• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrogen generation of ammonia borane hydrolysis catalyzed by Fe22@Co58 core-shell structure

    2021-10-12 08:49:42JinrongHuoLingFuChenxuZhaoChaozhengHe
    Chinese Chemical Letters 2021年7期

    Jinrong Huo,Ling Fu,Chenxu Zhao,Chaozheng He,*

    a School of Sciences, Xi'an Technological University, Xi'an 710021, China

    b Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China

    c Institute of Environmental and Energy Catalysis, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China

    d College of Resources and Environmental Engineering, Tianshui Normal University, Tianshui 741001, China

    ABSTRACT In this paper,the process of ammonia borane(AB)hydrolysis generate H2 on the transition metal Fe@Co core-shell structure has been obtained.According to the different roles played by H2O molecules and the number of H2O molecules involved,there are three schemes of reaction paths.Route I does not involve the dissociation of H2O molecules and all H atoms come from AB.Moreover, the H2O molecule has no effect on the breaking of the B--H bond or the N--H bond.The reaction absorbs more heat during the formation of the second and third H2 molecules.Route II includes the dissociation of H2O molecules and the cleavage of B--H or N--H bonds, respectively, and the reaction shows a slight exotherm.Route III started from the break of the B--N bond and obtained 3H2 molecules through the participation of different numbers of H2O molecules.After multiple comparative analyses, the optimal hydrolysis reaction path has been obtained, and the reaction process can proceed spontaneously at room temperature.

    Keywords:Fe22@Co58 core-shell Hydrolysis reaction Catalyst Ammonia borane Hydrogen generation

    Ammonia borane (NH3BH3, AB) has recently been considered as a promising candidate for chemical hydrogen storage application due to its low molecular weight and high hydrogen content of 19.6 wt%[1,2].Compared with other hydrides,it is a better way to release H atom in AB to generate H2[3–8].In previous studies,we have obtained a variety of H2preparation processes and highperformance catalytic methods [9–12].Of these, nano-particles(NPs) of noble metals (such as Pt, Ru, Pd) or their alloys are the most active catalysts toward AB hydrolysis[13–16].However,the high cost and limited availability of these metals have hindered the widespread application of noble metal NPs.Thus, the development of alternative efficient and economical catalysts for rapid H2release is of great importance but remains a great challenge [17–19].

    Thus,some low-cost catalysts have been revealed,such as solid acid[20]and transition metals core-shell catalysts[21,22].Among them, transition metals such as Fe, Co, Ni, W [23–28] have been paid more and more attention.Yan et al.[23]reported that in situ prepared Fe NPs possessed better catalytic property for the hydrolysis of ammonia borane,comparing with situ synthesized Fe sample.However, the catalytic activity of Fe NPs for the dehydrogenation of AB is still pretty low.Studies by Qiu et al.[29]show that the catalytic activity of the FeCo binary nanocluster structure is much higher than that of pure Fe NPs.This provides a new idea for the study of binary transition metal nanocluster structure catalysts.In contrast to the monometallic and alloy catalyst, the in situ generated bimetallic core-shell NPs have exhibited synergistic and superior catalytic activity for hydrolytic dehydrogenation of AB.So, considering both the catalytic performance and the catalyst cost,Fe@Co core-shell nanoparticles should be promising.Cui et al.[30] synthesized and reported NiFeNPs as the catalyst of AB hydrolysis reaction.With the addition of Fe,through the synergistic effect of FeNi,the charge transfer is promoted.Samely, the TOF of the AB hydrolysis reaction change from 4.41 min-1to 23.25 min-1at 298 K,and the activation barrier reached 38.24 kJ/mol.Chen et al.[31]first built and studied Pt-WO3dual-active-sites to boost hydrogen generation from AB.With the addition of W,the activation barrier of the AB hydrolysis reaction reached 27.8 kJ/mol.The research of Zhou et al.[32]shows that Ru-Fe nanoalloys supported on N-doped carbon can efficiently catalyze the hydrolysis of AB to H2.By adjusting the atomic ratio of Ru and Fe,the reaction activation barrier reaches 33.7 kJ/mol,and the reaction rate is 424 mol H2mol Ru-1min-1,which is faster in Ru-based catalytic materials.Yang et al.[33]studied Co-based nonnoble metal(Fe,Ni,Cu and Zn)nano-alloy structure to catalyze the hydrolysis of AB to produce H2through experiments.The study found that CoCu and CoFe nano-alloy structure catalysts have better properties.Due to the good catalytic activity and cheaper cost, CoFe nanostructures have become an ideal catalyst material for AB hydrolysis.Those all shows that transition metals Fe and Co are ideal catalyst materials for AB hydrolysis.However, experimental research often focuses on the reaction rate and H2produce ratio of the catalytic reaction, and the research on the catalytic reaction path and reaction mechanism is still lacked, and it is difficult to design a catalyst material structure model from a theoretical perspective.

