• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fluorination strategy enables greatly improved performance for organic solar cells based on polythiophene derivatives

    2021-10-12 08:49:44ChenyiYangShaoqingZhangJunzhenRenPengqingBiXiaotaoYuanJianhuiHou
    Chinese Chemical Letters 2021年7期

    Chenyi Yang,Shaoqing Zhang,*,Junzhen Ren,Pengqing Bi,Xiaotao Yuan*,Jianhui Hou

    a School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing 100083, China

    b State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

    ABSTRACT The power conversion efficiencies(PCEs)of organic solar cells(OSCs)have reached 18%recently,which have already met the demand of practical application.However,these outstanding results were generally achieved with donor-acceptor(D-A)type copolymer donors,which can hardly fulfill the low-cost largescale production due to their complicated synthesis processes.Therefore, developing polymer donors with simple chemical structures is urgent for realizing low-cost OSCs.Polythiophene(PT)derivatives are currently regarded as promising candidates for such kind of donor materials,which has been illustrated in many works.In this work, two new alkylthio substituted PT derivatives, P301 and P302, were synthesized and tested as donors in the OSCs using Y5 as the acceptor.In comparison,the introduction of fluorine atoms on the backbone of P302 can not only downshift the energy levels, but also greatly improve the phase separation morphologies of the active layers, which is ascribed to the enhanced aggregation effect and the reduced miscibility with the non-fullerene acceptor.As a result,the P302:Y5-based OSC exhibits a significantly improved PCE of 9.65%than that of P301:Y5-based one,indicating the important role of fluorination in the construction of efficient PT derivative donors.

    Keywords:Organic solar cells Polythiophene derivatives Fluorination Aggregation effect Miscibility

    Organic solar cells (OSCs) have drawn broad attention due to their advantages of light weight, flexibility and suitability for industrial fabrication via solution processable methods [1–4].Different from inorganic solar cells,the light absorption and energy levels of the photovoltaic materials in OSCs can be easily tuned by rational molecular design and modification[5–9].Therefore,along with the rapid development of the D-A type copolymer donors and A-D-A type non-fullerene acceptors(NFAs),the power conversion efficiencies (PCEs) of single-junction OSCs increased dramatically to 17%–18% recently [10–14].Although the PCEs have met the demand of practical application of OSCs, the efficient D-A copolymers can hardly fulfill the low-cost large-scale production due to their complicated synthesis and severe purification processes, which seriously hinder the industrialization of OSCs.Therefore,developing photovoltaic materials with simple chemical structures is urgent in the field of OSCs.

    Poly(3-hexylthiophene)(P3HT)is well known as a competitive polymer donor for OSCs because it is readily accessible in large quantities with low cost [15,16].However, P3HT possesses some intrinsic defects such as high-lying highest occupied molecular orbital(HOMO)energy level (-5.0 eV)and narrow light absorption range(<650 nm),furthermore,its high miscibility with NFAs that impedes the charge transport often leads to the poor photovoltaic performance for P3HT:NFA-based OSCs [17].Although some studies demonstrated that high open-circuit voltage (VOC) can be achieved in P3HT:NFA-based OSCs by upshifting the energy level of NFAs [18–20], these devices still suffered from relatively low short-circuit current (JSC) and fill factor (FF), which may be ascribed to the limited optical absorption and unfavorable phase separation morphologies of the P3HT:NFAs blends.Keep investigating well-matched P3HT:NFAs is one of the solutions to realize low-cost OSCs with high performance, meanwhile, developing polythiophene(PT) derivatives should be another feasible plan to solve the cost issue [21–24].

    In 2016, our group reported an alkoxycarbonyl-functionalized PT derivative named PDCBT,whose energy level is lower than that of P3HT.As a result,a PCE of 10.16%was achieved for PDCBT:ITICbased device[22].Then,some encouraging results with PCE over 11% were successively achieved from the OSCs involving PDCBT derivatives[23,24].For example,Geng et al.synthesized PDCBT-Cl by incorporating the Cl atoms to the backbone of PDCBT and achieved a PCE of 12.38%when using ITIC-Th1 as the acceptor[24].From the results above, the subtle modification on these PT materials can greatly improve the device performance without increasing too much material preparation cost, indicating that PT derivatives are promising donor materials for the future application of OSCs.

    The inferior phase separation morphology, mainly caused by the excessive miscibility between donor and acceptor molecules,is responsible for the current disappointing photovoltaic performance of P3HT:NFA-based OSCs, which has been systematically discussed in our previous works [25,26].Therefore, apart from tuning opto-electronic properties, reducing the miscibility with NFAs should also be considered when design PT derivatives.Herein, we designed and synthesized two new PT derivatives,alkylthio substituted polythiophene (P301) and its difluorinated derivative (P302) (Fig.1).Compared with P301, P302 has lower HOMO level due to the strong electron-withdrawing effect of fluorine,which is beneficial for higher VOC.More importantly,the introduction of fluorine atoms on thiophene backbones can,on the one hand,form noncovalent interaction between F–S atoms which can effectively enhance the molecular planarity and aggregation behavior of P302; on the other hand, reduce the miscibility between P302 and the NFA, Y5, in blend film to form more favorable phase separation morphology with better interpenetrating charge transport pathways.As a result, the P302:Y5-based device performed more efficient charge generation and transport properties as well as much better photovoltaic performance than the P301-contained counterpart.This work not only reported two new PT derivatives, but also revealed the important role of fluorination in the construction of industrial-oriented simple polymer donors.

