• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influences of harmonic cavities on single-bunch instabilities in electron storage rings

    2021-10-18 01:48:26HaiShengXuJingYeXuNaWang
    Nuclear Science and Techniques 2021年9期

    Hai-Sheng Xu? Jing-Ye Xu,2 ? Na Wang

    Abstract Harmonic cavities (HCs) are widely used in electron storage rings,mainly to increase the Touschek lifetime by lengthening bunches.HCs have become critical components of almost all fourth-generation synchrotron light sources.In addition to the benefits of increasing the Touschek lifetime,they also affect the collective beam instabilities in electron storage rings.However,the influence of HC settings on collective beam instabilities is still not well understood.HCs are typically designed to operate under so-called ideal lengthening conditions,which do not necessarily optimize the suppression of collective beam instabilities.We therefore extended earlier studies of collective beam instabilities to consider more general HC settings.We present preliminary studies and analyses of the influences of different HC settings on microwave and transverse mode-coupling instabilities.

    Keywords Harmonic cavity · Microwave instability ·Transverse Mode-coupling instability

    1 Introduction

    Harmonic cavities(HCs)are widely studied and used in the electron storage rings of many existing synchrotron light sources.Their main purpose is to improve the beam lifetime,in particular the Touschek lifetime [1–6].The typical so-called ideal setting of an HC is that which satisfies the ideal lengthening (or optimal lengthening) condition,namely that the RF potential around the synchronous phase is flat.Such an‘ideal HC’increases the bunch length significantly.

    The successful application of HCs has led to their wider usage in fourth-generation synchrotron light sources based on diffraction-limited storage rings (DLSRs) [7–12].However,implementing HCs causes side effects alongside bunch lengthening,such as variations in the longitudinal potential well,changes in the synchrotron oscillation frequency,and differences in the synchrotron oscillation frequency spread.Under the ‘ideal HC’ setting,the synchrotron oscillation frequency of the particles in a bunch decreases remarkably,while the synchrotron oscillation frequency spread of the particles in each bunch increases significantly.Both effects dramatically increase the complexity of instabilities in an electron storage ring.The overall influence of HCs on the beam dynamics,especially on the collective beam instabilities,is therefore paramount and merits further investigation.

    Many studies have been conducted on collective beam instabilities while considering HCs,predominantly under‘ideal-lengthening’conditions.However,many other more general HC settings exist that produce ‘non-ideal lengthening’.The lack of systematic comparisons between ideal and non-ideal lengthening conditions has motivated us to study the influences of different HC settings on the thresholds or growth rates of collective beam instabilities in electron storage rings [13].Because single-bunch instabilities strongly limit the single-bunch charge and the corresponding beam quality,we first examined two important single-bunch instabilities found in electron storage rings:microwave instability (MWI) and transverse mode-coupling instability (TMCI).

    Because of the much smaller vacuum chambers in DLSRs,the resistive wall(RW)impedance is considered to contribute significantly (even predominantly) to the total broadband impedance (especially in the transverse direction) [7,14,15].Therefore,we used only the RW impedance in the present study.

    The toy lattice used here was a previous storage ring lattice of the High Energy Photon Source(HEPS)[10].The relevant parameters are listed in Table 1.The RW impedance is obtained assuming a round vacuum chamber (radius of 10 mm)made of stainless steel along the entire ring.

    Table 1 Main parameters of the toy lattice

    This study presents a preliminary investigation of the MWI and TMCI thresholds under the conditions defined by different HC settings,assuming active HCs.The paper is organized as follows.Section 2 briefly reviews the basic longitudinal dynamics of a double-RF system as well as the ideal lengthening condition.Then,MWI and TMCI thresholds without an HC and with an ‘ideal HC’ are investigated in Sect.3.These studies are extended to cover general HC settings.Several classic settings corresponding to ‘non-ideal lengthening’ conditions are presented in Sect.4.MWI and TMCI thresholds under different HC settings are compared in Sect.5.Section 6 concludes with a discussion.

    2 Brief overview of the theory in a double RF system

    The wide use of double-RF systems has motivated the development of the basic theory of longitudinal beam dynamics in that context.This section provides a brief textbook review of HC theory (see,e.g.,[16]).

    Following the form of the equations for longitudinal motion with only one RF system,similar equations can be written,considering both a primary RF system and an HC:

    where δ is the relative momentum deviation of a particle,ω0is the angular revolution frequency,Eis the particle energy,and η is the phase slip factor.The subscripts 1 and 2 denote the primary RF system and the HC,respectively.(For instance,V1andV2represent the peak voltages of the primary RF and the HC,respectively.φ1sand φ2sare the synchronous phases of the primary RF and the HC,respectively.) Because the HC resonant frequency is an integer harmonic of the primary RF,the relationship between phases φ1and φ2can be expressed as φ2=φ2s+h(φ1-φ1s),whereh=h2/h1is the ratio between the harmonic numbers of the HC(h2)and primary RF (h1).Therefore,the Hamiltonian can be expressed as:

    This Hamiltonian describes the longitudinal motions of particles under any HC setting,including the widely used‘ideal HC’ setting.In the following,we briefly review the‘ideal lengthening’ condition.