    In this paper, we have constructed the Fe22@Co58core-shell structure as a catalyst for the hydrolysis reaction of AB.The role of H2O molecules in the hydrolysis process was discussed, and the reaction processes and energy diagram of several different reaction paths were obtained and compared.Our calculations have important reference value for the study of the role of H2O molecules in the Fe22@Co58core-shell structure catalyzed hydrolysis reaction of ammonia borane.

    The surface charge distribution of the core-shell structure and the catalytic reaction path are calculated using the First-principles calculation method based on density functional theory(DFT)[34].And the calculations were performed by using Vienna ab initio simulation package(VASP)[35,36].The projector augmented wave potentials are used for electronion interactions,and the exchangecorrelation effect was treated with the generalized gradient approximation (GGA) proposed by Perdew-Burke-Ernzerhof(PBE) [37,38].The Van der Waals interaction is considered in the calculation process by using DFT+D3 [39,40].A plane wave basis set with cut-off energy 400 eV is used and spin-polarization is taken into account.An ionic and electronic relaxation converged within the error of 1×10-3eV/atom and the convergence precision is set to force less than 0.01 eV/?.Only the gamma k-points grid was used to describe the Brillouin zone for geometric optimization and self-consistent calculations [41].The energy barriers have been calculated by the climbing image nudged elastic band (CINEB)method[42–45].For CI-NEB calculation,cut-off energy set to 300 eV and the break condition for the ionic relaxation loop is-0.1 eV/?.A canonical ensemble is simulated using the algorithm of Nose.We carried out simulations at constant temperatures (NVT conditions) at 300 K for stability test.

    Experimental studies have shown that the interaction between Fe-Co atoms can promote structural stability.Fe@Co core-shell structure, molar ration of Fe to Co is 1:2 as determined by using XPS analysis,is a stable structure[46],and could catalyze sodium borohydride to produce H2at room temperature (303 K).Therefore, we build the structural model as shown in Fig.1.The charge distribution of AB and H2O molecule co-adsorption structure is shown in Table S1(Supporting information).The outer Co atom layer wraps the core of Fe cluster, denoted as Fe22@Co58.

    Fig.1.Fe22@Co58 core-shell structure(Hi,Hii and Hiii represent the H atom bond to the N atom.Hiv, Hv and Hvi represent the H atom bond to the B atom.Hvii and Hviii represents the H atom in H2O).

    The core-shell binding energy(Ecs)is calculated to evaluate the stability of the core-shell structure.The calculation formula is as follows:

    Where,E(Fe22@Co58),E(Fe22),E(Co58)represent the total energy of core-shell structure, core structure, and shell structure, respectively.

    The calculation results show that Ecs=0.94 eV,which is a larger value compared with the stable structures such as Pt55,Ni13@Pt42,Co13@Pt42and Fe13@Pt42[47–50].Furthermore,we performed the first-principles molecular dynamics calculations.The calculation results show that the structure can better maintain the original appearance at 300 K (Fig.S1 in Supporting information).

    The strength of AB adsorption will affect the process of catalytic reaction.Therefore,the AB adsorption energy is calculated by the following formula:

    Where E(Fe22@Co58+AB), E(Fe22@Co58) and E(AB) represent the total energy of adsorbed structure, core structure, and AB molecule, respectively.

    The calculation shows that Ea(AB)=-1.52 eV,indicating that AB has a strong adsorption interaction with the surface of core-shell structure.Similarly, the adsorption energy of the co-adsorption structure of AB and H2O is calculated using the following formula:

    Where, E(Fe22@Co58+AB+H2O), E(Fe22@Co58) and E(AB+H2O) represent the total energy of co-adsorbed structure, core structure,and AB+H2O molecule, respectively.The calculation results show that Ea(AB+H2O) = -1.88 eV, which indicates that H2O will strengthen the adsorption of AB,which is beneficial to the further activation of AB molecules.

    Hold fast! hold fast! the spectre would cry; and as Anne Lisbethmurmured these words to herself, the whole of her dream was suddenly recalled to her memory, when the mother had clung to her, and uttered these words, when, amid the crashing of worlds, her sleeve had been torn, and she had slipped from the grasp of her child, who wanted to hold her up in that terrible hour

    Firstly, we study the AB dehydrogenation reaction with and without the effect of H2O molecules(route I).During the reaction,all hydridic hydrogen of-BH3group and protic hydrogen of-NH3group are dropped and generate 3H2molecules and H2O molecules does not dissociate during the dehydrogenation process (the reaction process is shown in Fig.S2 in Supporting information).