    Fig.1.Chemical structures of donors P301, P302 and acceptor Y5.

    Introducing electron donating groups, especially alkoxy and alkylthio substituents, into the β-position of thiophene unit is a commonly-used method to modulate the band gap of the PTpolymers in the early research stage of OSCs[27–29].Compared to P3HT, Poly[3-alkoxythiophenes] often possess significantly redshifted absorptions and low oxidation potentials, resulting in higher HOMO levels and thus poor VOCin the OSC.However, for poly[3-(alkylthio)thiophenes], they usually show slightly redshifted absorption onsets but low-lying HOMO levels in comparison with P3HT, which is desirable for application as donor materials in OSCs.Furthermore, the pre-aggregation effect in solution state for a certain polymer donor is of great importance for achieving favorable phase separation morphology in NFA-based OSCs[30–32].For PT-polymers which are constructed by rotatable polythiophene as the backbones, stabilizing the conformation by introducing fluorine atom into the β-position of thiophene unit so as to realize strong inter-chain interaction should be a feasible way to form pre-aggregation effect in solution [33–35].Therefore, we designed the two PT-polymers,P301 and P302,by copolymerizing alkylthio-substituted bithiophene (Ts-Ts) with bithiophene (T-T)/fluoro-substituted bithiophene (Tf-Tf), respectively, and further utilized 2-hexyl-decyl to provide desirable solubility for the two polymers (Scheme S1 in Supporting information).The numberaverage molecular weight (Mn) of P301 and P302 are 1.52 K and 1.77 K, with polydispersity index (PDI) of 2.15 and 1.81, respectively.The two polymers show good solubility in the commonlyused solvents for OSCs including chlorobenzene,1,2-dichlorobenzene and chloroform.

    To illustrate the effect of F–S interaction on the backbone conformation, the density functional theory (DFT) calculations at the B3LYP/6-31 G (d, p) level were carried out to investigate the optimal geometries of the repeat unit of P301 and P302.As shown in Fig.2a, both units include two alkylthio-thiophene units and two thiophene (fluorothiophene for P302) units, and present similar optimal geometries.Here we simplified the alkyls to methyl to reduce the cost of calculation.We then calculated the torsional energy between the adjacent conjugated units to study the thermodynamic stability of the backbone conformation of these two polymers.Fig.2b depicts the torsional energy between the two thiophenes(T-T)in P301 and two fluorothiophenes(Tf-Tf)in P302,respectively.As for stable state,the optimal twist angle is 0°for Tf-Tf segment and 10°for T-T segment.When the twist angle changes from 0°to 180°,Tf-Tf and T-T exhibit metastable states at 140°and 145°, respectively.These two segments also have different torsional energy barriers.The barrier from the stable state to the metastable state is 16.86 kJ/mol for T-T and 21.53 kJ/mol for Tf-Tf.While from the metastable state to the stable state,the barriers are 12.77 kJ/mol and 10.54 kJ/mol for T-T and Tf-Tf, respectively.Additionally, the torsional energy barriers for the other two adjacent rotatable segments in P301 and P302, i.e., two alkylthio thiophenes(Ts-Ts)in both,thiophene-alkylthio thiophene(T-Ts)in P301 versus fluorothiophene-alkylthio thiophene (Tf-Ts) in P302,were also estimated.As shown in Fig.S1(Supporting information),the torsional energy profiles of the other two segments in P302 are almost overlapped with the corresponding ones in P301.The results suggest that F-S interaction enables P302 to form more planar and more stable conformation than P301 even though they have similar optimal geometries, which may contribute to the stronger intermolecular interaction and thus stronger aggregation effect for P302.

    Fig.2.(a)The optimal geometries of P301 and P302.(b)Torsional energy profiles for T-T and Tf-Tf segments in P301 and P302,respectively.Temperature-dependent UV–vis spectra of (c) P301 and (d) P302 in chlorobenzene solution.

    Temperature-dependent UV–vis absorption spectroscopy (TDAbs)was applied to investigate the aggregation effects of the two polymers in solution.As displayed in Figs.2c and d, these two polymers exhibit similar absorption spectra with onsets at ca.580 nm at the high temperature.When the temperature decreases from 120°C to 0°C, the main absorption peaks of both polymer solutions have obvious red-shifted: from 500 nm to 545 nm for P301 and from 503 nm to 603 nm for P302.For P301 solution, an absorption hump caused by intermolecular π-π* transition appears at ca.600 nm under 20°C.While for P302 solution, the hump can be initially observed at 100°C and increases gradually to a shoulder peak as the temperature reduces.The TD-Abs results demonstrate that P302 has stronger aggregation effect in solution state than P301,which may be caused by the more planar backbone conformation of P302.We can then reasonably infer that the strong interchain interaction for P302 solution is conducive to achieve more desirable nanoscale phase separation during spin-coating process,thus result in better photo-induced charge generation and transport properties for corresponding NFA-based devices.

