],a stateof-the-art computer code developed at INET for pebblebed HTGR neutronics analyses and fuel cycle simulations.PANGU implements a unique two-step calculation flow scheme with an in-line leakage feedback iteration.In addition,it employs some advanced methodologies and capabilities,such as treatment of mixed-type particles and mixed-type pebbles,neutron streaming correction,control rod homogenization,micro-burnup calculation,and iterative searching of the equilibrium cycle.Because of these features,PANGU can be used for the physical design of both traditional and new conceptual pebble-bed HTGRs.

    This paper presents the calculation details of the HTRPM first criticality,including the input data,numerical results,and uncertainty analysis.Moreover,the detailed model for the HTR-PM first criticality is provided so that all interested researchers in the community can participate in this prediction exercise as soon as possible.

    The remainder of this paper is organized as follows.Section 2 describes the detailed model and parameters for calculating the first criticality of the HTR-PM.Section 3 presents the calculation results and uncertainty analysis obtained using PANGU.The discussion and conclusions are presented in Sect.4.

    2 Detailed model and parameters for HTR-PM first criticality

    The HTR-PM full-core layout is illustrated in Fig.1.The core equivalent diameter is 150.275 cm,and the equivalent height is 1100 cm in the full loading state.The pebble-bed core is surrounded by the top,bottom,and side graphite reflectors,which are in turn surrounded by carbon bricks.The control rod channels,absorber ball channels,and cold helium channels are located in the graphite reflectors.AnR-Zaxial view with detailed dimensions and materials is shown in Fig.1(a).It should be noted that materials #19 and #46 are reflectors containing void channels,whose detailed structures are shown in Fig.1(b).The neutron streaming effect [7] should be considered if these reflectors are treated as a homogeneous medium in deterministic codes.Table 1 provides a detailed description and the composition of the materials illustrated in Fig.1.The impurities in the materials have been converted to the equivalent boron content (EBC) [8],represented by an equivalent density of natural boron.

    For simplicity,the cone shape of the core bottom is converted into a cylindrical shape,while preserving the core volume.Prior to performing the first criticality experiment,the core will be filled with graphite pebbles to a height of 6.05 m.In the first criticality experiment,a mixture of fuel pebbles and graphite pebbles,with a ratio of 7:8,will be continuously loaded into the core until the reactor reaches criticality.The volumetric packing density of the entire pebble bed is 0.61.

    As shown in Fig.2,a fuel pebble consists of an outer graphite shell and an inner fuel region comprising coated fuel particles (CFPs) embedded in a graphite matrix.A CFP consists of a spherical fuel kernel of UO2with multi-layer coatings,namely a low-density pyrolytic carbon (PyC) buffer layer,an inner high-density PyC layer,a silicon carbide (SiC) layer,and an outer high-density PyC layer.The detailed physical parameters of the pebbles and CFPs are listed in Table 2.

    Fig.2 (Color online)Geometric structure of a fuel pebble

    Because the first criticality experiment will be performed in an air atmosphere,the upper cavity and pebble bed pores should be filled with saturated moist air in the calculation model.The air composition is temperature dependent,as shown in Table 3.

    Table 1 Material description and composition

    In addition,microscopic pores in graphite can absorb water.Thus,the water content of graphite is usually in the order of several hundreds of ppm.The water content of the graphite in the HTR-PM is estimated to be approximately 600 ppm.However,the reflector and the pre-loaded graphite pebbles have been dehumidified before the first criticality experiment;therefore,it is recommended that only the water content of the mixed pebbles should be considered in the calculation.

    The input model and parameters introduced above can be used as preliminary benchmarks for the HTR-PM first criticality.The data provided in this paper will enable readers to perform calculations and conduct comparison studies using their own computer codes.The formal HTRPM first criticality benchmark will be updated after the experiment and will be published as part of the Computational Methods Validation and Benchmarking (CMVB)project of the Very High-Temperature Reactor (VHTR)system in the Generation-IV International Forum (GIF).