    The energy change of the AB dehydrogenation process (with and without the effect of H2O molecules)is ploted in Fig.2a.From Figs.S3,S4(Supporting information)and Fig.2a,it can be seen that if the H2O molecule does not dissociate,it hardly affect the energy change of the reaction process(1 mol AB generates 3 mol H2,and all H atoms come from AB molecules)and only the B--H and N--H bonds are broken during the whole reaction process.When the first H2molecule generated, the overall reaction process is exothermic and spontaneous.However, when the second H2molecule generated, the reaction becomes an endothermic process, and the heat absorption is about 1.0 eV.The reaction RDS appears between structure 8 and 10 and the barrier value is 1.2 eV.In this way, when the second H2molecule is formed, the system absorbs heat reach to 2.2 eV,which is not conducive to the reaction at room temperature.Meanwhile, from the formation of the second H2molecule to the third H2molecule, the system continues to absorb heat about 1.0 eV.

    Observed Fig.2b,it can be found that through the adsorption of*OH,H atoms(Hiiand Hiv)move from the hollow position of Co-Co-Co to the top position of Fe.Since Fe atoms are located in the core of the structure,the adsorption effect of Fe atoms on H atoms will be much weaker.The chemical bond changes from 1.72 ? (1.71 ?) of H-Co to 1.83 ? (1.90 ?) of H--Fe.In this way, it is beneficial to migrate H atoms and form the H2molecules.It can be found from Fig.2 that the reaction heat absorption of isolated hydrogen atoms to form H2are relatively large, and the presence of *OH in the solution will greatly reduce heat absorption and promote the formation of H2molecules.This effect is accomplished by changing the strength of the H--Co bond and promoting the migration of isolated H atoms.Combined with the purple part of the graph in Fig.2a,it can be found that the addition of*OH is beneficial to the process of isolated H atom combining to generate H2for each part of path, which can significantly reduce the heat absorbed of the reaction.

    Fig.2.Route I:(a)Energychange(ΔE)on the path 1(with the effect of H2O molecule)and path 3(without the effect of H2Omolecule).(b)The effect of*OH on reaction step 6–8.

    For the AB dehydrogenation reaction,involving H2O molecules(route II), after breaking the B--H bond or N--H bond, one H2O molecules dissociate and product*OH and isolated H atoms.In this way, two isolated H atoms combine to form H2(Fig.3).In Fig.3a,the reaction barrier for breaking the B--H bond (step 1–3) is 0.57 eV, and the reaction endothermic is 0.30 eV, while in Fig.3b,the breaking N--H bond (step 1–3) barrier is 0.59 eV and the reaction exothermic is 0.70 eV.This process has the same energy barrier (0.55 eV and 0.57 eV) as the process of breaking the B--H bond and breaking the N--H bond in Fig.2(step 2–4 and step 4–6).Subsequently, the process of dissociation of H2O molecules is an exothermic reaction and the process of forming H2from H atoms is an endothermic reaction.Therefore, the overall reaction of B--H bond cleavage is an endothermic reaction and the overall reaction of N--H bond cleavage is an exothermic reaction.

    Fig.3.Route II: (a) The path 5 (broken B--H bond).(b) Path 6 (broken N--H bond) reaction process and energy changes.

    Now, we consider the case where the B--N bond is broken(route III).As shown in Fig.4a, after the B--N bond is broken,H2O molecules inserted between B and N.At this time, one H atom of the H2O molecule is captured by N.It can be found that both the B--H bond and the N--H bond become longer at this time.Among them,the N--H bond length changes from 1.05 ? to 1.11 ?,and the B--H bond changes from 1.34 ? to 1.58 ?.It shows that both the B--H bond and the N--H bond are weakened.As shown in Figs.4b and c,after the B--N bond is broken,Hviiatoms are captured by N atoms, and the Hvii--O bond can be greatly weakened at this time.

    Seen from Fig.4d,it can be found that electrons are transferred from N atom to H atom, which weakens the N--H bond, so the N--H bond is broken first.The charge transfer between the B--H bonds is weak, so it is not weakened too much.At this time, the O--H bond of the H2O molecule has been extended to about 1.2 ?,indicating that the H2O structure has been destroyed at this time,and the activation of the N--H and B--H bonds has been realized.The complete H2generation process is shown in Fig.5.In the case of B--N bond break, the AB hydrolysis reaction proceeds along multiple reaction paths, as shown in Figs.S5–S8 (Supporting information) and Fig.5.

    Firstly, for the case where the B--N bond is broken, the hydrolysis reaction process of AB shown in Fig.S5a and S6(Supporting information).Depending on the source of the H atom,path 7 and path 8 are included and the reaction equation of the catalytic reaction is:

    The path 7 and path 8 have the same reaction process during the formation of the firstH2molecule.However,the rearesome differences in the subsequent formation of H2.The energy change of the reactionis shown in Fig.S5b.Overall,the path 7 reaction absorbs less heat and is the better reactionpath.As for path 7,it canbe found from Fig.S5b that the formation of the first H2molecule is an exothermic reaction,while the production of the second and third H2molecule greatly increases the heat absorbed by the entire reaction, which indicates that the subsequent reaction process needs to be optimized.