    The molecular packing characteristics of these two polymers in solid state were also studied by grazing incident wide-angle X-ray scattering(GIWAXS)measurements.As shown in Fig.S2,P301 film has weak (010) π-π stacking diffraction signals in both in-plane(IP) and out-of-plane(OOP)directions,whereas P302 film prefers face-on orientation with pronounced(010)diffraction peak in OOP direction.The more ordered molecular packing of P302 should be ascribed to its stronger planarity.

    The UV–vis absorption spectra of these two polymers in film state are displayed in Fig.3a.In comparison with P301, P302 possesses a stronger and 10 nm redshifted absorption shoulder at long wavelength direction attributed to interchain π-π*transition,indicating the stronger intermolecular interaction of P302.The two polymers have almost the same absorption onset at ca.680 nm,corresponding to an optical bandgap of 1.82 eV.The HOMO and the lowest unoccupied molecular orbital (LUMO) energy levels of these two polymers were calculated from the onset of oxidation and reduction potentials measured by electrochemical cyclic voltammetry(CV, Fig.3b), respectively.As a result,the calculated EHOMOand ELUMOare -5.02 eV and-3.18 eV for P301,-5.12 eV and-3.29 eV for P302, respectively.The strong electron-withdrawing effect of fluorine atoms can lower the energy levels of P302,which is commonly observed in many NFA design cases as well [36,37].

    Fig.3.(a)UV–vis absorption spectra of donors and acceptor in thin film state.(b)CV curves of P301 and P302.(c)J-V and(d)EQE curves of devices based on P301 and P302.

    The photovoltaic properties of these two polymers were tested in conventional OSC devices with structure of ITO/PEDOT:PSS/active layer/PFN-Br/Al, where Y5 was selected as the acceptor in consideration of the complementary absorption and matched energy levels with donors[38].Fig.3c depicts the current densityvoltage (J–V) curves of the optimized devices under the illumination of AM 1.5 G 100 mW/cm2,and the corresponding photovoltaic parameters are listed in Table 1.The P301-based device exhibits a modest PCE of 2.33%with a VOCof 0.72 V,a JSCof 9.67 mA/cm2and a FF of 0.33,while all of the three parameters are greatly improved in P302-based counterpart with a VOCof 0.84 V,a JSCof 20.24 mA/cm2and a FF of 0.57, affording a much higher PCE of 9.65%.The enhanced VOCis mainly ascribed to the low-lying HOMO energy level of P302, and the higher JSCand FF may be attributed to the superior phase separation morphology of P302:Y5 blend, which will be discussed later.The external quantum efficiency (EQE)curves of these two devices are displayed in Fig.3d.When compared with P301-based device, the P302-based one exhibits much higher EQE in the whole photo response range with a very flat EQE band over 65%from 480 nm to 800 nm due to the perfect complementary absorption with Y5 (Fig. 3a), indicating the efficient photoelectron conversion in P302-based-device.In addition, the JSCvalues calculated from the integration of the EQE curves are 9.45 and 19.80 mA/cm2for P301- and P302-based devices,respectively,which agree well with the JSCvalues obtained from the J-V measurements within 3% mismatch.

    Table 1 Photovoltaic parameters of the P301:Y5- and P302:Y5-based OSCs.

    From the J-V results, we can clearly observe that the photocurrent (Jph) of P301:Y5-based device increases with the increase of reverse bias,suggesting the impeded charge separation or transport processes in this device, which can be intuitively investigated by measuring the dependence of the photocurrent on the effective voltage(Veff).Jphequals JL-JD, where JLand JDare the current densities under illumination and in the dark,respectively.Veffis defined as V0-V,where V0is the voltage when Jphis zero and V is the applied voltage.For OSCs,Jphwill reach saturation(Jsat)if Veffis high enough,and the exciton dissociation probability(Pdiss)can be defined as Jph/Jsat[39].As plotted in Fig.4a,the Pdissvalues are 53% and 84% for P301- and P302-based devices, respectively,indicating the more efficient charge separation and collection in P302-based device, which accounts for the improved PCE.

    The JSCof each optimized OSCs under different illumination intensities(Plight)was measured to study the charge recombination behavior.Generally, the relationship between JSCand Plightcan be expressed as a power-law dependence of JSC∝PlightS, where S should be equal to 1 if all free carriers are swept out and collected at the electrodes without recombination [40].As depicted in Fig.4b, the S value of P301-based device is 0.79 while the P302-based one exhibits a higher value of 0.90, implying that the bimolecular recombination is more suppressed in P302-based device.The carrier mobilities were also evaluated by the space charge limited current(SCLC)method with the device structure of ITO/PEDOT:PSS/active layer/Au for hole mobility (μh) and ITO/ZnO/active layer/Al for electron mobility (μe), respectively.As shown in Figs.4c and d, the P302 neat film presents one order of magnitude higher μh(1.38×10-4cm2V-1s-1) than P301(1.87×10-5cm2V-1s-1), which should be ascribed to the more ordered molecular packing of P302 polymers stemming from the enhanced intermolecular π-π interaction.As for blend films,both μhand μeof the P302-based film (9.75×10-5and 3.39×10-5cm2V-1s-1) are much higher than those of the P301-based one(1.95×10-6and 5.77×10-6cm2V-1s-1), indicating that the charge transport process in P302-based film is more efficient.The less carrier recombination and higher charge mobilities can well explain the higher JSCand FF of P302-based device.