    3 Numerical results and uncertainty analysis

    3.1 Comparison calculation with base conditions

    Before performing the prediction calculation,it is necessary to evaluate the deviation of the PANGU code itself.The ‘base conditions’’ of the HTR-PM are assumed to be as follows:the reactor is in an air atmosphere,all components of the reactor are at room temperature(20°C),and the water content of graphite is neglected.Under these conditions,the PANGU code and the RMC Monte Carlo code[9]were used to calculate thekeffat different loading heights of mixed pebbles.PANGU uses a 2DR-Zmodel based on equivalent homogenization schemes that havebeen thoroughly validated by our previous studies[10,11].RMC uses a high-fidelity 3D model with explicit modeling of the detailed geometric structures of the coated fuel particles,pebble beds,and reflector channels.The most recent ENDF/B-VIII.0 nuclear data library [12] was adopted by both codes.

    Table 4 lists thekeffresults calculated by PANGU and RMC;the latter was used as the reference solution.It was found that the PANGU results agree well with the highfidelity RMC Monte Carlo solution.The differences inkeffare generally below 0.15% over a wide range of loading heights.This demonstrates the accuracy of the PANGU code.

    3.2 Uncertainty analysis

    The HTR-10 first criticality benchmark[5]revealed that there are many uncertainties when analyzing the reactor physics of a pebble-bed HTGR.Consequently,the uncertainty of the HTR-PM criticality calculation,caused by uncertainties in the input data,was investigated.

    Starting from the base condition at a loading height of 275 cm,the variation ofkeffwith the change in a single input variable was calculated using the PANGU code.The sensitivity ofkeffwith regard to particular key input variables is summarized in Table 5.

    Table 2 Physical parameters of the fuel pebble and the coated fuel particle

    Table 3 Composition of saturated moist air at different temperatures

    Table 4 Variation of keff with different loading heights under base conditions

    Table 5 Sensitivity of keff to changes in input data

    Table 6 keff at different loading heights under design conditions

    Noticeably,ENDF/B-VIII.0 was found to underestimatekeffby approximately 1.3%compared with ENDF/B-VII.0.Further analysis suggests that this is mainly due to the update of the graphite thermal scattering cross section andthe nuclear data of235U and238U in ENDF/B-VIII.0.Nevertheless,nuclear data uncertainty does have a significant influence on the criticality calculation of pebbled-bed HTGRs,which conforms to some previous studies[13,14].

    In addition,keffis sensitive to the water content and EBC of graphite.Because the measurement of water content and EBC tends to involve large degrees of uncertainty,these datasets are expected to cause considerableuncertainty in the criticality calculation.In addition,the degree of graphitization can also influence thekeffvalue,which has been studied in our previous work [15].

    X-ray photographs show that the actual fuel-zone radius of the fuel pebble is slightly smaller than the nominal value of 2.5 cm,which can lead to a somewhat higherkeffin the HTR-PM criticality calculation.

    The influence of the reactor temperature onkeffwas found to be approximately 25 pcm/°C.There are several detectors in the HTR-PM reflector for measuring the temperatures during the first criticality experiment,so that the prediction results can be corrected according to the actual temperatures.

    In summary,keffis largely affected by the uncertainties of the input data.For this reason,it is quite challenging,in practice,to perform an accurate criticality prediction for the HTR-PM.

    3.3 Predicted critical loading height under design conditions

    In this section,PANGU is used to predict the critical loading height of the HTR-PM first criticality using the following ‘‘design conditions’’:all components of the reactor temperature are assumed to have a temperature of 30 °C,the water content of the mixed pebbles was assumed to be 600 ppm,and the nominal values were used for all input parameters.

    The ENDF/B-VIII.0 nuclear data library was adopted for this prediction calculation,although there is no particular reason for choosing ENDF/B-VIII.0 over ENDF/BVII.0 or some other nuclear data.According to the authors’experience,using PANGU with ENDF/B-VIII.0 seems to provide better results in simulating the HTR-10 initial criticality and power operation history [16],but it is not certain whether this will hold true for the HTR-PM case.

    Table 6 presents the resultingkeffvalues obtained at different loading heights under the design conditions.By interpolating between the heights of 275 cm and 300 cm,a critical loading height of 276.5 cm,corresponding to 105,821 mixed pebbles,can be obtained.Note that there may be differences between the experimental and design conditions.For example,the actual temperature may deviate from the assumed temperature of 30 °C;In such cases,the prediction results will be corrected according to the experimental conditions.

    4 Conclusion

    This work presents the prediction calculations of the HTR-PM first criticality obtained with the PANGU code and provides a preliminary benchmark model with detailed input parameters for the calculation of the first criticality in the HTR-PM.

    By using the same input configurations,PANGU exhibits excellent consistency with the high-fidelity Monte Carlo solution,which demonstrates the accuracy of the PANGU code itself.