    Fig.4.(a)The bond length,(b)charge density diagram,(c)--COHP and(d)atoms charge change of the process of B--N bond breaking(the atom labels in the figure are from Fig.1).

    Comparing the energychanges of path 9 and path 10(Figs.S7b and S8b),we can find that the entire reaction of path 9 is an exothermic reaction,while path 10 is an endothermic reaction.At the same time,the potential barrier is higher in the intermediate process of path10,so path 9 is an ideal reaction path.During the formation of the first and second H2molecules,the entire reaction is exothermic,and the RDS of the reaction appears between structure 15–17, and the potential barrier is about 0.7 eV.This shows that 2 mol H2can be released easily by following the steps of path 9.Between structure 23–26,during the process ofbreaking the N--H bond,the heat absorbed is large,making the overall reaction an endothermic reaction, which makes the formation of the third H2molecule difficult.

    It can be seen from Fig.S9a(Supporting information)that along the reaction path 9, when two H2molecules generated, the interaction between O-H and B-H is strengthen.At this time, the formation of the third H2molecule could not rely on the spontaneous break of B--H bond and O--H bond.As shown in Fig.5a structure 21–26, we use *OH to replace the H atom and promote the break age of B--H and O--H bond.

    Fig.5.(a) The reaction process and (b) energy change of route III.

    Therefore, combining the above reaction process, the optimal reaction path should be as shown in Fig.5a.The energy change of the reactionshownin Fig.5band the reaction process equation is asfollows:

    Following path 11,we continue to optimize the path generated by the third H2molecule.The reaction process is shown in Fig.5,and the energy change is shown in Fig.5b.For the calculation process of path 11,the first and second H2generation processes are the same as path 9,but are different from the third H2generation process.When the two H atoms fall,when the B--H bond breaks,OH preferentially forms a bond with the B atom,releasing a certain amount of energy, which reduces the heat absorbed by the reaction.This makes the release process of the third H2molecule possible at room temperature,making the entire reaction process an exothermic process.

    The-COHP and PDOS between B atom and*OH,structure 21 in Fig.5a, are shown in Fig.S9b (Supporting information).Through observation, it can be found that there is an obvious interaction between the p-orbital of the B atom and the O atom,ranging from-9 eV to-10 eV.This indicates that the combination of*OH and B atoms will be an exothermic reaction, which is beneficial to the stability of the system and further reduces the energy absorption in the entire reaction process.Through the reaction path of route III,with the help of the dissociation process of AB and H2O, the complete process of hydrolysis of AB to generateH2realized.It shows that in the hydrolysis process,the H atoms not completely derived from AB or H2O, but partly from AB and partly from H2O.

    In summary,we use Fe22@Co58core-shell structure to catalyze the AB hydrolysis reaction and produce H2.Considering whether H2O molecules are dissociated during the hydrolysis process and the number of H2O molecules participating in the hydrolysis reaction,an efficient simulation reaction path can be obtained among of different reactionpaths.Through the three different reactionpaths of routes I,II andIII,1 molAB hydrolysisand generate3 molofH2.Bycomparison,it is found that route III has the smallest reaction barrier and the largest heat release,which is the optimal reaction path.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This study was funded by the Natural Science Foundation of China (Nos.21603109, U1404216) and the Scientific Research Program Funded by Shaanxi Provincial Education Department(No.20JK0676).

    Appendix A.Supplementary data

    Supplementary material related to this article canbefound, in the online version,at doi:https://doi.org/10.1016/j.cclet.2020.12.059.