    Fig.4.(a)Jph versus Veff characteristics and(b)dependence of JSC on light intensity for P301-and P302-based devices.(c)The hole and(d)electron mobilities measured by the SCLC method.

    To gain more insight into the reasons for why these two polymers exhibit such different photovoltaic properties in OSC devices,the differential scanning calorimetry(DSC)measurements were carried out to investigate the miscibility between donors and acceptor.However, as shown in Fig.S3 (Supporting information),P301, P302 and Y5 all exhibit amorphous state since neither endothermic nor exothermic peaks can be observed on their DSC curves,making it impossible to judge the miscibility of their blends through DSC method.As the donor polymer mainly interact with the end groups of a small molecular acceptor, a crystalline molecule TT-IC imitating the end group of Y5 was employed to blend with P301 and P302 in DSC measurements,respectively.TTIC was synthesized according to our previous study [26].As displayed in Fig.5a,TT-IC exhibits strong crystallinity with melting and crystallizing temperatures(Tmand Tc)about 209°C and 119°C,respectively.As for blends with weight ratio of 1:0.6 (this ratio is derived from 1:1 used in the corresponding Y5-based OSC devices),no phase transition signals can be observed for P301:TT-IC blend;whereas P302:TT-IC blend shows distinct endothermic and exothermic peaks near the Tmand Tcof TT-IC, respectively, which should belong to the separated TT-IC phase in blend.When the weight ratio changes to 1:1, the endothermic and exothermic peaks of P301:TT-IC blend appear as well, indicating that TT-IC begins to form an individual phase for its content in P301 phase has reached saturation.The DSC results suggest that TT-IC prefers to form individual phase when blended with P302,indicating the less miscibility of the P302:TT-IC blend when compared with the P301:TT-IC-based one.

    Fig.5.(a)DSC curves of P301,P302 and TT-IC neat materials,P301:Y5 and P302:Y5 blends at weight ratios of 1:0.6 and 1:1(Exo up).Inset:the chemical structure of TT-IC.(b)AFM images of P301:TT-IC and P302:TT-IC blend films at weight ratios of 1:0.6 and 1:1 (5×5 μm2).(c) AFM images of P301:Y5 and P302:Y5 blend films (2×2 μm2).

    The miscibility between TT-IC and these two polymers can also be intuitively observed by probing the surface morphologies of their blend films through atomic force microscopy (AFM).As displayed in Fig.S4(Supporting information),P301 and P302 neat films possess relatively smooth surface while TT-IC presents oversize aggregation in the film state.The AFM images of blend films are depicted in Fig.5b.Under the weight ratio of 1:0.6,little TT-IC crystal is precipitated on the surface of the P301:TT-IC film while a large amount of flaky crystal can be observed on the P302:TT-IC-based one.As the composition of TT-IC increases,both films are almost covered with TT-IC crystal.The observations from AFM are highly consistent with the conclusion drawn from the DSC tests, that is, in comparison with P301, P302 exhibits lower miscibility with TT-IC.The same is true when replacing TT-IC with Y5, which can be verified by AFM as well.As shown in Fig.5c,nanoscale aggregation can be distinguished on the surface of P302:Y5-based blend film with root-mean-square surface roughness(Rq)of 1.30 nm, while P301:Y5-based one has a homogeneous surface with Rqof 0.79 nm.Fig.S5 (Supporting information) displays the transmission electron microscopy(TEM)results of these two blend films.In comparison with P301:Y5-based film,P302:Y5-based one exhibits distinct phase separation morphology,which agrees well with the results observed from AFM.Under the synergistic effect of enhanced aggregation effect and weakened miscibility with Y5,blend films based on P302 possesses superior phase separation morphologies, which accounts for the significantly improved JSCand FF for the corresponding devices.

    In conclusion, we synthesized two PT derivatives P301 and its fluorinated derivative P302 as donors for OSCs.Introducing fluorine onto the thiophene conjugated backbone of P302 can not only downshift the energy levels thus output higher VOC,but also, more importantly, greatly improve the phase separation morphologies of active layers, which is a result of the synergistic effect of two factors:first,the F-S noncovalent interaction in P302 endows it a more planar conformation thus stronger aggregation effect; second, fluorination can effectively reduce the miscibility between P302 and end groups of acceptors.As a result, when using Y5 as acceptor, all the photovoltaic parameters of device based on P302 are dramatically improved when compared with the P301-based one, leading to a significant increase in PCE from 2.33% to 9.65%.Our results reveal the importance of fluorination strategy in constructing high-performance PT derivative donors for OSCs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors would like to acknowledge the financial support from the Basic and Applied Basic Research Major Program of Guangdong Province(No.2019B030302007),the National Natural Science Foundation of China (Nos.21835006, 91633301 and 22075017), the Fundamental Research Funds for the Central Universities, China (No.FRF-TP-19-047A2) and Beijing National Laboratory for Molecular Sciences (No.BNLMS-CXXM-201903).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version, at doi:https://doi.org/10.1016/j.cclet.2021.03.006.