    The total RF voltageVtotal,provided by the double RF system,can be expressed in terms of the peak voltages and phases of the primary RF and HC as

    where the peak voltages and synchronous phases of the primary cavity and the HC should be set to compensate for the average radiation energy loss per turnU0:

    As mentioned above,the ‘ideal lengthening’ condition corresponds to the RF potential being stationary around the synchronous phase of the primary cavity.It is determined by setting both the first and second derivatives of the total RF voltage in the synchronous phase to zero:

    Using Eq.(5),the valuesV1,φ1s,V2,φ2scan be calculated for an arbitrary RF bucket height.For example,Fig.1 shows the normalized bunch distribution in the longitudinal direction under the conditions without HC and with ‘ideal HC’.Two methods are used in the calculations:analytic computation and multiparticle tracking.Multiparticle tracking was performed using the elegant code[17]and its parallel version Pelegant [18].A total of one million macroparticles were tracked for 50,000 turns (corresponding to approximately 14 times the longitudinal radiation damping time and 12 times the vertical damping time) to ensure convergence to the equilibrium state.

    Excellent agreement is achieved,as shown in Fig.1.Furthermore,Fig.1 also shows that the root-mean-square(RMS) bunch length increased from approximately 16.15 ps to approximately 97.04 ps when implementing the‘ideal HC’conditions.The approximate six-fold bunch lengthening caused a significant reduction in the peak bunch intensity.

    Fig.1 (Color online)Equilibrium longitudinal distributions under the conditions without HC and with‘ideal HC’,neglecting any collective effects.The red solid curve and the green dashed curve represent the equilibrium distributions without considering HC,obtained by the multi-particle tracking and analytic method,respectively.The blue solid curve and the magenta dashed curve represent the equilibrium distributions with‘ideal HC’,as obtained using multiparticle tracking and the analytic method,respectively

    3 MWI and TMCI without HC and with ideal HC

    Before exploring the MWI and TMCI thresholds under more general HC settings,we studied these two singlebunch instabilities under conditions without HC and with an ideal HC.

    The Boussard-Keil-Schnell criterion[19]is a convenient analytic method for estimating the MWI threshold without considering any HC.However,it is widely accepted that the Boussard-Keil-Schnell criterion usually gives significantly lower threshold current.For situations with an ideal HC,the analytic method for estimating MWI is still under development.Therefore,the MWI threshold is usually determined via multiparticle tracking in the presence of HCs.Figure 2 shows the tracking results of the bunch energy spread corresponding to different single-bunch charge,indicating that the implementation of an ideal HC results in higher MWI threshold current.The tracking simulations were performed using the elegant code,using 1 million macroparticles,tracked for 50,000 turns,as described above.The so-called final energy spread was computed by averaging the turn-by-turn energy spread of the last 10,000 turns(approximately the last 3 longitudinal damping times).The error bars represent standard deviations.To allow a fair comparison,we define the MWI threshold charge as the single-bunch charge value corresponding to 1% growth of the natural energy spread without considering longitudinal impedance.

    Fig.2 (Color online) ‘Final’ energy spread corresponding to different single-bunch charges.The red and blue curves represent the results obtained under conditions without an HC and with an ideal HC,respectively

    The normalized bunch distributions corresponding to different single-bunch charges (Fig.3) show that the potential well distortion (PWD) drives more electrons toward the head of the bunch as the single-bunch charge increases.The resulting higher local charge density at the bunch head causes the instability to originate from the bunch head.This motivates the conclusion that the MWI threshold current could be increased by moving more particles to the bunch tail,for example,by creating a specific RF potential.This was also a motivation for studying the ‘non-ideal HC’ settings.

    Fig.3 (Color online) Longitudinal distributions corresponding to different single-bunch charges either (upper plot) without an HC or(lower plot) with an ideal HC

    HCs also affect the TMCI threshold.We studied the TMCI first without considering HCs.By setting the chromaticity to zero and including the vertical RW impedance,the TMCI threshold was obtained both theoretically and by simulation,giving very good agreement (Fig.4).

    Fig.4 (Color online) Vertical modes vs.single-bunch charge obtained theoretically (red dashed lines) and using elegant tracking,considering only a vertical impedance

    We also performed multiparticle tracking keeping all other conditions the same,except from including an ideal HC.A higher TMCI threshold was obtained under the‘ideal HC’ condition,as shown in Fig 5.