    午夜精品在线福利| 国产精品久久久久久精品电影小说 | 久久久国产成人精品二区| 日韩一区二区三区影片| 国产淫片久久久久久久久| 国内精品宾馆在线| 国产中年淑女户外野战色| 日日干狠狠操夜夜爽| 日韩强制内射视频| 少妇熟女欧美另类| 国产69精品久久久久777片| 一区二区三区四区激情视频| 丰满人妻一区二区三区视频av| 麻豆久久精品国产亚洲av| 91久久精品电影网| 国产av在哪里看| 欧美bdsm另类| 亚洲综合色惰| 免费av毛片视频| 欧美精品国产亚洲| 在线观看美女被高潮喷水网站| 一个人观看的视频www高清免费观看| 天美传媒精品一区二区| 天美传媒精品一区二区| 我要搜黄色片| 国产精品久久久久久av不卡| 男女视频在线观看网站免费| 在现免费观看毛片| 国产亚洲精品久久久com| 嫩草影院入口| 美女cb高潮喷水在线观看| av视频在线观看入口| a级毛片免费高清观看在线播放| 亚洲熟妇中文字幕五十中出| 黑人高潮一二区| 精品久久国产蜜桃| 国国产精品蜜臀av免费| 亚洲国产精品成人综合色| 国产亚洲av嫩草精品影院| 亚洲人与动物交配视频| 亚洲人成网站在线播| 青春草视频在线免费观看| 欧美日韩国产亚洲二区| av天堂中文字幕网| 日韩av在线免费看完整版不卡| 1000部很黄的大片| 人人妻人人澡欧美一区二区| av免费观看日本| 七月丁香在线播放| 嫩草影院新地址| 中文乱码字字幕精品一区二区三区 | 国产av在哪里看| 久久久精品94久久精品| 亚洲一区高清亚洲精品| 麻豆成人av视频| 2021天堂中文幕一二区在线观| 我的女老师完整版在线观看| 男人和女人高潮做爰伦理| 日本一本二区三区精品| 欧美三级亚洲精品| 成年女人永久免费观看视频| 国产精品伦人一区二区| 三级男女做爰猛烈吃奶摸视频| 自拍偷自拍亚洲精品老妇| 日韩强制内射视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产日韩欧美精品在线观看| 国产精品无大码| 一个人免费在线观看电影| 啦啦啦啦在线视频资源| h日本视频在线播放| 最新中文字幕久久久久| 日本欧美国产在线视频| 99热精品在线国产| 午夜福利在线在线| 国产黄色小视频在线观看| 91精品国产九色| 日韩成人伦理影院| 成人三级黄色视频| 亚洲婷婷狠狠爱综合网| 精品久久久噜噜| 三级国产精品欧美在线观看| 免费大片18禁| 99久久人妻综合| 美女脱内裤让男人舔精品视频| 国产精品国产三级专区第一集| 国产国拍精品亚洲av在线观看| 亚洲欧美清纯卡通| 国产探花在线观看一区二区| 精品人妻偷拍中文字幕| 国产精品三级大全| 国产美女午夜福利| 国产欧美日韩精品一区二区| 亚洲欧美精品专区久久| 99国产精品一区二区蜜桃av| 中文字幕人妻熟人妻熟丝袜美| 国产探花极品一区二区| 少妇丰满av| 岛国在线免费视频观看| 特大巨黑吊av在线直播| 久久久久久久久久久免费av| 亚洲av免费在线观看| 精品一区二区三区视频在线| 伦精品一区二区三区| 亚洲成人中文字幕在线播放| 日韩欧美精品免费久久| 成人欧美大片| 日韩一本色道免费dvd| 国产精品爽爽va在线观看网站| 熟女人妻精品中文字幕| 国产伦理片在线播放av一区| 日本wwww免费看| 插阴视频在线观看视频| 国产精品人妻久久久久久| 亚洲国产精品sss在线观看| 天美传媒精品一区二区| 又黄又爽又刺激的免费视频.| 三级男女做爰猛烈吃奶摸视频| 国产成人91sexporn| 亚洲欧美清纯卡通| 亚洲,欧美,日韩| 久久精品国产自在天天线| 六月丁香七月| 国产亚洲av片在线观看秒播厂 | 身体一侧抽搐| 国产亚洲午夜精品一区二区久久 | 国产片特级美女逼逼视频| 日本爱情动作片www.