    However,it is clear that the calculatedkeffis sensitive to the nuclear data and certain key input parameters,and therefore,it is challenging in practice to obtain an‘‘a(chǎn)ccurate’’ prediction result that agrees well with the experimental results.This could explain why there were large deviations among the results of different participants in the benchmark exercise of the HTR-10 first criticality.

    Under the design conditions of the HTR-PM first criticality and using the ENDF/B VIII.0 nuclear data library,PANGU predicted a critical loading height of 276.5 cm.Considering the uncertainties resulting from the input data,as well as the variations in the actual experimental conditions,some luck is required to achieve a good consistency between the predicted and experimental results.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http://creativecommons.org/licenses/by/4.0/.

    Author contributionsAll authors contributed to the study’s conception and design.Material preparation,data collection,and analysis were performed by Ding She,Jiong Guo,Chun-Lin Wei,Jian Zhang,and Bing Xia.The first draft of the manuscript was written by Ding She and all authors commented on previous versions of the manuscript.All authors read and approved the final manuscript.

    最近2019中文字幕mv第一页| 免费看a级黄色片| 亚洲人成网站在线观看播放| 美女视频免费永久观看网站| 亚洲欧美中文字幕日韩二区| 超碰av人人做人人爽久久| 深夜a级毛片| 免费看光身美女| 久久久久久久亚洲中文字幕| 亚洲精品日本国产第一区| 69人妻影院| 国产精品三级大全| 少妇人妻 视频| 国产爱豆传媒在线观看| 国产精品久久久久久久电影| 网址你懂的国产日韩在线| 亚洲国产日韩一区二区| 在线播放无遮挡| 中文在线观看免费www的网站| 少妇熟女欧美另类| 国产精品久久久久久精品电影小说 | 午夜亚洲福利在线播放| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美精品专区久久| h日本视频在线播放| 国产伦在线观看视频一区| 中文字幕人妻熟人妻熟丝袜美| 直男gayav资源| 欧美成人午夜免费资源| 热re99久久精品国产66热6| 国产片特级美女逼逼视频| 毛片一级片免费看久久久久| 亚洲av电影在线观看一区二区三区 | 国产欧美另类精品又又久久亚洲欧美| 只有这里有精品99| 国产女主播在线喷水免费视频网站| 国产成人freesex在线| 久久亚洲国产成人精品v| 