• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A co-activation strategy for enhancing the performance of hematite in photoelectrochemical water oxidation

    2021-10-12 08:49:46BoyoXieXingmingNingShuomingWeiJiLiuJimeiZhngXioqunLu
    Chinese Chemical Letters 2021年7期

    Boyo Xie,Xingming Ning,Shuoming Wei,Ji Liu,Jimei Zhng*,Xioqun Lu,*

    aTianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China

    b State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China

    1 These authors contributed equally to this work.

    ABSTRACT Hematite(α-Fe2O3)is a promising photoanode for photoelectrochemical(PEC)water splitting.However,the severe charge recombination and sluggish water oxidation kinetics extremely limit its use in photohydrogen conversion.Herein, a co-activation strategy is proposed, namely through phosphorus (P)doping and the loading of CoAl-layered double hydroxides (CoAl-LDHs) cocatalysts.Unexpectedly, the integrated system, CoAl-LDHs/P-Fe2O3 photoanode, exhibits an outstanding photocurrent density of 1.56 mA/cm2 at 1.23 V(vs.reversible hydrogen electrode,RHE),under AM 1.5 G,which is 2.6 times of pure α-Fe2O3.Systematic studies reveal that the remarkable PEC performance is attributed to accelerated surface OER kinetics and enhanced carrier separation efficiency.This work provides a feasible strategy to enhance the PEC performance of hematite photoanodes.

    Keywords:Photoelectrochemical Phosphorus doping Charge separation CoAl-LDHs Hematite

    With the increasingly serious energy crisis and environmental pollution problems, photoelectrochemical (PEC) water splitting using sunlight to generate hydrogen has been regarded as a feasible way to achieve sustainable development [1].Early-stage,numerous semiconductor materials, such as ZnO [2], BiVO4[3],WO3[4]and CdS[5]have been widely studied as photoanodes for PEC water splitting.Hematite(α-Fe2O3), a stable n-type semiconductor,stands out because of its nontoxicity,earth-abundance,and suitable band gap (2.1 eV) [6].It absorbs about 40% of solar radiation,and the maximum theoretical photocurrent density can reach 12.6 mA/cm2under AM 1.5 G illumination [7].

    However, pure hematite photoanode suffers from poor conductivity, short hole diffusion distance (≈2 nm) [8], sluggish oxygen evolution kinetics [9], low carrier concentration, and severe recombination problems[10],which result in the PEC water splitting performance that can be achieved at present is still far below the theoretical limit.Various strategies have been proposed to solve these obstacles, including loading oxygen evolution cocatalysts (OECs) [11,12], forming heterojunctions [13,14], nanostructure engineering [15,16] and surface passivation [17].

    Element doping, an effective strategy to modify the charge transport properties of photoanodes bulk phase,could distort the crystal lattice,leading to polaron jumping or increasing the carrier concentration and conductivity of the α-Fe2O3photoanodes [18].Early-stage, metal doping has been widely used in hematite photoanodes, such as Ti4+[19], Sn4+[20], Zr4+[21] and Cd2+[22].However, it is inevitable to introduce new energy levels between the valence band and the conduction band of hematite during doping, resulting in more severe charge recombination [23].The introduction of nonmetallic elements into hematite can address the recombination issue of metal ion doping because the energy state caused by nonmetal dopants is generally above the conduction band of hematite [24].As an electron donor,nonmetallic phosphorus(P)is a promising candidate for hematite doping,which has more valence electrons than many metal doping elements[25].Moreover,compared with other dopant--O bonds,the P--O bond in hematite possesses a more covalent nature,which can effectively avoid the formation of deep electron capture sites in hematite [26].

    The issue of charge separation in the bulk of hematite is solved by non-metallic doping.However, the sluggish surface reaction kinetics is still an important reason that limits the performance of α-Fe2O3photoanode in PEC water oxidation.Compared with the generation speed of carriers in hematite, surface reactions commonly take place in a longer time range [27].Up to now, it has been extensively studied by loading cocatalysts on its surface,which can reduce the overpotential and accelerate the reaction kinetics of the hematite surface, including Co-Pi [28], IrOx[29],NiOOH [30], Co3O4[31], layered double hydroxides (LDHs) [32],etc.LDHs stand out because of their low cost,feasible moderation of interlayer object, and excellent stability, which have been regarded to be a promising OECs for PEC water oxidation[33–36].

    Herein,we propose a co-activation strategy to solve the charge recombination and sluggish surface reaction of α-Fe2O3through P doping and the loading of CoAl-LDHs OECs.The resulting CoAl-LDHs/P-Fe2O3photoanodes shows an outstanding water oxidation photocurrent density of 1.56 mA/cm2at 1.23 V(vs.RHE)under AM 1.5 G(100 mW/cm2)illumination,which is 2.6 times of pure α-Fe2O3.Besides, the onset potential is negatively shifted to 0.7 V (vs.RHE) and the surface charge separation efficiency is increased to 68.8% at 1.23 V (vs.RHE).Our research provides a feasible strategy to enhance the PEC performance of α-Fe2O3photoanodes.