在线观看| 日韩欧美国产在线观看| 成人鲁丝片一二三区免费| 精品久久久噜噜| 国内精品一区二区在线观看| 亚洲成人av在线免费| 国产三级在线视频| 久久人人爽人人爽人人片va| 亚洲欧美日韩卡通动漫| 尾随美女入室| 精品人妻视频免费看| 久久亚洲精品不卡| 综合色av麻豆| 久久久久九九精品影院| 别揉我奶头 嗯啊视频| 亚洲欧美成人精品一区二区| 日韩,欧美,国产一区二区三区 | 日韩欧美 国产精品| 最新中文字幕久久久久| 深爱激情五月婷婷| 成人无遮挡网站| 99热6这里只有精品| 亚洲人成网站高清观看| 亚洲欧美日韩东京热| 蜜臀久久99精品久久宅男| 亚洲国产欧美人成| av国产久精品久网站免费入址| 日本一二三区视频观看| 久久精品国产鲁丝片午夜精品| 成人午夜精彩视频在线观看| 人妻夜夜爽99麻豆av| 七月丁香在线播放| 日日干狠狠操夜夜爽| 国产老妇伦熟女老妇高清| 国产 一区 欧美 日韩| 在线播放无遮挡| 午夜日本视频在线| 变态另类丝袜制服| 久久久色成人| 午夜久久久久精精品| 日韩国内少妇激情av| 亚洲第一区二区三区不卡| 哪个播放器可以免费观看大片| 变态另类丝袜制服| 午夜福利视频1000在线观看| 高清在线视频一区二区三区 | 不卡视频在线观看欧美| 精品熟女少妇av免费看| 精华霜和精华液先用哪个| 亚洲av电影在线观看一区二区三区 | 欧美成人午夜免费资源| 国产在线男女| 日韩欧美 国产精品| 亚州av有码| 国产精品久久视频播放| 久久精品久久久久久久性| 欧美激情国产日韩精品一区| 国产精品福利在线免费观看| 狂野欧美激情性xxxx在线观看| 乱系列少妇在线播放| 久久草成人影院| 伦精品一区二区三区| 国产三级在线视频| 亚洲欧洲日产国产| 好男人在线观看高清免费视频| 嘟嘟电影网在线观看| 老师上课跳d突然被开到最大视频| 天天一区二区日本电影三级| 自拍偷自拍亚洲精品老妇| 国产av不卡久久| 免费看美女性在线毛片视频| 最近2019中文字幕mv第一页| 日韩强制内射视频| 欧美3d第一页| 亚洲最大成人中文| 国产一区二区三区av在线| 九九热线精品视视频播放| 午夜激情欧美在线| 一级黄色大片毛片| or卡值多少钱| 国产成人精品一,二区| 亚洲欧美日韩无卡精品| 老司机影院成人| 亚洲无线观看免费| av免费在线看不卡| 人妻系列 视频| 免费av不卡在线播放| 91久久精品国产一区二区三区| 啦啦啦啦在线视频资源| 中文字幕av成人在线电影| 日韩av在线大香蕉| 国产色婷婷99| 黄片wwwwww| av女优亚洲男人天堂| 天天一区二区日本电影三级| 久久久精品欧美日韩精品| 内地一区二区视频在线| 亚洲精品,欧美精品| 日韩高清综合在线| 国产成人freesex在线| 亚洲熟妇中文字幕五十中出| 国产乱人偷精品视频| 国产三级中文精品| 亚洲最大成人手机在线| 免费无遮挡裸体视频| 男女边吃奶边做爰视频| 国产又黄又爽又无遮挡在线| 五月伊人婷婷丁香| 国产视频内射| 天天躁夜夜躁狠狠久久av| 亚洲精品影视一区二区三区av| 国产亚洲av片在线观看秒播厂 | 亚洲精品自拍成人| 国语对白做爰xxxⅹ性视频网站| 一级毛片aaaaaa免费看小| 黄片无遮挡物在线观看| 国产高清有码在线观看视频| 日本黄色片子视频| 日韩成人av中文字幕在线观看| 日本五十路高清| 国产不卡一卡二| 长腿黑丝高跟| 性插视频无遮挡在线免费观看| 国产高清三级在线| 精品国产三级普通话版| 欧美3d第一页| 波多野结衣高清无吗| 性色avwww在线观看| 特级一级黄色大片| 91久久精品国产一区二区三区| 高清毛片免费看| 亚洲精品自拍成人| 成人av在线播放网站| 国产精品.久久久| 久久精品综合一区二区三区| 欧美一级a爱片免费观看看| 日本色播在线视频| 成年免费大片在线观看| 日韩一本色道免费dvd| 亚洲va在线va天堂va国产| 久久久久久久久久成人| 淫秽高清视频在线观看| 久久精品熟女亚洲av麻豆精品 | 国产精品福利在线免费观看| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区在线观看99 | 亚洲av熟女| 国产伦精品一区二区三区四那| 国产一区二区在线观看日韩| 啦啦啦啦在线视频资源| 国产精品国产三级专区第一集| 97热精品久久久久久| 亚洲无线观看免费| 久久久精品欧美日韩精品| 亚洲在线自拍视频| 美女国产视频在线观看| 欧美另类亚洲清纯唯美| 日韩欧美精品v在线| 亚洲人与动物交配视频| 欧美精品一区二区大全| 大香蕉97超碰在线| 高清午夜精品一区二区三区| 99久久无色码亚洲精品果冻| www.av在线官网国产| 成人特级av手机在线观看| 国产大屁股一区二区在线视频| 亚洲精品,欧美精品| 成人av在线播放网站| 亚洲中文字幕日韩| 日日干狠狠操夜夜爽| 人人妻人人看人人澡| 国产欧美另类精品又又久久亚洲欧美| 欧美极品一区二区三区四区| 久久国产乱子免费精品| 麻豆乱淫一区二区| 久久精品人妻少妇| 国产淫片久久久久久久久| 