久久这里有精品视频免费| 精品亚洲乱码少妇综合久久| 欧美3d第一页| 热99国产精品久久久久久7| 亚洲精品国产av成人精品| 国产精品爽爽va在线观看网站| 亚洲精品国产色婷婷电影| 高清av免费在线| 亚洲高清免费不卡视频| 又大又黄又爽视频免费| 亚洲精品日韩av片在线观看| 婷婷色综合大香蕉| 在线观看av片永久免费下载| 高清午夜精品一区二区三区| 亚洲三级黄色毛片| 亚洲精品乱码久久久v下载方式| 三级国产精品片| 乱系列少妇在线播放| 亚洲国产色片| 一个人观看的视频www高清免费观看| 国国产精品蜜臀av免费| 亚洲精品国产色婷婷电影| 在线观看三级黄色| 亚洲欧洲日产国产| 成人特级av手机在线观看| 男女边摸边吃奶| 两个人的视频大全免费| 男女边摸边吃奶| 午夜福利网站1000一区二区三区| 永久免费av网站大全| 全区人妻精品视频| 伦理电影大哥的女人| 久久久欧美国产精品| 另类亚洲欧美激情| 夜夜爽夜夜爽视频| 亚洲人成网站高清观看| 丝瓜视频免费看黄片| 成人亚洲精品av一区二区| 99热6这里只有精品| 成年人午夜在线观看视频| 国产免费一区二区三区四区乱码| 国语对白做爰xxxⅹ性视频网站| 国产精品嫩草影院av在线观看| 一本一本综合久久| 国产中年淑女户外野战色| 一级av片app| 超碰97精品在线观看| 麻豆乱淫一区二区| 一级av片app| 中文字幕免费在线视频6| 直男gayav资源| 国产免费又黄又爽又色| 久久久久久久亚洲中文字幕| 最近最新中文字幕大全电影3| 国产日韩欧美在线精品| 午夜免费男女啪啪视频观看| 国产毛片a区久久久久| av天堂中文字幕网| 三级男女做爰猛烈吃奶摸视频| av.在线天堂| 插逼视频在线观看| 国内少妇人妻偷人精品xxx网站| 久久国产乱子免费精品| 日韩中字成人| 欧美日韩在线观看h| 精品人妻视频免费看| 在线观看一区二区三区| 国产成人免费观看mmmm| 九色成人免费人妻av| 亚洲av电影在线观看一区二区三区 | 中文精品一卡2卡3卡4更新| 国产精品三级大全| 亚洲色图综合在线观看| 日韩免费高清中文字幕av| 久久久久国产精品人妻一区二区| 嘟嘟电影网在线观看| 中文字幕人妻熟人妻熟丝袜美| 午夜精品一区二区三区免费看| 亚洲国产精品999| 网址你懂的国产日韩在线| 欧美区成人在线视频| 亚洲精品日韩在线中文字幕| 2021天堂中文幕一二区在线观| 亚洲av成人精品一二三区| 精品久久久久久久久av| 欧美日韩视频高清一区二区三区二| 18禁在线无遮挡免费观看视频| 日韩 亚洲 欧美在线| 青春草国产在线视频| 蜜桃亚洲精品一区二区三区| 国产久久久一区二区三区| 国产成人精品一,二区| 亚洲国产精品999| 国产欧美亚洲国产| 熟女电影av网| 中文天堂在线官网| 国产爱豆传媒在线观看| 91aial.com中文字幕在线观看| 日日撸夜夜添| 一级毛片久久久久久久久女| 在线观看免费高清a一片| 国产美女午夜福利| 麻豆精品久久久久久蜜桃| 欧美极品一区二区三区四区| 成人综合一区亚洲| 日韩国内少妇激情av| 亚洲成人av在线免费| 欧美精品一区二区大全| 久久久国产一区二区| 久久久久久国产a免费观看| 一区二区三区四区激情视频| 久久国内精品自在自线图片| 亚洲人与动物交配视频| 一级av片app| 夜夜爽夜夜爽视频| 一个人看视频在线观看www免费| 欧美区成人在线视频| 日韩人妻高清精品专区| 26uuu在线亚洲综合色| 国产精品秋霞免费鲁丝片| 亚洲自偷自拍三级| 久久久久久久午夜电影| 国产高清有码在线观看视频| 大香蕉97超碰在线| 少妇熟女欧美另类| 亚洲图色成人| 波多野结衣巨乳人妻| 亚洲色图av天堂| 91午夜精品亚洲一区二区三区| 国产一区二区在线观看日韩| 爱豆传媒免费全集在线观看| 欧美性感艳星| 日本欧美国产在线视频| 欧美xxxx性猛交bbbb| 国产91av在线免费观看| 久热这里只有精品99| 国产高清不卡午夜福利| 我的老师免费观看完整版| 97人妻精品一区二区三区麻豆| 美女国产视频在线观看| 精品久久国产蜜桃| 女人十人毛片免费观看3o分钟| 在线 av 中文字幕| 特大巨黑吊av在线直播| 国产免费又黄又爽又色| 