    4 Typical HC settings with non-ideal lengthening

    The previous section systematically compared the effects of the longitudinal and transverse impedances on MWI and TMCI,respectively.Two typical conditions(namely,without HC and with ‘ideal HC’) were used.However,as argued above,much can be learned by considering more general ’non-ideal lengthening’ conditions,as these are more common in the daily operations of many existing storage rings with HCs.‘Non-ideal lengthening’conditions can generally be classified as follows:

    Fig.5 (Color online)Vertical positions of the bunch centroid vs.the single-bunch charge.The red and blue curves indicate the results obtained without considering HC and with ‘ideal HC’,respectively

    ? sub-ideal lengthening with more particles at the bunch head.This indicates that the HC is set to make the bunch significantly longer than the situation without an HC,slightly shorter than the bunch length with an‘ideal HC’,and with more particles at the head of the bunch (sets #1 -#5);

    ? sub-ideal lengthening with more particles at the bunch tail.This indicates that the HC is set to make the bunch significantly longer than the situation without an HC,slightly shorter than the bunch length with an ‘ideal HC’,and with more particles at the tail of the bunch(sets #6 -#10);

    ? overstretching (‘double-hump’ distribution).This indicates that the HC is set to make the bunch longer than the situation with an ‘ideal HC’ (sets #11 -#15).The RF voltages and phases of the different settings mentioned above,together with the equilibrium bunch lengths (without considering any collective effect) are listed in Table 2.The values listed under ‘ideal HC’ are also given in Table 2 for comparison.The corresponding equilibrium distributions are shown in Fig.6 and are grouped according to three typical situations.

    Fig.6 (Color online) Bunch distributions under HC settings with‘non-ideal lengthening’,as given in Table 2.The blue curves represent the bunch distributions with an ‘ideal HC’,which served as the reference.Three groups of typical HC settings are represented(left:sub-ideal lengthening with more particles at the bunch head;middle:sub-ideal lengthening with more particles at the bunch tail;and right:over-stretching)

    Table 2 Main RF settings (voltages and phases) and corresponding bunch lengths,obtained without considering the impedance

    5 MWI and TMCI under ‘non-ideal lengthening’conditions

    This section presents and analyzes the simulation results corresponding to the 15 typical ‘non-ideal HC’ settings described above,which can be classified into the above three groups.

    The ‘final’ energy spread and the ‘net’ growth rates corresponding to the 15 typical HC settings are shown in Figs.7 and 8.We obtained Fig.7 by using the turn-by-turn energy spread data from 40,001 to 50,000 turns (approximately the last three damping times) at each bunch charge to calculate the average values and standard deviations(presented as mean values and error bars).The blue curves were obtained using an ‘ideal HC’.To obtain the ‘net’growth rates shown in Fig.8,the oscillation of the bunch centroid was used to fit an exponential function for the growth rates.Synchrotron radiation damping and quantumexcitation are included in the tracking.When the fitted‘net’growth rate approached zero,the bunch intensity was below the TMCI threshold current.

    Fig.7 (Color online) ‘Final’ energy spread for different single-bunch charges,corresponding to the ‘non-ideal’ HC settings listed in Table 2.The blue curves correspond to the ‘ideal HC’ setting

    Fig.8 (Color online)Net TMCI growth rates for different single-bunch charges,corresponding to the‘non-ideal’HC settings listed in Table 2.The blue ‘+’ markers represent the ‘ideal HC’ setting

    The thresholds for MWI (red cross markers) and TMCI(red pentagram markers)corresponding to all the above HC settings are are shown in Fig.9.The RMS bunch lengths,obtained without considering any collective effect,are represented in Fig.9 with the blue ‘+’ markers.The red lines indicate the the threshold charges corresponding to the ideal HC settings,while the blue dashed lines are the RMS bunch length when using an ‘ideal HC’.

    Unsurprisingly,the left plot of Fig.9 shows the threshold charges of the HC settings for sets #1 -#5 being all lower than those of the‘ideal HC’situation.In addition,the threshold charges of sets #11 -#15 are all higher than those of the ‘ideal HC’ situation.Intuitively,a longer bunch should have a lower density.More interestingly in sets #6 -#10 (corresponding to situations with more particles at the bunch tails),the MWI threshold charges are sometimes higher than the ideal HC situation,despite the bunches being always shorter than in the ‘ideal HC’ situation.Therefore,this indicates that a higher MWI threshold charge might be obtained by putting more electrons in the bunch tail.

    A more interesting phenomenon is apparent in the right plot of Fig.9.Under both HC settings (sets #1 -#5 and#11 -#15),some situations display higher TMCI threshold charges than the ‘ideal HC’ situation.This cannot be fully explained using longer or shorter bunches.When putting more electrons in the bunch tail (sets #6 -#10),the TMCI threshold charges are all surprisingly significantly higher than in the ‘ideal HC’ situation.