一个人看的www免费观看视频| 色综合站精品国产| 久久久久久久久久久丰满| 高清午夜精品一区二区三区| 天天躁日日操中文字幕| av在线亚洲专区| 少妇被粗大猛烈的视频| 久久人人爽人人片av| 麻豆久久精品国产亚洲av| 午夜老司机福利剧场| 国产毛片a区久久久久| 99九九线精品视频在线观看视频| 国产伦精品一区二区三区四那| 菩萨蛮人人尽说江南好唐韦庄 | 日韩欧美 国产精品| 午夜福利在线观看吧| 亚洲最大成人中文| 国产黄色小视频在线观看| 少妇的逼水好多| 亚洲精品色激情综合| 久久久久久久久久久丰满| 少妇被粗大猛烈的视频| 99热这里只有精品一区| 26uuu在线亚洲综合色| 美女高潮的动态| 国产爱豆传媒在线观看| 亚洲四区av| 成人亚洲欧美一区二区av| 国产高清有码在线观看视频| 国产毛片a区久久久久| 校园人妻丝袜中文字幕| 久久久久国产网址| 免费观看性生交大片5| 国产又色又爽无遮挡免| 国产精品爽爽va在线观看网站| 亚洲在线观看片| 色吧在线观看| 中文字幕人妻熟人妻熟丝袜美| 深夜a级毛片| 日韩一区二区三区影片| 亚洲精品久久久久久婷婷小说 | 看十八女毛片水多多多| 成人午夜高清在线视频| 亚洲欧美日韩东京热| 午夜亚洲福利在线播放| 91精品一卡2卡3卡4卡| 国国产精品蜜臀av免费| 大又大粗又爽又黄少妇毛片口| 九九久久精品国产亚洲av麻豆| 国产精品伦人一区二区| 精品久久久久久久久亚洲| 啦啦啦啦在线视频资源| 亚洲成人精品中文字幕电影| 国产精品久久久久久久久免| 精品久久久久久久久亚洲| 亚洲欧美精品综合久久99| 只有这里有精品99| 国产色婷婷99| 中文精品一卡2卡3卡4更新| 真实男女啪啪啪动态图| 国产男人的电影天堂91| 青春草视频在线免费观看| 国产男人的电影天堂91| 免费一级毛片在线播放高清视频| 日韩三级伦理在线观看| 久久久精品大字幕| 亚洲av免费在线观看| 国产 一区 欧美 日韩| 99热网站在线观看| 午夜久久久久精精品| 久久久久久伊人网av| 欧美另类亚洲清纯唯美| 久久婷婷人人爽人人干人人爱| 欧美3d第一页| 国产av在哪里看| 久久久久性生活片| 哪个播放器可以免费观看大片| 免费在线观看成人毛片| 一区二区三区高清视频在线| 非洲黑人性xxxx精品又粗又长| 国产爱豆传媒在线观看| 麻豆精品久久久久久蜜桃| av播播在线观看一区| 女人被狂操c到高潮| av播播在线观看一区| 又爽又黄无遮挡网站| 国产三级中文精品| 成人二区视频| 最新中文字幕久久久久| 乱码一卡2卡4卡精品| 亚州av有码| 亚洲三级黄色毛片| 久久久精品欧美日韩精品| 亚洲无线观看免费| 一夜夜www| 亚洲国产精品合色在线| 亚洲高清免费不卡视频| 亚洲中文字幕日韩| 人妻少妇偷人精品九色| 国产三级中文精品| 免费看av在线观看网站| av免费观看日本| 99热这里只有精品一区| 亚洲一级一片aⅴ在线观看| 久久久久久久亚洲中文字幕| 久久精品综合一区二区三区| 欧美激情国产日韩精品一区| 天天躁日日操中文字幕| 亚洲欧美精品自产自拍| 日韩 亚洲 欧美在线| 神马国产精品三级电影在线观看| 国产乱来视频区| av播播在线观看一区| 99久国产av精品| 在线观看一区二区三区| 国产在视频线在精品| 亚洲美女视频黄频| 久久久a久久爽久久v久久| 国产成人精品婷婷| 久久久久久久久中文| 少妇裸体淫交视频免费看高清| 欧美日本视频| 亚洲av一区综合| 国产精品一区二区三区四区免费观看| 91久久精品国产一区二区成人| 日本熟妇午夜| 好男人视频免费观看在线| 亚洲中文字幕日韩| 狂野欧美白嫩少妇大欣赏| 村上凉子中文字幕在线| 99热这里只有精品一区| 国产一区亚洲一区在线观看| 久久久欧美国产精品| 午夜亚洲福利在线播放| 亚洲av二区三区四区| 男插女下体视频免费在线播放| 高清午夜精品一区二区三区| 国产黄色视频一区二区在线观看 | 亚洲欧美精品综合久久99| 最新中文字幕久久久久| 丝袜喷水一区| 色综合站精品国产| 欧美人与善性xxx| 欧美激情在线99| 夫妻性生交免费视频一级片| 日韩亚洲欧美综合| 午夜福利在线在线| 欧美高清性xxxxhd video| 免费电影在线观看免费观看| 亚洲丝袜综合中文字幕| 日本av手机在线免费观看| 国产精品.