99re6热这里在线精品视频| 精品国产一区二区三区久久久樱花 | 亚洲自偷自拍三级| 国产一区二区亚洲精品在线观看| 丝袜美腿在线中文| 国产亚洲av嫩草精品影院| 亚洲欧美日韩另类电影网站 | 久久99热这里只频精品6学生| 最后的刺客免费高清国语| 国产中年淑女户外野战色| 99热这里只有精品一区| 久热这里只有精品99| 一个人看的www免费观看视频| 国产极品天堂在线| 五月玫瑰六月丁香| 偷拍熟女少妇极品色| 中文乱码字字幕精品一区二区三区| 成年人午夜在线观看视频| 极品教师在线视频| 免费av观看视频| 黄色日韩在线| 国产午夜精品久久久久久一区二区三区| 成人国产av品久久久| 美女脱内裤让男人舔精品视频| 欧美精品一区二区大全| 精品国产乱码久久久久久小说| av一本久久久久| av国产精品久久久久影院| 国产黄色视频一区二区在线观看| 亚洲图色成人| 国产淫语在线视频| 亚洲欧美日韩东京热| 久久99精品国语久久久| 国产精品秋霞免费鲁丝片| 久久久久久久精品精品| 春色校园在线视频观看| 女的被弄到高潮叫床怎么办| 欧美一级a爱片免费观看看| 三级经典国产精品| 亚洲真实伦在线观看| 亚州av有码| 午夜福利视频精品| 一级黄片播放器| 国产成人a区在线观看| 亚洲最大成人中文| 婷婷色麻豆天堂久久| 免费av毛片视频| 国产成人免费无遮挡视频| 国产亚洲精品久久久com| 一区二区三区四区激情视频| 久久久a久久爽久久v久久| 精品久久久噜噜| 日韩亚洲欧美综合| av免费观看日本| 亚洲欧美精品自产自拍| 日本与韩国留学比较| 国产成人福利小说| 2021少妇久久久久久久久久久| 亚洲精品一区蜜桃| 十八禁网站网址无遮挡 | 日日啪夜夜撸| 高清av免费在线| 一本久久精品| 直男gayav资源| 精品酒店卫生间| 国产黄频视频在线观看| 激情五月婷婷亚洲| 99久国产av精品国产电影| 亚洲精品一区蜜桃| 人人妻人人澡人人爽人人夜夜| 只有这里有精品99| 亚洲精品国产成人久久av| 国产 精品1| 一级毛片aaaaaa免费看小| 夜夜看夜夜爽夜夜摸| 久久99热这里只有精品18| 最近中文字幕高清免费大全6| 热re99久久精品国产66热6| 日韩欧美一区视频在线观看 | 色婷婷久久久亚洲欧美| 老师上课跳d突然被开到最大视频| 看免费成人av毛片| 欧美亚洲 丝袜 人妻 在线| 成人特级av手机在线观看| 午夜爱爱视频在线播放| av专区在线播放| 午夜福利网站1000一区二区三区| 各种免费的搞黄视频| 性插视频无遮挡在线免费观看| 成人二区视频| 91精品一卡2卡3卡4卡| 亚洲一区二区三区欧美精品 | 国产91av在线免费观看| 免费看光身美女| 日本色播在线视频| 欧美性感艳星| a级毛色黄片| 亚洲在久久综合| 国产黄色免费在线视频| 国产成人福利小说| 国产精品嫩草影院av在线观看| 日韩电影二区| 寂寞人妻少妇视频99o| 中文精品一卡2卡3卡4更新| av女优亚洲男人天堂| 青春草视频在线免费观看| 在线看a的网站| 亚洲国产欧美在线一区| 2021少妇久久久久久久久久久| 联通29元200g的流量卡| 亚洲精品久久久久久婷婷小说| 色哟哟·www| 国产淫片久久久久久久久| 成年女人在线观看亚洲视频 | 欧美成人一区二区免费高清观看| 熟妇人妻不卡中文字幕| 白带黄色成豆腐渣| 亚洲精品成人久久久久久| 国产免费视频播放在线视频| 国产精品蜜桃在线观看| 精品少妇黑人巨大在线播放| 深夜a级毛片| 91久久精品国产一区二区成人| 久久久久久久大尺度免费视频| 黄色一级大片看看| 日韩伦理黄色片| 六月丁香七月| 九九爱精品视频在线观看| 色网站视频免费| 亚洲av免费在线观看| 在线 av 中文字幕| 80岁老熟妇乱子伦牲交| 只有这里有精品99| 久久人人爽av亚洲精品天堂 | 日韩一区二区三区影片| 欧美日本视频| 国产一区二区三区av在线| 免费观看性生交大片5| 别揉我奶头 嗯啊视频| .