    Fig.9 (Color online) Threshold charges for (left) MWI and (right)TMCI,vs.the indices of HC settings,together with the RMS bunch lengths.Left:the red cross markers represent the MWI threshold charges obtained using the aforementioned ‘1 %growth policy’.The red line indicates the MWI threshold charge under the ‘ideal HC‘setting.Right:the red pentagram markers represent the TMCI threshold charges.The red line indicates the TMCI threshold charge corresponding to‘ideal HC’.The blue+markers in both the left and the right plots represent the RMS bunch lengths corresponding to the different HC settings without considering any collective effect.The blue dashed line indicates the RMS bunch length under ‘ideal HC’conditions

    6 Conclusions and discussions

    Harmonic cavities have been widely used in storage rings,especially in fourth-generation DLSR-based synchrotron light sources.HCs can increase the Touschek lifetime,but are also used to stabilize the beams.Instability studies typically use HCs to achieve ‘ideal lengthening’.

    We investigated MWI and TMCI,the two most important single-bunch instabilities encountered in storage rings,under conditions without HC and with an ‘ideal HC’.Higher threshold currents were achieved for both MWI and TMCI when implementing an ‘ideal HC’.To explore beyond ‘ideal lengthening’ conditions,we studied MWI and TMCI under more general HC settings.

    ‘Non-ideal lengthening’ conditions were classified into three groups:sub-ideal lengthening with more particles at the bunch head,sub-ideal lengthening with more particles at the bunch tail,and overstretching.To provide sufficient generality,we studied five different HC settings in each category.Analyses showed that some ‘non-ideal lengthening’ conditions can indeed be used to increase either the MWI or the TMCI threshold charges relative to ‘ideal lengthening’ conditions.More interestingly,some ‘nonideal lengthening’ conditions showed higher MWI and TMCI thresholds.Further analyses suggested that sub-ideal lengthening with more particles at the bunch tail increases the probability of increasing MWI and TMCI threshold charges simultaneously.

    Before discussing the underlying physical mechanism,we note that at least two conditions must be satisfied to produce a single-bunch instability:the driving wakefield must be sufficiently strong,and the number of particles experiencing this wakefield must be sufficiently large.Putting more particles at the bunch tail implies the existence of a stronger short-range wakefield near the bunch tail.Because of causality,most particles in a single bunch cannot sense a strong wakefield.This implies that putting more particles in the bunch tail reduces the number of particles in a single bunch that experience a strong wakefield.

    We argue that this increase in MWI and TMCI thresholds can be explained qualitatively by considering that,with fewer electrons in the bunch head,the particles in the bunch head drive a weaker wakefield,regardless of whether it is longitudinal or transverse.Therefore,the motion of the trailing particles is less disturbed because they experience a weaker wake force.On the other hand,despite having more particles at the bunch tail driving a stronger wakefield behind,the influence on the single-bunch instabilities is less important because there are only a few trailing electrons behind the ‘bunch tail’.

    However,this explanation remains phenomenological and no theory so far predicts the optimal HC setting for single-bunch instabilities.In the ongoing development of a more general theory,more systematic studies remain to be done on the influences of HCs on single-bunch instabilities in electron storage rings.

    AcknowledgementsMost simulations were performed on the cluster operated by the IHEP computing center.The authors appreciate the kind support provided by the staff at the IHEP computing center.

    Author ContributionsAll authors contributed to the study conception and design.Material preparation,data collection and analysis were performed by Hai-Sheng Xu,Jing-Ye Xu and Na Wang.The first draft of the manuscript was written by Hai-Sheng Xu and all authors commented on previous versions of the manuscript.All authors read and approved the final manuscript.