    神马国产精品三级电影在线观看| 一级av片app| 欧美一区二区国产精品久久精品| 久久精品国产自在天天线| 成人特级黄色片久久久久久久| 99热这里只有精品一区| 最后的刺客免费高清国语| 久久久精品欧美日韩精品| 91麻豆精品激情在线观看国产| 国产爱豆传媒在线观看| 午夜日韩欧美国产| 国产精品一区二区免费欧美| 欧美成人一区二区免费高清观看| 99热只有精品国产| 美女大奶头视频| 午夜福利高清视频| 亚洲成av人片在线播放无| 亚洲人成网站高清观看| 精品人妻一区二区三区麻豆 | 精品久久国产蜜桃| 日韩精品有码人妻一区| 国产三级在线视频| 插逼视频在线观看| 日韩国内少妇激情av| 亚洲在线观看片| 在线播放国产精品三级| 亚洲av电影不卡..在线观看| 亚洲av电影不卡..在线观看| 直男gayav资源| 久久久国产成人精品二区| 免费在线观看成人毛片| 久久久久国内视频| 热99在线观看视频| 国产午夜福利久久久久久| 日韩在线高清观看一区二区三区| 麻豆av噜噜一区二区三区| 国产精品一区www在线观看| 综合色丁香网| 综合色av麻豆| 亚洲av成人av| 久久99热这里只有精品18| 18禁黄网站禁片免费观看直播| 亚洲电影在线观看av| 亚洲国产日韩欧美精品在线观看| 真实男女啪啪啪动态图| 国产v大片淫在线免费观看| 久久99热6这里只有精品| 国产精品一区www在线观看| 狠狠狠狠99中文字幕| 精品久久久久久久久av| 久久这里只有精品中国| 国产高潮美女av| 亚洲性久久影院| 国内精品久久久久精免费| 亚洲第一电影网av| 别揉我奶头~嗯~啊~动态视频| 免费观看的影片在线观看| 国产精品精品国产色婷婷| 国产 一区精品| 我的老师免费观看完整版| 搡老熟女国产l中国老女人| 又黄又爽又刺激的免费视频.| 99热全是精品| 国产精品国产三级国产av玫瑰| 中文字幕久久专区| 人妻久久中文字幕网| а√天堂www在线а√下载| 亚洲一级一片aⅴ在线观看| 最新中文字幕久久久久| 99国产精品一区二区蜜桃av| 免费电影在线观看免费观看| av中文乱码字幕在线| 日本与韩国留学比较| 91久久精品电影网| 日韩精品中文字幕看吧| 久久久欧美国产精品| 成人欧美大片| 老女人水多毛片| 老熟妇仑乱视频hdxx| 熟妇人妻久久中文字幕3abv| 欧洲精品卡2卡3卡4卡5卡区| 日本一本二区三区精品| 在现免费观看毛片| 一本久久中文字幕| 亚洲精品久久国产高清桃花| 国产片特级美女逼逼视频| 男人的好看免费观看在线视频| 亚洲五月天丁香| 国模一区二区三区四区视频| 最后的刺客免费高清国语| 欧美xxxx黑人xx丫x性爽| 99久久精品国产国产毛片| 校园人妻丝袜中文字幕| 亚洲性夜色夜夜综合| 国产精品精品国产色婷婷| 舔av片在线| 日日撸夜夜添| 色综合亚洲欧美另类图片| 精品一区二区免费观看| 亚洲欧美成人综合另类久久久 | 日韩精品有码人妻一区| 欧美日韩在线观看h| 国产精品福利在线免费观看| 97碰自拍视频| 久久欧美精品欧美久久欧美| 波多野结衣高清无吗| 成人毛片a级毛片在线播放| 人妻夜夜爽99麻豆av| 欧美三级亚洲精品| 国产女主播在线喷水免费视频网站 | 99热只有精品国产| 国内揄拍国产精品人妻在线| 男人舔女人下体高潮全视频| 精品人妻视频免费看| 蜜臀久久99精品久久宅男| 波多野结衣高清无吗| 亚洲精品亚洲一区二区| 人人妻,人人澡人人爽秒播| 久久精品人妻少妇| 一进一出抽搐gif免费好疼| 国产乱人视频| 久久热精品热| 欧美又色又爽又黄视频| 亚洲真实伦在线观看| 搡老岳熟女国产| 久久亚洲精品不卡| 亚洲自偷自拍三级| 国产亚洲91精品色在线| 我要看日韩黄色一级片| a级毛片免费高清观看在线播放| 国产精品女同一区二区软件| 国产精品爽爽va在线观看网站| av在线天堂中文字幕| а√天堂www在线а√下载| а√天堂www在线а√下载| 精品免费久久久久久久清纯| 国产高清有码在线观看视频| 亚洲欧美日韩卡通动漫| 国产成人影院久久av| 91久久精品国产一区二区成人| 性色avwww在线观看| 国产伦在线观看视频一区| 看片在线看免费视频| 最近最新中文字幕大全电影3| 亚洲在线自拍视频| 成人永久免费在线观看视频| 精品久久久久久久久久免费视频| 亚洲图色成人| 尤物成人国产欧美一区二区三区| 国产在线精品亚洲第一网站| 国产成人a区在线观看| 九九爱精品视频在线观看| 久久久久精品国产欧美久久久| 国产色婷婷99| 