国产精品久久| 亚洲自偷自拍三级| 97精品久久久久久久久久精品| 中文资源天堂在线| 欧美亚洲 丝袜 人妻 在线| 亚洲精品久久午夜乱码| 国产91av在线免费观看| 五月开心婷婷网| 一级毛片 在线播放| av女优亚洲男人天堂| 尾随美女入室| av国产免费在线观看| 亚洲精品影视一区二区三区av| 国产大屁股一区二区在线视频| 在线天堂最新版资源| 国国产精品蜜臀av免费| 日本黄色片子视频| 人妻制服诱惑在线中文字幕| 亚洲国产av新网站| 最近手机中文字幕大全| 青春草视频在线免费观看| 亚洲一区二区三区欧美精品 | 在线播放无遮挡| 神马国产精品三级电影在线观看| 青青草视频在线视频观看| 国产欧美日韩一区二区三区在线 | 精品酒店卫生间| av国产免费在线观看| 性色avwww在线观看| 国产欧美日韩精品一区二区| 亚洲欧美精品专区久久| 色播亚洲综合网| 日本一本二区三区精品| 免费高清在线观看视频在线观看| 亚洲av一区综合| 成年av动漫网址| 永久免费av网站大全| 综合色丁香网| 亚洲天堂国产精品一区在线| 久久热精品热| 亚洲色图综合在线观看| 免费黄频网站在线观看国产| 街头女战士在线观看网站| 少妇丰满av| 毛片女人毛片| 久热这里只有精品99| 在线看a的网站| 又粗又硬又长又爽又黄的视频| 人妻系列 视频| 国产精品一区二区在线观看99| 各种免费的搞黄视频| 国产精品国产三级国产专区5o| 女人久久www免费人成看片| av又黄又爽大尺度在线免费看| 亚洲欧美中文字幕日韩二区| 亚洲性久久影院| 日韩不卡一区二区三区视频在线| 五月天丁香电影| 亚洲,欧美,日韩| 国产精品一及| 国产片特级美女逼逼视频| 中文资源天堂在线| 免费av毛片视频| 国产美女午夜福利| 国产毛片a区久久久久| 五月玫瑰六月丁香| 国产视频内射| 国产精品一区二区在线观看99| 麻豆国产97在线/欧美| 晚上一个人看的免费电影| 在线天堂最新版资源| 亚洲欧洲日产国产| 国产精品久久久久久久久免| 国产白丝娇喘喷水9色精品| 精品午夜福利在线看| 成人鲁丝片一二三区免费| 国产免费福利视频在线观看| 我要看日韩黄色一级片| 热re99久久精品国产66热6| 免费观看av网站的网址| 爱豆传媒免费全集在线观看| 国产精品嫩草影院av在线观看| 亚洲欧美成人精品一区二区| 成人国产麻豆网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲婷婷狠狠爱综合网| av黄色大香蕉| 三级男女做爰猛烈吃奶摸视频| 一级a做视频免费观看| 欧美xxxx性猛交bbbb| 国产成人精品福利久久| www.色视频.com| 丰满少妇做爰视频| 欧美潮喷喷水| 2022亚洲国产成人精品| 亚洲婷婷狠狠爱综合网| 丝袜喷水一区| 寂寞人妻少妇视频99o| 精品一区在线观看国产| 男人狂女人下面高潮的视频| 精品熟女少妇av免费看| 3wmmmm亚洲av在线观看| 国产成人免费无遮挡视频| 成人欧美大片| 成年女人看的毛片在线观看| 美女高潮的动态| 久久精品国产亚洲av涩爱| 精品久久久久久久久亚洲| av在线播放精品| 日日啪夜夜爽| 国产女主播在线喷水免费视频网站| 国产综合精华液| 中文字幕亚洲精品专区| 久久精品国产亚洲av涩爱| 国产亚洲91精品色在线| 国产精品一区www在线观看| 大香蕉久久网| 丰满人妻一区二区三区视频av| 亚洲高清免费不卡视频| 可以在线观看毛片的网站| 午夜福利在线在线| 中国国产av一级| tube8黄色片| 日韩av不卡免费在线播放| 好男人视频免费观看在线| 可以在线观看毛片的网站| 交换朋友夫妻互换小说| 国产精品爽爽va在线观看网站| 晚上一个人看的免费电影| 纵有疾风起免费观看全集完整版| 麻豆国产97在线/欧美| 老司机影院成人| 女人久久www免费人成看片| 亚洲国产欧美在线一区| 欧美极品一区二区三区四区| 亚洲国产高清在线一区二区三| 久久久精品欧美日韩精品| 免费看日本二区| 久久亚洲国产成人精品v| 精品人妻熟女av久视频| 亚洲av在线观看美女高潮| 国产精品一区二区性色av| 亚洲高清免费不卡视频| 精品一区二区三卡| 亚洲国产日韩一区二区| 色哟哟·www| 亚洲人成网站在线播| 久久99蜜桃精品久久| 男男h啪啪无遮挡| 国产精品国产av在线观看| 亚洲美女视频黄频| 亚洲成人久久爱视频| 国产毛片在线视频| 亚洲一级一片aⅴ在线观看| 最近的中文字幕免费完整| 