    久久国产精品影院| 久久天躁狠狠躁夜夜2o2o| 久久久精品国产亚洲av高清涩受| 亚洲午夜精品一区,二区,三区| 久久国产精品影院| 18禁国产床啪视频网站| 国产精品偷伦视频观看了| 欧美国产精品一级二级三级| 免费在线观看视频国产中文字幕亚洲| 亚洲第一av免费看| 日韩欧美免费精品| 日韩中文字幕视频在线看片| 亚洲va日本ⅴa欧美va伊人久久| 成人av一区二区三区在线看| 久久久国产精品麻豆| 制服诱惑二区| 搡老乐熟女国产| 成年人午夜在线观看视频| 国产野战对白在线观看| 男女免费视频国产| 亚洲成国产人片在线观看| 日本av手机在线免费观看| 国产精品亚洲一级av第二区| 欧美激情 高清一区二区三区| 老鸭窝网址在线观看| 91麻豆av在线| 黄色成人免费大全| 亚洲男人天堂网一区| 这个男人来自地球电影免费观看| 最新美女视频免费是黄的| 午夜免费鲁丝| 两人在一起打扑克的视频| 美女视频免费永久观看网站| netflix在线观看网站| 中文字幕av电影在线播放| 午夜日韩欧美国产| av不卡在线播放| 变态另类成人亚洲欧美熟女 | 一本大道久久a久久精品| 亚洲欧美日韩另类电影网站| 黄色 视频免费看| 成人国产一区最新在线观看| 天天影视国产精品| 国产精品一区二区在线观看99| 国产国语露脸激情在线看| 日日摸夜夜添夜夜添小说| 丝袜在线中文字幕| 国产一区二区三区综合在线观看| 精品国产一区二区久久| 老司机深夜福利视频在线观看| 色在线成人网| 一级片免费观看大全| 国产激情久久老熟女| 亚洲午夜精品一区,二区,三区| 日韩精品免费视频一区二区三区| 国产黄色免费在线视频| 亚洲欧美日韩高清在线视频 | 亚洲免费av在线视频| 欧美日韩国产mv在线观看视频| 18禁观看日本| 国产免费现黄频在线看| 极品人妻少妇av视频| 精品国产国语对白av| 人人妻,人人澡人人爽秒播| 露出奶头的视频| 国产麻豆69| 亚洲av片天天在线观看| 国产xxxxx性猛交| 国产免费福利视频在线观看| 成人三级做爰电影| 日韩中文字幕欧美一区二区| av有码第一页| 少妇的丰满在线观看| 我要看黄色一级片免费的| 少妇精品久久久久久久| 视频在线观看一区二区三区| 天堂8中文在线网| 在线观看www视频免费| 亚洲第一青青草原| tocl精华| 香蕉久久夜色| 欧美在线黄色| 夜夜爽天天搞| 精品一区二区三区av网在线观看 | 狠狠狠狠99中文字幕| 精品午夜福利视频在线观看一区 | 99国产综合亚洲精品| 99久久精品国产亚洲精品| 王馨瑶露胸无遮挡在线观看| 国产精品久久久av美女十八| 夜夜爽天天搞| 国精品久久久久久国模美| 老司机靠b影院| 欧美激情极品国产一区二区三区| 日本wwww免费看| 亚洲中文日韩欧美视频| 在线观看一区二区三区激情| 最新的欧美精品一区二区| 一级毛片电影观看| 亚洲精品中文字幕在线视频| 国产三级黄色录像| 波多野结衣一区麻豆| 男女高潮啪啪啪动态图| 我的亚洲天堂| 国产一区二区激情短视频| 国产伦人伦偷精品视频| 欧美日韩福利视频一区二区| 久久午夜综合久久蜜桃| 国产精品久久久久成人av| 狠狠精品人妻久久久久久综合| 19禁男女啪啪无遮挡网站| 人人妻人人澡人人看| 久久99热这里只频精品6学生| 在线观看www视频免费| www.自偷自拍.com| 在线观看免费视频网站a站| 国产av一区二区精品久久| 欧美黄色片欧美黄色片| 女性生殖器流出的白浆| 精品亚洲成国产av| 午夜免费成人在线视频| 一区二区三区激情视频| 成人黄色视频免费在线看| 国产黄色免费在线视频| 日韩有码中文字幕| 精品午夜福利视频在线观看一区 | 青青草视频在线视频观看| 色视频在线一区二区三区| 日韩有码中文字幕| 国产欧美日韩综合在线一区二区| 香蕉丝袜av| 美女高潮喷水抽搐中文字幕| 精品人妻熟女毛片av久久网站| 亚洲第一青青草原| 无遮挡黄片免费观看| 老熟女久久久| 精品福利观看| 亚洲精品成人av观看孕妇| 亚洲全国av大片| 精品人妻熟女毛片av久久网站| 人人妻人人澡人人爽人人夜夜| 日本wwww免费看| 91九色精品人成在线观看| 另类精品久久| 人人妻人人爽人人添夜夜欢视频| 亚洲精品国产区一区二| 在线观看www视频免费| 欧美激情久久久久久爽电影 | 日韩成人在线观看一区二区三区| 另类精品久久| 欧美在线黄色| 日韩视频一区二区在线观看| 亚洲精华国产精华精| 欧美黄色淫秽网站| 黄色a级毛片大全视频| 国产老妇伦熟女老妇高清| 亚洲三区欧美一区| 