    The α-Fe2O3photoanodes were fabricated by a previously reported hydrothermal approach followed by annealing [37].As shown in Fig.1a, the α-Fe2O3photoanodes show a nanorods structure on the fluorine-doped SnO2(FTO) substrates, which is consistent with the transmission electron microscope(TEM)image(Fig.2a).The high-resolution transmission electron microscope(HRTEM) image of α-Fe2O3photoanodes (Fig.2b) shows that the interval of the adjacent lattice plane is 0.25 nm,which is matched with the (110) plane of hematite.The crystallization of different photoanodes were investigated by X-ray diffraction(XRD)patterns(Fig.S2a in Supporting information).The diffraction peaks of α-Fe2O3photoanodes at 36.1°and 64.4°are indexed as the (110)and(300)crystal plane of hematite(JCPDS card number 33-0664),respectively.Besides,the diffraction peak intensity of(110)crystal plane is higher than that of(300)crystal plane,indicating that the(110)crystal plane is mainly exposed in the α-Fe2O3photoanodes,which is more conducive to the transfer of photogenerated charges[38].As indicated by X-ray photoelectron spectroscopy (XPS), the binding energies of Fe 2p1/2and Fe 2p3/2for α-Fe2O3are 723.5 eV and 709.6 eV respectively (Fig.S3a in Supporting information),consistent with literature reports [39].In Fig.S3b (Supporting information), the O 1s spectrum of α-Fe2O3can be decomposed into three peaks.The peak at 529.4 eV is characteristic of the O2-species(designated as Fe-O)in the Fe2O3,while the other two peaks are attributed to surface labile oxygen,such as chemisorbed active O, including O22-and O-(531.2 eV, designated as O*) and adsorbed molecular water (532.7 eV, designated as Ow) [40,41].Scanning electron microscopy (SEM), TEM, HRTEM, XRD and XPS results indicate the successful preparation of the α-Fe2O3photoanodes.

    Fig.1.SEM images of(a)α-Fe2O3 NRs photoanodes,(b)P-Fe2O3 NRs photoanodes,(c) CoAl-LDHs/Fe2O3 photoanodes and (d) CoAl-LDHs/P-Fe2O3 photoanodes.(e)SEM-EDX elemental mapping images of Fe, O, P, Co, Al in CoAl-LDHs/P-Fe2O3 photoanodes.

    Fig.2.TEM images of (a) α-Fe2O3 NRs photoanodes and (c) CoAl-LDHs/P-Fe2O3 photoanodes.HRTEM images of(b)α-Fe2O3 NRs photoanodes and(d)CoAl-LDHs/PFe2O3 photoanodes.

    The morphology of P-Fe2O3(Fig.1b)obtained by the annealing process is unchanged compared to the α-Fe2O3photoanodes.As shown in Fig.S2a, the XRD pattern of the P-Fe2O3photoanodes is the same as the α-Fe2O3photoanodes,which implies that P doping does not affect the crystal structure of α-Fe2O3.In Fig.S3a, it is observed that the Fe 2p spectra of P-Fe2O3and CoAl-LDHs/P-Fe2O3are almost the same for the α-Fe2O3photoanodes, indicating that the P doping and the loading of CoAl-LDHs OECs do not affect the chemical states of Fe atoms.As shown in Fig.S3c (Supporting information), it can be obviously seen that the peak at approximately 132.4 eV can be indexed to P5+specie [42].The Fe 2p and P 2p signals of CoAl-LDHs/P-Fe2O3samples are close to that of FePO4,which indicates a strong interaction between the Fe and P in photoanodes[25].SEM,XRD and XPS results show that the P-Fe2O3photoanodes were successfully prepared.

    As shown in Fig.1d, when CoAl-LDHs were loaded onto the P-Fe2O3photoanodes, their surface morphology demonstrates a significant change with nanosheets clearly shown on the surface,which is the same as CoAl-LDHs/Fe2O3photoanodes (Fig.1c).Energy-dispersive X-ray spectrum (EDX) mappings (Fig.1e) of Fe,O, P, Co and Al illustrate that each element distributes homogeneously in the nano-arrays.The TEM image (Fig.2c) reveals CoAl-LDHs OECs compactly coated on the surface of α-Fe2O3,which would facilitate the separation and transfer of photogenerated carriers in bulk α-Fe2O3.The CoAl-LDHs/P-Fe2O3photoanodes displays a lattice spacing of 0.25 nm (Fig.2d), indicating that the crystal structure of hematite remains unchanged after introducing phosphorus dopant into the hematite lattice.In Fig.S2a, the XRD pattern of the CoAl-LDHs/P-Fe2O3photoanodes is the same as the α-Fe2O3photoanodes,which implies that P doping and loading of CoAl-LDHs OECs do not affect the crystal structure of α-Fe2O3.These analysis results are consistent with HRTEM.The ultravioletvisible (UV–vis) diffuse reflectance spectra of different photoanodes (Fig.S2b in Supporting information) reveal that P doping and the loading of CoAl-LDHs could only slightly enhance the light absorption ability of α-Fe2O3photoanodes, indicating that the main factors affecting the PEC performance of hematite are charge separation and surface reaction kinetics [43].As indicated by Fig.S3b,the O*peak becomes strong,which can be ascribed to the OH-groups in CoAl-LDHs, indicating that the CoAl-LDHs OECs cover the surface of P-Fe2O3photoanodes.The above results show the successful preparation of the CoAl-LDHs/P-Fe2O3photoanodes.The Co 2p core-level spectra are utilized to investigate the valences of Co species in the CoAl-LDHs/P-Fe2O3photoanodes (Fig.S3d in Supporting information).The Co 2p core lines are divided into two peaks of Co 2p1/2(797.2 eV) and Co 2p3/2(781.3 eV) accompanied by two satellite bands at 803.4 eV and 786.1 eV respectively,indicating that the Co cation exists as high-spin Co2+in CoAl-LDHs/P-Fe2O3photoanodes [44].