伦理电影大哥的女人| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 看十八女毛片水多多多| 舔av片在线| 久久精品国产鲁丝片午夜精品| 街头女战士在线观看网站| 欧美xxxx黑人xx丫x性爽| 国产成人午夜福利电影在线观看| 亚洲精品成人久久久久久| 2021少妇久久久久久久久久久| 美女被艹到高潮喷水动态| 丰满人妻一区二区三区视频av| 99热全是精品| 永久免费av网站大全| 色视频在线一区二区三区| 成人午夜精彩视频在线观看| 99热国产这里只有精品6| 亚洲欧美日韩另类电影网站 | 五月玫瑰六月丁香| 久久精品夜色国产| 亚洲欧美日韩东京热| 国产视频首页在线观看| 亚洲av男天堂| 亚洲精品国产av成人精品| 晚上一个人看的免费电影| 国产乱人视频| 国产精品女同一区二区软件| 干丝袜人妻中文字幕| 亚洲无线观看免费| 有码 亚洲区| 特大巨黑吊av在线直播| 制服丝袜香蕉在线| 一个人观看的视频www高清免费观看| 国产日韩欧美在线精品| 大片免费播放器 马上看| 成人午夜精彩视频在线观看| 大码成人一级视频| 国产精品蜜桃在线观看| 国产午夜精品久久久久久一区二区三区| 精品久久久精品久久久| 99久久九九国产精品国产免费| 国产精品三级大全| tube8黄色片| 3wmmmm亚洲av在线观看| 亚洲欧美日韩另类电影网站 | 99热6这里只有精品| 成人亚洲欧美一区二区av| 久久99热这里只频精品6学生| 免费黄频网站在线观看国产| 日韩制服骚丝袜av| 下体分泌物呈黄色| 国产伦精品一区二区三区四那| 国产亚洲91精品色在线| 午夜精品国产一区二区电影 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美成人精品欧美一级黄| 天堂中文最新版在线下载 | 亚洲国产色片| 国产黄片美女视频| 久久97久久精品| 人妻 亚洲 视频| 麻豆国产97在线/欧美| 97精品久久久久久久久久精品| 久久久久久久久久成人| 少妇人妻 视频| 丝袜脚勾引网站| 久久鲁丝午夜福利片| 九色成人免费人妻av| 内地一区二区视频在线| 97人妻精品一区二区三区麻豆| 简卡轻食公司| 制服丝袜香蕉在线| 免费观看无遮挡的男女| 国产成人精品福利久久| 久久午夜福利片| 免费观看av网站的网址| 亚洲av免费高清在线观看| 久久久久久久久久人人人人人人| 天美传媒精品一区二区| kizo精华| 天天一区二区日本电影三级| 亚洲伊人久久精品综合| 夜夜看夜夜爽夜夜摸| 久久人人爽人人爽人人片va| 欧美成人a在线观看| 日韩一区二区视频免费看| 日本wwww免费看| 狂野欧美白嫩少妇大欣赏| 欧美区成人在线视频| 美女xxoo啪啪120秒动态图| 国产精品久久久久久精品古装| 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 国产成人freesex在线| 成人漫画全彩无遮挡| 成人一区二区视频在线观看| 日日撸夜夜添| 内地一区二区视频在线| 在线观看一区二区三区| 久久精品国产亚洲网站| 亚洲精品自拍成人| 2021少妇久久久久久久久久久| 久久女婷五月综合色啪小说 | 精品久久久久久久久av| 亚洲国产成人一精品久久久| 日本免费在线观看一区| 欧美一区二区亚洲| 精品一区二区三卡| 日韩不卡一区二区三区视频在线| 99热全是精品| 成年女人看的毛片在线观看| 国产av国产精品国产| 赤兔流量卡办理| 免费av毛片视频| 亚洲欧美日韩另类电影网站 | 九色成人免费人妻av| 亚洲图色成人| 亚洲天堂av无毛| 免费黄色在线免费观看| 麻豆久久精品国产亚洲av| 性插视频无遮挡在线免费观看| 国产成人午夜福利电影在线观看| 中国三级夫妇交换| 在线亚洲精品国产二区图片欧美 | 好男人视频免费观看在线| 看黄色毛片网站| 国产成人福利小说| av黄色大香蕉| 久久国产乱子免费精品| 2021少妇久久久久久久久久久| 亚洲色图av天堂| 亚洲av电影在线观看一区二区三区 | 久久久久久国产a免费观看| 亚洲av成人精品一区久久| 亚洲av男天堂| 中文字幕制服av| av免费观看日本|