欧美精品高潮呻吟av久久| 91精品三级在线观看| 中文字幕人妻丝袜制服| 极品人妻少妇av视频| 一本综合久久免费| 国产亚洲一区二区精品| 搡老岳熟女国产| 精品免费久久久久久久清纯 | 免费观看人在逋| 一边摸一边抽搐一进一小说 | 国产欧美日韩一区二区精品| 精品国内亚洲2022精品成人 | 99国产精品99久久久久| 午夜91福利影院| 欧美 日韩 精品 国产| 一进一出好大好爽视频| 狠狠婷婷综合久久久久久88av| 国产色视频综合| 夫妻午夜视频| 在线观看66精品国产| 一个人免费看片子| 国产精品一区二区在线观看99| 母亲3免费完整高清在线观看| 日本vs欧美在线观看视频| 国产精品 欧美亚洲| 国产激情久久老熟女| 国产精品一区二区免费欧美| 久久久久久久久免费视频了| 最新美女视频免费是黄的| 国产成人av激情在线播放| 亚洲情色 制服丝袜| svipshipincom国产片| 亚洲人成电影免费在线| 欧美成人免费av一区二区三区 | 亚洲精品中文字幕一二三四区 | 国产亚洲精品一区二区www | 制服人妻中文乱码| 热99国产精品久久久久久7| 美国免费a级毛片| 热re99久久国产66热| 国产精品久久电影中文字幕 | 精品一区二区三卡| videosex国产| 国产精品一区二区在线观看99| 国产欧美日韩一区二区三| av视频免费观看在线观看| 一个人免费看片子| 性高湖久久久久久久久免费观看| 99热网站在线观看| 五月天丁香电影| 亚洲精品一二三| 男女免费视频国产| 国产极品粉嫩免费观看在线| 91大片在线观看| 日本av手机在线免费观看| 侵犯人妻中文字幕一二三四区| 亚洲国产毛片av蜜桃av| 女性生殖器流出的白浆| 亚洲一卡2卡3卡4卡5卡精品中文| 久久人妻av系列| 久久国产精品影院| 久热这里只有精品99| 人人妻人人澡人人爽人人夜夜| 国产精品 国内视频| 免费在线观看视频国产中文字幕亚洲| 我要看黄色一级片免费的| www.自偷自拍.com| 午夜福利欧美成人| 色94色欧美一区二区| 国产精品久久久久久人妻精品电影 | 久久亚洲精品不卡| 中文字幕人妻丝袜制服| 三级毛片av免费| 色播在线永久视频| 乱人伦中国视频| 黄频高清免费视频| 久久精品国产99精品国产亚洲性色 | 亚洲天堂av无毛| 免费在线观看日本一区| 精品国产超薄肉色丝袜足j| 亚洲国产看品久久| 狠狠婷婷综合久久久久久88av| 亚洲国产欧美在线一区| 欧美精品亚洲一区二区| 精品第一国产精品| 黄色毛片三级朝国网站| 国产精品国产高清国产av | 精品少妇久久久久久888优播| 久久国产精品影院| 老汉色av国产亚洲站长工具| 国产国语露脸激情在线看| 国产亚洲精品一区二区www | 国产三级黄色录像| 国产三级黄色录像| 满18在线观看网站| 男女下面插进去视频免费观看| 人成视频在线观看免费观看| 免费观看av网站的网址| 亚洲av第一区精品v没综合| 成年女人毛片免费观看观看9 | 男女之事视频高清在线观看| 一进一出抽搐动态| 一级毛片精品| 欧美+亚洲+日韩+国产| 女人久久www免费人成看片| 国产欧美日韩综合在线一区二区| 色视频在线一区二区三区| 老熟妇仑乱视频hdxx| 国产精品九九99| 国产极品粉嫩免费观看在线| 一区二区三区乱码不卡18| 搡老岳熟女国产| 天天操日日干夜夜撸| √禁漫天堂资源中文www| 一级a爱视频在线免费观看| 国产xxxxx性猛交| 最新的欧美精品一区二区| 91老司机精品| 亚洲国产成人一精品久久久| 在线观看免费日韩欧美大片| 又紧又爽又黄一区二区| av网站免费在线观看视频| 9191精品国产免费久久| 视频区欧美日本亚洲| 熟女少妇亚洲综合色aaa.| 热re99久久精品国产66热6| 国产伦理片在线播放av一区| 男女下面插进去视频免费观看| 久久久久久久精品吃奶| 亚洲国产欧美在线一区| 我的亚洲天堂| 99国产精品一区二区三区| 国产精品久久久久久精品古装| 热99久久久久精品小说推荐| 欧美激情 高清一区二区三区| 精品国产一区二区三区久久久樱花| 久久久久久久久久久久大奶| tocl精华| 色尼玛亚洲综合影院| 成年人午夜在线观看视频| 他把我摸到了高潮在线观看 | 黑人巨大精品欧美一区二区mp4| 精品乱码久久久久久99久播| 亚洲av第一区精品v没综合| 夫妻午夜视频| 亚洲中文字幕日韩| 午夜福利免费观看在线| 精品国产一区二区久久| 亚洲欧美一区二区三区久久| 老熟女久久久| 国产精品久久久久久人妻精品电影 | 