久久久久久久久中文| 国产伦一二天堂av在线观看| 91在线观看av| 国产精品电影一区二区三区| 亚洲成av人片在线播放无| 国产精品乱码一区二三区的特点| 国产探花极品一区二区| 久久鲁丝午夜福利片| h日本视频在线播放| 亚洲欧美精品自产自拍| 老熟妇仑乱视频hdxx| 婷婷精品国产亚洲av在线| 精品久久久久久久久亚洲| 婷婷六月久久综合丁香| 深夜精品福利| 舔av片在线| 69人妻影院| 亚洲va在线va天堂va国产| 亚洲成人久久爱视频| 日本欧美国产在线视频| 免费看日本二区| 老师上课跳d突然被开到最大视频| 99热精品在线国产| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久久电影| 老熟妇仑乱视频hdxx| 蜜臀久久99精品久久宅男| 久久精品国产清高在天天线| АⅤ资源中文在线天堂| 综合色av麻豆| 欧美日韩乱码在线| 97热精品久久久久久| 一区二区三区免费毛片| 毛片女人毛片| 麻豆成人午夜福利视频| 欧美3d第一页| 如何舔出高潮| 亚洲在线自拍视频| 麻豆一二三区av精品| 又黄又爽又免费观看的视频| 三级国产精品欧美在线观看| 亚洲欧美日韩无卡精品| 男女做爰动态图高潮gif福利片| 成年女人永久免费观看视频| 亚洲国产精品成人久久小说 | 午夜爱爱视频在线播放| 性欧美人与动物交配| 级片在线观看| 免费一级毛片在线播放高清视频| 国产成人一区二区在线| 看十八女毛片水多多多| 亚洲第一区二区三区不卡| 蜜臀久久99精品久久宅男| 国内揄拍国产精品人妻在线| 97超视频在线观看视频| 国产黄色小视频在线观看| 午夜精品在线福利| 成人鲁丝片一二三区免费| 欧美极品一区二区三区四区| 夜夜夜夜夜久久久久| 久久精品国产鲁丝片午夜精品| 国产精品一区二区免费欧美| 联通29元200g的流量卡| 国内精品一区二区在线观看| 在线观看免费视频日本深夜| 国产视频一区二区在线看| 悠悠久久av| 婷婷色综合大香蕉| 久久中文看片网| 两个人视频免费观看高清| 久久精品夜色国产| 精品午夜福利视频在线观看一区| 日韩一区二区视频免费看| 精品久久久久久久人妻蜜臀av| 国产精品乱码一区二三区的特点| 精品不卡国产一区二区三区| 国产熟女欧美一区二区| 在线观看av片永久免费下载| 久久精品国产自在天天线| 99久久精品热视频| 国产一区二区亚洲精品在线观看| 我要搜黄色片| 高清毛片免费观看视频网站| 国产麻豆成人av免费视频| 别揉我奶头 嗯啊视频| 黄色欧美视频在线观看| 日韩精品中文字幕看吧| 一区二区三区高清视频在线| 五月伊人婷婷丁香| 深夜精品福利| 性插视频无遮挡在线免费观看| 久久精品国产亚洲网站| 高清毛片免费看| 国产精品久久久久久亚洲av鲁大| 身体一侧抽搐| 国产男靠女视频免费网站| 国产精品人妻久久久影院| 日韩av在线大香蕉| 最近2019中文字幕mv第一页| 最近最新中文字幕大全电影3| 免费观看在线日韩| 久久久久久久久久黄片| 国产国拍精品亚洲av在线观看| 91在线精品国自产拍蜜月| 国产黄色视频一区二区在线观看 | 国产精品久久久久久久电影| 嫩草影视91久久| 色在线成人网| 日本色播在线视频| 亚洲综合色惰| av免费在线看不卡| 欧美在线一区亚洲| 毛片女人毛片| 日本在线视频免费播放| 伦精品一区二区三区| 人妻夜夜爽99麻豆av| 深夜精品福利| 日本欧美国产在线视频| 校园春色视频在线观看| 搞女人的毛片| 日产精品乱码卡一卡2卡三| 哪里可以看免费的av片| 99久国产av精品国产电影| 久久人妻av系列| 亚洲成人av在线免费| 久久婷婷人人爽人人干人人爱| 最近中文字幕高清免费大全6| 午夜爱爱视频在线播放| 久久久久久久亚洲中文字幕| 白带黄色成豆腐渣| 五月伊人婷婷丁香| 两个人视频免费观看高清| 免费在线观看成人毛片| 中文字幕av在线有码专区| 大型黄色视频在线免费观看| 国产一区二区亚洲精品在线观看| 男人和女人高潮做爰伦理| 日韩欧美国产在线观看| 人人妻人人澡人人爽人人夜夜 | 成人永久免费在线观看视频| 村上凉子中文字幕在线| 色综合站精品国产| 99久久精品国产国产毛片| 国产乱人偷精品视频| 又黄又爽又免费观看的视频| 亚洲乱码一区二区免费版| 黄色视频,在线免费观看| 桃色一区二区三区在线观看| 赤兔流量卡办理| 男人舔奶头视频| 嫩草影院精品99| 欧美3d第一页| 精品少妇黑人巨大在线播放 | 在线免费观看不下载黄p国产| 一本精品99久久精品77| 