    The PEC water oxidation activities of different photoanodes were evaluated by measuring the photocurrent–voltage (J–V)curves in 1 mol/L NaOH (pH 13.6) under AM 1.5 G simulated sunlight (100 mW/cm2).From the J–V curves in Fig.3a, we can observe that the pure α-Fe2O3shows a low photocurrent density of 0.6 mA/cm2at 1.23 V(vs.RHE).When the α-Fe2O3photoanodes are modified with phosphorus doping, the P-Fe2O3photoanodes display a much higher photocurrent density than that of the α-Fe2O3photoanodes due to the carrier density (Nd) of P-Fe2O3photoanodes(1.37×1020cm-3)increased by 2.89 times compared with pure hematite (Fig.3b).Moreover, CoAl-LDHs/Fe2O3photoanodes demonstrate an enhanced photocurrent density compared to the α-Fe2O3photoanodes, while a pure CoAl-LDHs photoanode in 1 mol/L NaOH electrolyte shows a photocurrent and dark current densities of almost zero at 1.23 V(vs.RHE),which indicates that the CoAl-LDHs OECs accelerate the water oxidation kinetics rather than photosensitivity(Fig.S10 in Supporting information).When P doping and loading the CoAl-LDHs cocatalysts for hematite at the same time, the photoanodes exhibit a photocurrent density of 1.56 mA/cm2at 1.23 V(vs.RHE),which is 1.6 times higher than that of pure α-Fe2O3.Besides,the onset potential shows a cathodic shift of 100 mV, indicating a lower overpotential for water oxidation.The maximum applied bias photon-to-current efficiency(ABPE)of the CoAl-LDHs/P-Fe2O3photoanodes achieves 0.20% at 1.0 V(vs.RHE),which is 3.84 times that of the bare α-Fe2O3photoanodes(Fig.3c).

    Fig.3.(a) J–V curves of different photoanodes measured with 1 mol/L NaOH(pH 13.6) under AM 1.5 G simulated sunlight (100 mW/cm2).(b) Mott-Schottky plots of different samples measured in 1 mol/L NaOH solution in dark (1 kHz).(c)ABPE of different photoanodes.(d)EIS Nyquist plots of different photoanodes.The inset reveals equivalent circuit for different photoanodes in the light.

    Electrochemical impedance spectroscopy (EIS) measurement was performed to investigate the charge transport properties of the photoanodes under AM 1.5 G illumination (Fig.3d) [45].According to the EIS results,the semidiameter of the semicircle of P-Fe2O3and CoAl-LDHs/Fe2O3photoanodes are dramatically reduced compared to pure α-Fe2O3,indicating that P doping could reduce the surface charge trapping of hematite, and CoAl-LDHs cocatalysts can effectively facilitate the transport of holes into the electrolyte for water oxidation.Moreover, compared to other photoanodes,the semidiameter of the semicircle of CoAl-LDHs/PFe2O3is the smallest, further confirming that the photoanodes have the best charge transport performance, which is consistent with the PEC results.

    Photoluminescence (PL) spectra and time-resolved photoluminescence (TRPL) emission decay spectra can be used to evaluate the recombination degree of photo-generated carriers in semiconductors in photocatalysis[3].A long carrier lifetime and low fluorescence intensity mean efficient charge separation for photoanodes.In Fig.4a, all samples have the same emission peak at 597 nm, and the fluorescence intensity of α-Fe2O3is the strongest,indicating that pure hematite suffers from severe carrier recombination.Incontrast,the fluorescenceintensity of P-Fe2O3and CoAl-LDHs/Fe2O3are reduced, and the average fluorescence lifetimes both increase (Fig.4b), indicating that P doping and the loading of CoAl-LDHs OECs can inhibit the recombination of hematite photo-generated carriers.Among them,the average fluorescence lifetimes of the CoAl-LDHs/P-Fe2O3photoanode is 3.136 ns, 1.25 times higher than that of α-Fe2O3,exhibiting the most excellent carrier separation efficiency,which is consistent with the PEC results.This result is further confirmed by the surface charge separation efficiencies of different photoanodes(Fig.4c).A high surface charge separation efficiency (68.8%) is obtained for CoAl-LDHs/P-Fe2O3photoanodes compared with that of the pure α-Fe2O3(53.7%)at 1.23 V(vs.RHE).The stability of the CoAl-LDHs/P-Fe2O3photoanodewastestedbychronoamperometry(Fig.4d).Aftercontinuous exposuretoAM 1.5 G illumination for3 h,there is no obvious difference in the recorded photocurrent,indicating its excellent photoelectric stability.