欧美激情久久久久久爽电影 | 我的亚洲天堂| 一进一出好大好爽视频| 欧美精品av麻豆av| 一进一出好大好爽视频| 欧美中文综合在线视频| 国产日韩欧美在线精品| 可以免费在线观看a视频的电影网站| 国产精品影院久久| 亚洲伊人久久精品综合| 精品人妻1区二区| 久久久国产成人免费| 动漫黄色视频在线观看| 欧美乱妇无乱码| 亚洲专区国产一区二区| 亚洲精品自拍成人| 女同久久另类99精品国产91| 视频在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 久久久久久久久久久久大奶| 水蜜桃什么品种好| 中国美女看黄片| 老司机在亚洲福利影院| 久久天躁狠狠躁夜夜2o2o| a级毛片黄视频| 亚洲av第一区精品v没综合| 精品久久久精品久久久| 狠狠婷婷综合久久久久久88av| 在线观看舔阴道视频| 五月开心婷婷网| 久久青草综合色| 欧美黄色片欧美黄色片| 高潮久久久久久久久久久不卡| 亚洲,欧美精品.| 一级毛片电影观看| 黄片小视频在线播放| 国产精品一区二区在线不卡| 亚洲,欧美精品.| 国产人伦9x9x在线观看| 人人妻人人爽人人添夜夜欢视频| 精品亚洲成国产av| 欧美日韩成人在线一区二区| 超碰97精品在线观看| a在线观看视频网站| 在线观看66精品国产| 交换朋友夫妻互换小说| 亚洲欧美精品综合一区二区三区| 最新的欧美精品一区二区| 亚洲五月色婷婷综合| 一级片免费观看大全| 黄色视频在线播放观看不卡| 电影成人av| 欧美日韩精品网址| 麻豆av在线久日| 久久国产精品影院| 国产成人影院久久av| 一级黄色大片毛片| 久久精品亚洲av国产电影网| 岛国在线观看网站| 午夜福利在线观看吧| 97人妻天天添夜夜摸| 久久人妻熟女aⅴ| 午夜91福利影院| 久久久水蜜桃国产精品网| 黑人猛操日本美女一级片| 国产主播在线观看一区二区| 一级毛片电影观看| 国产伦理片在线播放av一区| 国产精品电影一区二区三区 | 成人黄色视频免费在线看| 丰满饥渴人妻一区二区三| 大香蕉久久成人网| 老汉色∧v一级毛片| 亚洲人成电影观看| 亚洲精品国产区一区二| 人人妻人人澡人人看| 99久久人妻综合| 精品一区二区三区四区五区乱码| 波多野结衣av一区二区av| 成人国语在线视频| 免费少妇av软件| 亚洲第一欧美日韩一区二区三区 | 老熟妇仑乱视频hdxx| av超薄肉色丝袜交足视频| 一边摸一边抽搐一进一出视频| 天天操日日干夜夜撸| 我要看黄色一级片免费的| 男女之事视频高清在线观看| 777久久人妻少妇嫩草av网站| 老鸭窝网址在线观看| 亚洲精品成人av观看孕妇| 亚洲人成电影观看| 每晚都被弄得嗷嗷叫到高潮| 久久久精品国产亚洲av高清涩受| 久久久国产欧美日韩av| 法律面前人人平等表现在哪些方面| 久久亚洲精品不卡| 国产精品一区二区免费欧美| 女人久久www免费人成看片| 精品高清国产在线一区| 免费女性裸体啪啪无遮挡网站| 欧美国产精品va在线观看不卡| 国产成人精品无人区| 欧美精品亚洲一区二区| 91国产中文字幕| 久久婷婷成人综合色麻豆| 欧美日韩福利视频一区二区| 91成人精品电影| 久久久久国产一级毛片高清牌| 久久精品熟女亚洲av麻豆精品| 国产精品欧美亚洲77777| 亚洲成人国产一区在线观看| av国产精品久久久久影院| 色94色欧美一区二区| 在线观看舔阴道视频| 亚洲欧美一区二区三区黑人| 久久国产精品影院| 别揉我奶头~嗯~啊~动态视频| 日韩欧美国产一区二区入口| 亚洲第一欧美日韩一区二区三区 | 国产单亲对白刺激| 两个人免费观看高清视频| 久久午夜综合久久蜜桃| 啦啦啦 在线观看视频| 亚洲午夜理论影院| 黄频高清免费视频| 亚洲五月色婷婷综合| 如日韩欧美国产精品一区二区三区| 超碰97精品在线观看| 中文字幕人妻熟女乱码| 在线观看人妻少妇| 国产精品欧美亚洲77777| 国产伦理片在线播放av一区| 国产免费视频播放在线视频| 狠狠婷婷综合久久久久久88av| 国产精品国产高清国产av | 9色porny在线观看| 99在线人妻在线中文字幕 | 麻豆乱淫一区二区| 精品熟女少妇八av免费久了| 涩涩av久久男人的天堂| 午夜成年电影在线免费观看| 国产在线视频一区二区| 丝袜美足系列| 久久久久久久精品吃奶| 999久久久精品免费观看国产| 精品熟女少妇八av免费久了| 国产精品久久久av美女十八| 亚洲精品国产色婷婷电影| 精品少妇黑人巨大在线播放| 精品久久久精品久久久| 电影成人av| 婷婷成人精品国产| 