三级男女做爰猛烈吃奶摸视频| 亚洲一级一片aⅴ在线观看| 男插女下体视频免费在线播放| 丝袜喷水一区| 亚洲第一区二区三区不卡| 哪里可以看免费的av片| 久99久视频精品免费| 免费观看精品视频网站| av在线蜜桃| 久久精品综合一区二区三区| 免费在线观看成人毛片| 日韩在线高清观看一区二区三区| 22中文网久久字幕| 久久久久久久久久黄片| 最后的刺客免费高清国语| 天堂影院成人在线观看| 久久精品91蜜桃| 亚洲熟妇中文字幕五十中出| 中国美女看黄片| 精品久久久久久成人av| 少妇熟女aⅴ在线视频| 亚洲成人中文字幕在线播放| 成人午夜高清在线视频| 又爽又黄无遮挡网站| 国产伦一二天堂av在线观看| 久久欧美精品欧美久久欧美| 九九热线精品视视频播放| 国内精品宾馆在线| 青春草视频在线免费观看| 日本免费一区二区三区高清不卡| 亚洲熟妇中文字幕五十中出| 禁无遮挡网站| 日韩大尺度精品在线看网址| 亚洲激情五月婷婷啪啪| 国产黄a三级三级三级人| 人妻少妇偷人精品九色| 看片在线看免费视频| 大型黄色视频在线免费观看| 亚洲无线在线观看| 韩国av在线不卡| 看黄色毛片网站| 亚洲美女黄片视频| 最近中文字幕高清免费大全6| 99热这里只有精品一区| 黄色日韩在线| 亚洲欧美成人综合另类久久久 | 蜜桃久久精品国产亚洲av| 三级男女做爰猛烈吃奶摸视频| 高清日韩中文字幕在线| 成人无遮挡网站| 淫妇啪啪啪对白视频| 1000部很黄的大片| 国产一区二区激情短视频| 少妇熟女欧美另类| 中文资源天堂在线| 午夜影院日韩av| 男女视频在线观看网站免费| 久久精品国产鲁丝片午夜精品| 直男gayav资源| 亚洲在线观看片| 午夜福利高清视频| 淫秽高清视频在线观看| 美女高潮的动态| 国产成人freesex在线 | 中出人妻视频一区二区| 国产高潮美女av| 欧美激情在线99| 啦啦啦观看免费观看视频高清| 18禁黄网站禁片免费观看直播| 免费观看的影片在线观看| 18+在线观看网站| 色综合亚洲欧美另类图片| 最后的刺客免费高清国语| 免费看日本二区| 熟妇人妻久久中文字幕3abv| 黄片wwwwww| 午夜亚洲福利在线播放| 女人被狂操c到高潮| 99久久精品一区二区三区| 国产成人freesex在线 | 在线观看午夜福利视频| 国产精品久久久久久久久免| 欧美+日韩+精品| 婷婷六月久久综合丁香| 一级毛片我不卡| 久久久久久久亚洲中文字幕| 成人毛片a级毛片在线播放| 淫秽高清视频在线观看| 色视频www国产| 黄色配什么色好看| 亚洲综合色惰| 麻豆成人午夜福利视频| 亚洲成av人片在线播放无| 美女大奶头视频| 久久久久九九精品影院| 成人综合一区亚洲| 中文字幕av成人在线电影| 免费大片18禁| 午夜福利成人在线免费观看| 国产熟女欧美一区二区| 男女边吃奶边做爰视频| 美女高潮的动态| 黄色一级大片看看| 国产成人91sexporn| 日韩高清综合在线| 免费人成在线观看视频色| 亚洲乱码一区二区免费版| 99国产精品一区二区蜜桃av| 女的被弄到高潮叫床怎么办| 国产精品乱码一区二三区的特点| 伦理电影大哥的女人| 婷婷亚洲欧美| 亚洲一区二区三区色噜噜| 91久久精品电影网| 国产高潮美女av| av在线蜜桃| 国产精品久久久久久亚洲av鲁大| 国产精品一区二区三区四区久久| 久久人人爽人人片av| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 日韩 亚洲 欧美在线| 欧美不卡视频在线免费观看| 十八禁网站免费在线| 男人狂女人下面高潮的视频| 国产视频一区二区在线看| 欧美一区二区国产精品久久精品| 晚上一个人看的免费电影| 变态另类成人亚洲欧美熟女| 国产一区二区亚洲精品在线观看| 九九爱精品视频在线观看| 亚洲精品亚洲一区二区| 欧美成人一区二区免费高清观看| 97超碰精品成人国产| 日韩欧美一区二区三区在线观看| 国产中年淑女户外野战色| 国产老妇女一区| 欧美性猛交╳xxx乱大交人| 亚洲人成网站高清观看| 色在线成人网| 亚洲欧美日韩高清专用| 又黄又爽又免费观看的视频| 国产国拍精品亚洲av在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美一区二区精品小视频在线| 亚洲国产精品成人综合色| 日韩av在线大香蕉| 最新在线观看一区二区三区| 网址你懂的国产日韩在线| 哪里可以看免费的av片| 成熟少妇高潮喷水视频| 12—13女人毛片做爰片一| 