久久久| 丰满少妇做爰视频| 91久久精品电影网| 嘟嘟电影网在线观看| 精品久久久久久电影网 | 亚洲精品国产成人久久av| 亚洲,欧美,日韩| 女人十人毛片免费观看3o分钟| 国产精品国产高清国产av| videossex国产| 国产高潮美女av| 国产精品国产三级国产专区5o | 日本一本二区三区精品| 97在线视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 毛片一级片免费看久久久久| 亚洲第一区二区三区不卡| 少妇人妻精品综合一区二区| 日本午夜av视频| 国产又黄又爽又无遮挡在线| АⅤ资源中文在线天堂| 国产淫语在线视频| 国产男人的电影天堂91| 欧美+日韩+精品| 欧美zozozo另类| 特级一级黄色大片| 嫩草影院新地址| 色网站视频免费| 国产真实乱freesex| 精品人妻视频免费看| 中文字幕人妻熟人妻熟丝袜美| 精品午夜福利在线看| 欧美日本视频| 午夜福利在线观看吧| 国产爱豆传媒在线观看| 亚洲国产成人一精品久久久| 国产亚洲91精品色在线| 内射极品少妇av片p| 18禁裸乳无遮挡免费网站照片| 永久网站在线| 啦啦啦啦在线视频资源| 日韩大片免费观看网站 | 99热网站在线观看| 人人妻人人看人人澡| 一二三四中文在线观看免费高清| 全区人妻精品视频| 99热6这里只有精品| 国内揄拍国产精品人妻在线| 美女被艹到高潮喷水动态| 综合色丁香网| 99视频精品全部免费 在线| 国产美女午夜福利| 搡女人真爽免费视频火全软件| 丝袜喷水一区| 一级毛片久久久久久久久女| 亚洲国产高清在线一区二区三| 亚洲成人久久爱视频| eeuss影院久久| 午夜精品一区二区三区免费看| 丰满乱子伦码专区| 亚洲成色77777| 日韩 亚洲 欧美在线| 午夜a级毛片| 亚洲三级黄色毛片| av视频在线观看入口| 永久网站在线| 久热久热在线精品观看| 国产成年人精品一区二区| 亚洲,欧美,日韩| 禁无遮挡网站| 村上凉子中文字幕在线| 亚洲人成网站高清观看| 搡老妇女老女人老熟妇| 我的老师免费观看完整版| 蜜桃亚洲精品一区二区三区| 欧美精品国产亚洲| 久久精品国产亚洲av涩爱| 午夜福利视频1000在线观看| 日韩欧美精品v在线| 亚洲av成人精品一区久久| 免费观看人在逋| 亚洲第一区二区三区不卡| 婷婷色av中文字幕| 国产成年人精品一区二区| 特级一级黄色大片| 国产精品嫩草影院av在线观看| 欧美又色又爽又黄视频| av黄色大香蕉| 中国国产av一级| 全区人妻精品视频| 一级av片app| 亚洲国产欧洲综合997久久,| 亚洲国产精品合色在线| 精品人妻熟女av久视频| 26uuu在线亚洲综合色| 国产精品野战在线观看| 一个人观看的视频www高清免费观看| 寂寞人妻少妇视频99o| 女人被狂操c到高潮| 国产一区亚洲一区在线观看| 少妇熟女aⅴ在线视频| 简卡轻食公司| 亚洲怡红院男人天堂| 亚洲成av人片在线播放无| av国产久精品久网站免费入址| 久久精品人妻少妇| 国产av一区在线观看免费| 成人漫画全彩无遮挡| 亚洲第一区二区三区不卡| 91精品国产九色| 久久精品影院6| 精品酒店卫生间| 三级毛片av免费| 久久久成人免费电影| 日日摸夜夜添夜夜添av毛片| 99久国产av精品国产电影| 精品久久久久久久久亚洲| 国产激情偷乱视频一区二区| 亚洲av一区综合| 免费av不卡在线播放| 老司机影院成人| 内射极品少妇av片p| 91久久精品电影网| 秋霞在线观看毛片| 欧美日韩在线观看h| 一边亲一边摸免费视频| 内射极品少妇av片p| 日韩欧美精品免费久久| 91午夜精品亚洲一区二区三区| 最近2019中文字幕mv第一页| 亚洲成人中文字幕在线播放| 国产精品久久电影中文字幕| 国产成人91sexporn| 成人欧美大片| 亚洲av一区综合| 一个人看的www免费观看视频| 亚洲五月天丁香| 国产精品一区二区性色av| 成年免费大片在线观看| 七月丁香在线播放| 97超碰精品成人国产| 六月丁香七月| 日韩人妻高清精品专区| 91精品国产九色| 黑人高潮一二区| 欧美日韩国产亚洲二区| 欧美成人一区二区免费高清观看| .国产精品久久| 国产精品久久久久久精品电影小说 | 赤兔流量卡办理| 天美传媒精品一区二区| 国产熟女欧美一区二区| 51国产日韩欧美| 色噜噜av男人的天堂激情| 日韩视频在线欧美| 舔av片在线| 一个人看的www免费观看视频| 18禁裸乳无遮挡免费网站照片| 寂寞人妻少妇视频99o| 桃色一区二区三区在线观看|