成人国产av品久久久| 欧美黄色淫秽网站| 两个人免费观看高清视频| 精品国产乱子伦一区二区三区| 亚洲av电影在线进入| 热99国产精品久久久久久7| 国产黄色免费在线视频| 久久人人97超碰香蕉20202| 桃花免费在线播放| 一进一出好大好爽视频| 啦啦啦视频在线资源免费观看| 精品国产一区二区三区久久久樱花| 一边摸一边抽搐一进一出视频| 桃红色精品国产亚洲av| 国产深夜福利视频在线观看| 精品午夜福利视频在线观看一区 | 美女扒开内裤让男人捅视频| 深夜精品福利| 美国免费a级毛片| 人成视频在线观看免费观看| 国产精品久久久久久精品古装| 老司机午夜十八禁免费视频| 久久精品aⅴ一区二区三区四区| 怎么达到女性高潮| 肉色欧美久久久久久久蜜桃| 又紧又爽又黄一区二区| 三级毛片av免费| 久久国产精品男人的天堂亚洲| 国产日韩一区二区三区精品不卡| 亚洲熟妇熟女久久| 免费日韩欧美在线观看| 欧美成狂野欧美在线观看| www.自偷自拍.com| 免费av中文字幕在线| 国产欧美亚洲国产| 欧美精品啪啪一区二区三区| 亚洲熟女精品中文字幕| 国产在线观看jvid| 黄片播放在线免费| 免费观看人在逋| 亚洲成人免费电影在线观看| 极品人妻少妇av视频| 精品人妻在线不人妻| 精品国内亚洲2022精品成人 | 18禁美女被吸乳视频| 一区二区三区乱码不卡18| 极品教师在线免费播放| 少妇 在线观看| 一区在线观看完整版| 另类精品久久| 乱人伦中国视频| 亚洲综合色网址| 男女床上黄色一级片免费看| 免费在线观看视频国产中文字幕亚洲| 久久九九热精品免费| 午夜免费成人在线视频| av天堂久久9| 国产免费现黄频在线看| 国产精品1区2区在线观看. | 久久久国产一区二区| 久久av网站| 精品久久久精品久久久| 91国产中文字幕| 国产日韩欧美亚洲二区| 亚洲欧洲精品一区二区精品久久久| 色94色欧美一区二区| 国产精品98久久久久久宅男小说| 日本一区二区免费在线视频| 精品视频人人做人人爽| 啦啦啦视频在线资源免费观看| 欧美在线一区亚洲| 亚洲国产成人一精品久久久| 国产亚洲欧美精品永久| 亚洲熟妇熟女久久| 美女国产高潮福利片在线看| av福利片在线| 一区二区日韩欧美中文字幕| 丝袜美足系列| 又大又爽又粗| 亚洲成人免费av在线播放| 国产日韩一区二区三区精品不卡| 亚洲九九香蕉| 少妇 在线观看| 一区二区av电影网| 他把我摸到了高潮在线观看 | 母亲3免费完整高清在线观看| 三上悠亚av全集在线观看| 亚洲精品国产一区二区精华液| 欧美激情极品国产一区二区三区| 亚洲色图av天堂| 99热国产这里只有精品6| 国产高清激情床上av| 国产成人免费无遮挡视频| 亚洲精华国产精华精| 日本五十路高清| 国产片内射在线| 高清视频免费观看一区二区| 黄色毛片三级朝国网站| 国内毛片毛片毛片毛片毛片| 成年人午夜在线观看视频| 亚洲av欧美aⅴ国产| 亚洲午夜精品一区,二区,三区| 男女边摸边吃奶| 麻豆乱淫一区二区| 国产欧美日韩一区二区精品| 好男人电影高清在线观看| 亚洲成a人片在线一区二区| 亚洲国产毛片av蜜桃av| av又黄又爽大尺度在线免费看| 精品一品国产午夜福利视频| 亚洲国产中文字幕在线视频| 宅男免费午夜| 精品国内亚洲2022精品成人 | 成人国产一区最新在线观看| 免费不卡黄色视频| 午夜福利欧美成人| 欧美大码av| 亚洲精品美女久久av网站| 精品少妇内射三级| 日韩欧美免费精品| 国产精品一区二区精品视频观看| 日韩人妻精品一区2区三区| 精品一区二区三区视频在线观看免费 | 99久久国产精品久久久| 日韩成人在线观看一区二区三区| √禁漫天堂资源中文www| 久久久久精品人妻al黑| 亚洲中文日韩欧美视频| 99国产精品一区二区蜜桃av | 国产在线一区二区三区精| 欧美一级毛片孕妇| 人妻一区二区av| 成人精品一区二区免费| 久久久久久久精品吃奶| 久久久久久免费高清国产稀缺| 久久久精品国产亚洲av高清涩受| 精品亚洲成a人片在线观看| av网站在线播放免费| 黄片小视频在线播放| av国产精品久久久久影院| 精品国产一区二区三区久久久樱花| 国产精品熟女久久久久浪| 男女边摸边吃奶| 免费在线观看影片大全网站| 性少妇av在线| 日韩精品免费视频一区二区三区| 两个人看的免费小视频| 成人亚洲精品一区在线观看| 在线十欧美十亚洲十日本专区| 国产黄色免费在线视频| 999精品在线视频| 国产日本99.免费观看| 男人舔女人下体高潮全视频| 91老司机精品|