两个人视频免费观看高清| 午夜精品一区二区三区免费看| 成人三级黄色视频| 亚洲欧美中文字幕日韩二区| 亚洲av二区三区四区| 俄罗斯特黄特色一大片| 男女那种视频在线观看| 97人妻精品一区二区三区麻豆| 亚洲国产精品成人久久小说 | 伦精品一区二区三区| 深夜精品福利| 亚洲人成网站在线播| 久久久久久九九精品二区国产| 毛片一级片免费看久久久久| 亚洲欧美成人精品一区二区| 日日撸夜夜添| a级毛色黄片| 免费观看在线日韩| 激情 狠狠 欧美| 午夜久久久久精精品| 婷婷色综合大香蕉| 亚洲成人久久爱视频| 欧美日韩综合久久久久久| 嫩草影院新地址| 亚洲欧美日韩高清在线视频| 最新中文字幕久久久久| 中文字幕精品亚洲无线码一区| av天堂中文字幕网| 成人漫画全彩无遮挡| 日韩一区二区视频免费看| 国产精品免费一区二区三区在线| 久久久国产成人精品二区| 12—13女人毛片做爰片一| 亚洲五月天丁香| 色5月婷婷丁香| 国产亚洲91精品色在线| 高清毛片免费看| 91av网一区二区| 午夜激情福利司机影院| 中文亚洲av片在线观看爽| 男插女下体视频免费在线播放| a级一级毛片免费在线观看| 最新中文字幕久久久久| 久久久久性生活片| 三级国产精品欧美在线观看| 99国产精品一区二区蜜桃av| 欧美高清成人免费视频www| 日韩三级伦理在线观看| 精品午夜福利视频在线观看一区| 亚洲精品日韩av片在线观看| 中国美女看黄片| 国产精品一区二区三区四区免费观看 | 国产精品久久久久久精品电影| 99热全是精品| 麻豆久久精品国产亚洲av| 嫩草影院新地址| 日日摸夜夜添夜夜添小说| 亚洲综合色惰| 校园春色视频在线观看| 免费看a级黄色片| 最近2019中文字幕mv第一页| 亚洲中文字幕一区二区三区有码在线看| 99国产精品一区二区蜜桃av| 啦啦啦韩国在线观看视频| 高清日韩中文字幕在线| 精品99又大又爽又粗少妇毛片| 亚洲美女黄片视频| 一进一出抽搐动态| 国内精品美女久久久久久| 午夜免费激情av| 白带黄色成豆腐渣| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看| 亚洲熟妇熟女久久| 国产成人a区在线观看| 免费av毛片视频| 精品99又大又爽又粗少妇毛片| 亚洲国产精品sss在线观看| 狂野欧美白嫩少妇大欣赏| 国内精品美女久久久久久| 国产成人影院久久av| 白带黄色成豆腐渣| 亚洲av熟女| 国产探花极品一区二区| 日本免费a在线| 久久亚洲国产成人精品v| or卡值多少钱| 免费av观看视频| 97在线视频观看| 午夜免费男女啪啪视频观看 | 国产在视频线在精品| 久久精品国产自在天天线| 国产v大片淫在线免费观看| 亚洲成人精品中文字幕电影| 麻豆精品久久久久久蜜桃| 亚洲精品在线观看二区| 一进一出抽搐动态| 身体一侧抽搐| 亚洲欧美清纯卡通| 插逼视频在线观看| 国模一区二区三区四区视频| 免费av不卡在线播放| 成人午夜高清在线视频| 亚洲最大成人中文| av视频在线观看入口| 国产伦一二天堂av在线观看| av在线天堂中文字幕| 小蜜桃在线观看免费完整版高清| 一级毛片电影观看 | 国产乱人视频| 亚洲成人久久爱视频| 国产爱豆传媒在线观看| 亚洲最大成人手机在线| 插逼视频在线观看| 国产精华一区二区三区| 中文亚洲av片在线观看爽| 美女cb高潮喷水在线观看| 亚洲欧美精品自产自拍| 久久久久九九精品影院| 成人特级黄色片久久久久久久| 日韩欧美精品免费久久| 亚洲中文字幕日韩| 午夜福利视频1000在线观看| 你懂的网址亚洲精品在线观看 | 村上凉子中文字幕在线| 校园春色视频在线观看| 精品乱码久久久久久99久播| 国产av麻豆久久久久久久| av在线天堂中文字幕| 亚洲最大成人中文| 久久午夜福利片| 永久网站在线| 99热全是精品| 黄片wwwwww| 十八禁国产超污无遮挡网站| 国产黄a三级三级三级人| 在线播放无遮挡| 日日干狠狠操夜夜爽| 国产熟女欧美一区二区| 最近2019中文字幕mv第一页| 深夜a级毛片| 精品人妻一区二区三区麻豆 | 99热全是精品| 日韩精品有码人妻一区| 天堂网av新在线| 舔av片在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲欧美日韩高清专用| 久久人人精品亚洲av| 国产精品永久免费网站| 精品久久久久久久久av| 精品少妇黑人巨大在线播放 | 3wmmmm亚洲av在线观看| 精品久久久久久久久久免费视频|