    Fig.4.(a) PL spectra of different samples.(b) TRPL emission decay spectra of different photoanodes.(c) The surface charge separation efficiencies of different photoanodes.(d)I-t curves for CoAl-LDHs/P-Fe2O3 photoanodes measured at 1.23 V(vs.RHE) in 1 M NaOH solution under AM 1.5 G illumination (100 mW/cm2).The inset shows the schematic of PEC cell for water splitting.

    Based on the above analysis,Scheme 1 is a schematic diagram of the photogenerated electron-hole pairs separation and transport process of the CoAl-LDHs/P-Fe2O3composite photoanodes.Hematite suffers from severe surface charge recombination and sluggish water oxidation kinetics, which results in inferior PEC performance.Phosphorus anion as a donor dopant significantly increases the carrier density of hematite and reduces the resistance to charge transfer.Besides, the electronic structure change caused by P doping could remove part of the hematite surface trapping sites and reduce the surface charge capture.The CoAl-LDHs OECs can effectively improve the kinetics of water oxidation on the surface of the hematite photoanode, and promote the transport of holes into the electrolyte for water oxidation.Moreover,P anion doping and the loading of CoAl-LDHs cocatalysts can both inhibit surface charge recombination and facilitate surface charge separation.Through the conversion of Co cations to high valence states during the water oxidation process, the injection efficiency of photogenerated holes could be obviously enhanced.Owing to the successive modification of P doping and CoAl-LDHs OECs,the CoAl-LDHs/P-Fe2O3photoanodes exhibit outstanding PEC water oxidation performance.

    Scheme 1.Schematic diagram of the photogenerated electron-hole pairs separation and transport process of the photoanodes.

    In summary, we designed a co-activation strategy to solve the charge recombination and sluggish surface reaction of α-Fe2O3through P doping and the loading of CoAl-LDHs OECs.Among them,P anion doping significantly increases the carrier density of hematite and reduces the resistance of charge transfer.The CoAl-LDHs OECs not only accelerates the water oxidation kinetics of hematite but also effectively improves the injection efficiency of photogenerated holes through the conversion of cobalt ions.Besides,the P anion doping and the loading of the CoAl-LDHs OECs are both facilitated to the separation of the surface charge of the hematite, which is more effective for PEC water oxidation.As a result, the CoAl-LDHs/P-Fe2O3photoanodes exhibits an outstanding photocurrent density of 1.56 mA/cm2at 1.23 V(vs.RHE),which is 2.6 times of pure α-Fe2O3.Besides, the onset potential is negatively shifted from 0.8 V to 0.7 V (vs.RHE) and the Ndof CoAl-LDHs/P-Fe2O3photoanodes obtained from Mott-Schottky results is 1.84×1020cm-3.The ABPE achieves 0.20% at 1.0 V (vs.RHE), which is 3.84 times that of the bare α-Fe2O3photoanodes,and the surface charge separation efficiency is increased to 68.8%at 1.23 V (vs.RHE).Our research demonstrates that co-activation of anion doping and cocatalysts is a favorable strategy to improve the PEC performance of hematite.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (No.21575115); the Program for Chang Jiang Scholars and Innovative Research Team, Ministry of Education,China (No.IRT-16R61).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.cclet.2021.01.003.

    久久99蜜桃精品久久| 日韩欧美在线乱码| 国产探花极品一区二区| 免费看a级黄色片| 亚洲av成人av| 最近手机中文字幕大全| 最近最新中文字幕大全电影3| 亚洲在久久综合| 亚洲精品日韩在线中文字幕 | 国产在线精品亚洲第一网站| 久久久久国产网址| 3wmmmm亚洲av在线观看| 一个人观看的视频www高清免费观看| 在线免费观看不下载黄p国产| 亚洲在线自拍视频| av在线蜜桃| 99久久中文字幕三级久久日本| 一夜夜www| 麻豆精品久久久久久蜜桃| 99热精品在线国产| 亚洲中文字幕一区二区三区有码在线看| 久久99热这里只有精品18| 精品免费久久久久久久清纯| 亚洲一区高清亚洲精品| 亚洲欧美日韩东京热| 久久99精品国语久久久| 超碰av人人做人人爽久久| 久久精品夜色国产| 尾随美女入室| 亚洲国产精品sss在线观看| 我要看日韩黄色一级片| 啦啦啦啦在线视频资源| 熟妇人妻久久中文字幕3abv| 少妇丰满av| 国产黄色小视频在线观看| 久久99热6这里只有精品| 大又大粗又爽又黄少妇毛片口| 国国产精品蜜臀av免费| 亚洲欧美日韩高清专用| 亚洲丝袜综合中文字幕| 99久久久亚洲精品蜜臀av| 亚洲精品色激情综合| 好男人视频免费观看在线| 中文字幕免费在线视频6| 一个人看视频在线观看www免费| 国产av在哪里看| 国产视频首页在线观看| 国产精品伦人一区二区| h日本视频在线播放| eeuss影院久久| 最近中文字幕高清免费大全6| 国产精品伦人一区二区| 亚洲三级黄色毛片| 一本精品99久久精品77| 我要看日韩黄色一级片| 中文字幕熟女人妻在线| 我要搜黄色片| 欧美xxxx黑人xx丫x性爽| 国产精品嫩草影院av在线观看| 在线免费观看不下载黄p国产| 人妻久久中文字幕网| 天堂影院成人在线观看| 成人午夜精彩视频在线观看| 日本熟妇午夜| 色哟哟哟哟哟哟| 国产一区二区三区av在线 | 久久午夜亚洲精品久久| 桃色一区二区三区在线观看| 国产精品久久电影中文字幕| 九九在线视频观看精品| 久久久久久久久久黄片| 久久精品夜色国产| 国产精品国产高清国产av| 成人国产麻豆网| 男女视频在线观看网站免费| 九九爱精品视频在线观看| 亚洲经典国产精华液单| 亚洲一级一片aⅴ在线观看| 国产亚洲精品久久久com| 久久久久久久亚洲中文字幕| 久久精品人妻少妇| 一级毛片久久久久久久久女| 欧洲精品卡2卡3卡4卡5卡区| 三级国产精品欧美在线观看| 欧美性猛交╳xxx乱大交人| 国产视频内射| 免费无遮挡裸体视频| 免费av毛片视频| 性插视频无遮挡在线免费观看| 日本在线视频免费播放| 日韩欧美 国产精品| 一级毛片电影观看 | 日本黄色片子视频| 婷婷精品国产亚洲av| av免费在线看不卡| 欧美色视频一区免费| 国产精品电影一区二区三区| 午夜福利在线在线| 精品免费久久久久久久清纯| 国产色爽女视频免费观看| 国产成人精品久久久久久| 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| 亚洲在久久综合| 亚洲美女视频黄频| 乱系列少妇在线播放| 久久久欧美国产精品| 只有这里有精品99| 女人十人毛片免费观看3o分钟| 亚洲不卡免费看| 美女脱内裤让男人舔精品视频 | 校园春色视频在线观看| 国产成人精品久久久久久| 色哟哟·www| 国产日本99.免费观看| 特级一级黄色大片| 国产一区亚洲一区在线观看| 最近的中文字幕免费完整| 尾随美女入室| 久久中文看片网| 欧美色视频一区免费| 在线国产一区二区在线| 国产一区二区三区av在线 | 日韩欧美 国产精品| or卡值多少钱| 天堂影院成人在线观看| 男人舔奶头视频| 日本免费a在线| 老司机福利观看| 一级黄色大片毛片| 欧美一区二区国产精品久久精品| 蜜桃亚洲精品一区二区三区| 日本成人三级电影网站| 亚洲无线在线观看| 高清在线视频一区二区三区 | 2021天堂中文幕一二区在线观| 一夜夜www| 久久久久久久久久久丰满| 免费观看在线日韩| 免费观看人在逋| 亚洲精品乱码久久久v下载方式| 日本黄色视频三级网站网址| 青春草亚洲视频在线观看| 免费看日本二区| 国产高清不卡午夜福利| 欧美精品国产亚洲| 婷婷色av中文字幕| 国产午夜福利久久久久久| 亚洲精品国产成人久久av| 欧美成人精品欧美一级黄| 国产白丝娇喘喷水9色精品| 99热只有精品国产| 午夜爱爱视频在线播放| av在线亚洲专区| 草草在线视频免费看| 1024手机看黄色片| 欧美日本视频| 美女黄网站色视频| 女人被狂操c到高潮| .国产精品久久| 国产成人精品婷婷| 欧美成人免费av一区二区三区| 小说图片视频综合网站| 激情 狠狠 欧美| 内地一区二区视频在线| 男人舔奶头视频| 亚洲国产精品成人综合色| av在线老鸭窝| 亚洲成人中文字幕在线播放| 在线观看午夜福利视频| 伦精品一区二区三区| 亚洲av.av天堂| 久久人人爽人人爽人人片va| 精品人妻熟女av久视频| 亚洲经典国产精华液单| 黄色视频,在线免费观看| 校园春色视频在线观看| 亚洲精品乱码久久久久久按摩| 久久久精品欧美日韩精品| 国产91av在线免费观看| 国产免费一级a男人的天堂| 免费看美女性在线毛片视频| 级片在线观看| 哪个播放器可以免费观看大片| 久久久久九九精品影院| 日韩成人伦理影院| 91麻豆精品激情在线观看国产| 国产精品美女特级片免费视频播放器| 成人综合一区亚洲| 成人亚洲欧美一区二区av| 哪个播放器可以免费观看大片| 亚洲无线在线观看| 欧美xxxx性猛交bbbb| 免费一级毛片在线播放高清视频| 亚洲国产高清在线一区二区三| 亚州av有码| 毛片一级片免费看久久久久| 午夜激情欧美在线| 色尼玛亚洲综合影院| 国产精品99久久久久久久久| 成人毛片a级毛片在线播放| 丰满人妻一区二区三区视频av| 一区二区三区免费毛片| 欧美另类亚洲清纯唯美| 免费av观看视频| 日日啪夜夜撸| 亚洲欧洲日产国产| 简卡轻食公司| 啦啦啦观看免费观看视频高清| 欧美日韩一区二区视频在线观看视频在线 | 99热精品在线国产| 12—13女人毛片做爰片一| 国产精品日韩av在线免费观看| 少妇人妻一区二区三区视频| 日本一本二区三区精品| 日本-黄色视频高清免费观看| 国产蜜桃级精品一区二区三区| 最近中文字幕高清免费大全6| 亚洲美女搞黄在线观看| 亚洲电影在线观看av| 国产亚洲91精品色在线| 成人午夜高清在线视频| 中出人妻视频一区二区| 在线观看66精品国产| 99在线人妻在线中文字幕| 午夜激情福利司机影院| 亚洲欧美日韩东京热| 国产不卡一卡二| videossex国产| 亚洲在线观看片| 精品人妻偷拍中文字幕| 国产一区亚洲一区在线观看| 亚洲四区av| 亚洲av中文字字幕乱码综合| 亚洲精品日韩在线中文字幕 | 免费黄网站久久成人精品| 国产高清不卡午夜福利| 国产精品人妻久久久影院| 国产精品一区www在线观看| 日韩在线高清观看一区二区三区| 国产真实伦视频高清在线观看| 亚洲av熟女| av黄色大香蕉| 身体一侧抽搐| 综合色av麻豆| 国产单亲对白刺激| 久久久久久久久久久免费av| 国产私拍福利视频在线观看| 久久久久九九精品影院| 大又大粗又爽又黄少妇毛片口| 久久热精品热| 在线观看美女被高潮喷水网站| 午夜精品国产一区二区电影 | 亚洲成人av在线免费| 国产精品国产三级国产av玫瑰| 1024手机看黄色片| 国产精品人妻久久久久久| 亚洲自拍偷在线| 天天躁日日操中文字幕| 老女人水多毛片| 国产女主播在线喷水免费视频网站 | 国产精品久久电影中文字幕| 熟女电影av网| 久久人人爽人人爽人人片va| 国产日本99.免费观看| 黄色配什么色好看| 日韩欧美一区二区三区在线观看| 亚洲精品国产av成人精品| av专区在线播放| 日本五十路高清| 欧美成人a在线观看| 免费人成在线观看视频色| 人人妻人人澡欧美一区二区| 日韩成人av中文字幕在线观看| 国产在视频线在精品| 国产精品久久久久久亚洲av鲁大| 欧美zozozo另类| 久久久精品大字幕| 人人妻人人澡欧美一区二区| 日韩av在线大香蕉| 久久精品国产亚洲av天美| 欧美日韩一区二区视频在线观看视频在线 | 九草在线视频观看| 少妇被粗大猛烈的视频| 一个人观看的视频www高清免费观看| 亚洲久久久久久中文字幕| 中文字幕av在线有码专区| 人人妻人人澡欧美一区二区| 搡老妇女老女人老熟妇| 又爽又黄无遮挡网站| 九草在线视频观看| 亚洲欧洲国产日韩| 男插女下体视频免费在线播放| 中文字幕久久专区| 久久欧美精品欧美久久欧美| 亚洲最大成人av| 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| 欧美精品国产亚洲| 亚洲人成网站高清观看| 亚州av有码| 日本三级黄在线观看| 国产一区二区三区av在线 | 欧美日韩在线观看h| 国产真实乱freesex| 国产亚洲精品久久久久久毛片| 一区二区三区四区激情视频 | 欧美成人一区二区免费高清观看| 国产精品99久久久久久久久| 亚洲最大成人av| 可以在线观看毛片的网站| 亚洲av免费在线观看| 日本在线视频免费播放| 菩萨蛮人人尽说江南好唐韦庄 | 国产淫片久久久久久久久| 亚洲欧美日韩高清在线视频| 国产人妻一区二区三区在| 日本一本二区三区精品| 亚洲中文字幕日韩| 少妇的逼好多水| 久久精品国产亚洲网站| 日韩,欧美,国产一区二区三区 | 日产精品乱码卡一卡2卡三| 69人妻影院| 观看免费一级毛片| 精品人妻偷拍中文字幕| 青青草视频在线视频观看| 成人亚洲精品av一区二区| 色综合色国产| 亚州av有码| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区在线观看99 | 国产成人a区在线观看| 国产伦精品一区二区三区视频9| 亚洲精品456在线播放app| 日本五十路高清| 中文字幕精品亚洲无线码一区| 国产女主播在线喷水免费视频网站 | 久久精品久久久久久噜噜老黄 | 婷婷亚洲欧美| 卡戴珊不雅视频在线播放| 黄色配什么色好看| 男女视频在线观看网站免费| 夫妻性生交免费视频一级片| 日韩欧美精品免费久久| 亚洲电影在线观看av| 亚洲va在线va天堂va国产| .国产精品久久| 国产成人a∨麻豆精品| 色综合色国产| 午夜福利在线观看吧| 亚洲色图av天堂| 综合色丁香网| 黄色配什么色好看| 亚洲高清免费不卡视频| 亚洲人成网站在线播放欧美日韩| 一本久久精品| 国产极品精品免费视频能看的| 国产成人影院久久av| 三级男女做爰猛烈吃奶摸视频| 色播亚洲综合网| 人妻制服诱惑在线中文字幕| 欧美激情在线99| 黄色一级大片看看| 天天躁日日操中文字幕| 国产亚洲精品久久久久久毛片| 一级毛片我不卡| 在线a可以看的网站| 性插视频无遮挡在线免费观看| 看十八女毛片水多多多| 最后的刺客免费高清国语| 欧美区成人在线视频| 18禁在线无遮挡免费观看视频| .国产精品久久| 中国美女看黄片| 在线观看免费视频日本深夜| 春色校园在线视频观看| 色哟哟哟哟哟哟| 精品一区二区三区视频在线| 亚洲精品自拍成人| 成人鲁丝片一二三区免费| 少妇人妻一区二区三区视频| 成年av动漫网址| 国产伦精品一区二区三区视频9| 别揉我奶头 嗯啊视频| 菩萨蛮人人尽说江南好唐韦庄 | 午夜视频国产福利| 偷拍熟女少妇极品色| 尾随美女入室| 女人十人毛片免费观看3o分钟| 少妇高潮的动态图| 一级毛片我不卡| 精品熟女少妇av免费看| 国产真实乱freesex| 男女啪啪激烈高潮av片| 久久精品久久久久久久性| 少妇人妻一区二区三区视频| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 亚洲av成人精品一区久久| 国产成人精品婷婷| 欧美高清成人免费视频www| 听说在线观看完整版免费高清| 中国美白少妇内射xxxbb| 欧美日韩乱码在线| 亚洲经典国产精华液单| 久久九九热精品免费| 亚洲一区二区三区色噜噜| 亚洲欧美中文字幕日韩二区| 免费看a级黄色片| 嘟嘟电影网在线观看| 国产不卡一卡二| 亚洲精品456在线播放app| 大型黄色视频在线免费观看| 亚洲精品久久国产高清桃花| 国产精品乱码一区二三区的特点| 色哟哟·www| 中文在线观看免费www的网站| avwww免费| 女人被狂操c到高潮| 91午夜精品亚洲一区二区三区| 国内精品宾馆在线| 亚洲国产精品合色在线| 国产精品精品国产色婷婷| 国产又黄又爽又无遮挡在线| 精华霜和精华液先用哪个| 午夜福利视频1000在线观看| 网址你懂的国产日韩在线| 69人妻影院| 人人妻人人澡人人爽人人夜夜 | 欧美三级亚洲精品| 欧美另类亚洲清纯唯美| 边亲边吃奶的免费视频| 午夜老司机福利剧场| 亚洲最大成人中文| www日本黄色视频网| 九九久久精品国产亚洲av麻豆| 婷婷色av中文字幕| 亚洲最大成人中文| 久久久精品欧美日韩精品| 成熟少妇高潮喷水视频| 91久久精品电影网| 男人的好看免费观看在线视频| 一个人看的www免费观看视频| 精品久久久久久久久av| 美女高潮的动态| 欧美又色又爽又黄视频| 日韩一区二区三区影片| 男的添女的下面高潮视频| 好男人在线观看高清免费视频| 精品不卡国产一区二区三区| 亚洲av一区综合| 大又大粗又爽又黄少妇毛片口| 99久久精品热视频| 国产日本99.免费观看| 成年女人看的毛片在线观看| 夜夜爽天天搞| 免费一级毛片在线播放高清视频| 哪里可以看免费的av片| 日本撒尿小便嘘嘘汇集6| 天天躁夜夜躁狠狠久久av| 欧美色视频一区免费| 日日啪夜夜撸| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av成人av| 国产午夜精品论理片| 卡戴珊不雅视频在线播放| 欧美三级亚洲精品| 欧美色欧美亚洲另类二区| 神马国产精品三级电影在线观看| 国产精品久久久久久精品电影小说 | 国产探花在线观看一区二区| 亚洲美女视频黄频| 成人二区视频| 自拍偷自拍亚洲精品老妇| 热99re8久久精品国产| 12—13女人毛片做爰片一| 男人和女人高潮做爰伦理| 夜夜看夜夜爽夜夜摸| 午夜免费激情av| 人妻制服诱惑在线中文字幕| 日本av手机在线免费观看| 国产伦在线观看视频一区| 国产一区二区三区在线臀色熟女| 小蜜桃在线观看免费完整版高清| 九色成人免费人妻av| 亚洲在线自拍视频| 爱豆传媒免费全集在线观看| 中文在线观看免费www的网站| 久久久成人免费电影| 国产久久久一区二区三区| 热99在线观看视频| 99久久人妻综合| 丰满的人妻完整版| 日韩一区二区视频免费看| 69人妻影院| 久久精品91蜜桃| 久久人人爽人人片av| 国内揄拍国产精品人妻在线| 一级毛片aaaaaa免费看小| 综合色丁香网| 亚洲第一区二区三区不卡| 韩国av在线不卡| 男女做爰动态图高潮gif福利片| 精品国内亚洲2022精品成人| 一夜夜www| 精品熟女少妇av免费看| 欧美3d第一页| 美女黄网站色视频| 尾随美女入室| 男人的好看免费观看在线视频| 午夜福利在线在线| 精品人妻一区二区三区麻豆| 久久久精品欧美日韩精品| 国产精品一区二区在线观看99 | 亚洲18禁久久av| 国产伦在线观看视频一区| 插阴视频在线观看视频| 久久99精品国语久久久| 老师上课跳d突然被开到最大视频| 欧美性猛交黑人性爽| 老熟妇乱子伦视频在线观看| 人妻少妇偷人精品九色| 精品国产三级普通话版| 天堂av国产一区二区熟女人妻| 丝袜美腿在线中文| 国内少妇人妻偷人精品xxx网站| 人妻久久中文字幕网| 国产国拍精品亚洲av在线观看| 国产成人freesex在线| 一本久久精品| 国产午夜精品久久久久久一区二区三区| 久久精品国产鲁丝片午夜精品| 亚洲无线在线观看| 成人亚洲欧美一区二区av| 少妇熟女欧美另类| 99久久中文字幕三级久久日本| 中国美白少妇内射xxxbb| 高清毛片免费观看视频网站| 村上凉子中文字幕在线| 国产成人a区在线观看| 搡老妇女老女人老熟妇| 1000部很黄的大片| 精品99又大又爽又粗少妇毛片| 国产成人福利小说| 一个人看的www免费观看视频| 一进一出抽搐动态| 九九久久精品国产亚洲av麻豆| 国产成人午夜福利电影在线观看| 最后的刺客免费高清国语| 自拍偷自拍亚洲精品老妇| 真实男女啪啪啪动态图| 搡老妇女老女人老熟妇| 国产高潮美女av| 蜜桃久久精品国产亚洲av| 欧美性猛交黑人性爽| 精品不卡国产一区二区三区| 色视频www国产| 国产一区亚洲一区在线观看| 人妻制服诱惑在线中文字幕| 久99久视频精品免费| 精品国产三级普通话版| 日韩欧美在线乱码| 高清毛片免费观看视频网站| 精品人妻视频免费看| 国产成人精品一,二区 | 身体一侧抽搐| 午夜精品国产一区二区电影 | 国产 一区 欧美 日韩| 乱人视频在线观看| 寂寞人妻少妇视频99o| 午夜精品国产一区二区电影 | 国产色爽女视频免费观看| 日韩成人av中文字幕在线观看| 国产免费一级a男人的天堂| 免费黄网站久久成人精品| 亚洲最大成人av| av.在线天堂| 精品日产1卡2卡| 丰满乱子伦码专区| 在线天堂最新版资源| 中出人妻视频一区二区| 国产一区二区激情短视频| .国产精品久久| 成年免费大片在线观看| 天堂√8在线中文| 人人妻人人澡人人爽人人夜夜 | 一级毛片久久久久久久久女| 三级国产精品欧美在线观看| 亚洲不卡免费看| 国产精品精品国产色婷婷| 国内精品美女久久久久久| 精品99又大又爽又粗少妇毛片| 日韩强制内射视频| 国产午夜福利久久久久久| 中文字幕免费在线视频6| 噜噜噜噜噜久久久久久91| 欧美日韩一区二区视频在线观看视频在线 | 国产精品不卡视频一区二区| 午夜精品在线福利| 国产一区二区在线观看日韩| 人人妻人人看人人澡| 18禁裸乳无遮挡免费网站照片| 久久国产乱子免费精品| 麻豆一二三区av精品| 国产精华一区二区三区| 久久精品久久久久久噜噜老黄 | 黄片无遮挡物在线观看| 一级毛片aaaaaa免费看小| 最后的刺客免费高清国语| 精华霜和精华液先用哪个| 日韩欧美在线乱码| 老司机影院成人| 亚洲欧洲国产日韩| 麻豆成人av视频|