• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Graded interface engineering of 3D/2D halide perovskite solar cells through ultrathin (PEA)2PbI4 nanosheets

    2021-10-12 08:49:42LijieZhuQipengLuChunhiLiYueWngZhenboDeng
    Chinese Chemical Letters 2021年7期

    Lijie Zhu,Qipeng Lu,Chunhi Li,Yue Wng,Zhenbo Deng,*

    a Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing JiaoTong University, Beijing 100044, China

    b School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China

    c School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

    ABSTRACT 2D halide perovskites have emerged as promising materials because of their stability and passivation effect in perovskite solar cells (PSCs).However, the introduction of bulky organic ammonium cations from 2D halide perovskites would decrease the device performance generally compared to the traditional 3D MAPbI3.Incorporation of ultrathin 2D halide perovskite nanosheets (NSs) with 3D MAPbI3 could address this issue.Herein,we report a rationally designed PSCs with dimensional graded 3D/2D MAPbI3/(PEA)2PbI4 heterojunction,in which 2D(PEA)2PbI4 NSs were synthesized and incorporated between 3D MAPbI3 and hole-transporting layer.Besides the significantly improved stability,a notable increasement in power conversion efficiency(PCE)of 20%was obtained for the 3D/2D perovskite solar cells due to the favourable band alignment among (PEA)2PbI4 NSs and the other components.The graded structure of MAPbI3/(PEA)2PbI4 would upshift the energy level continuously, which enhances the hole extraction efficiency thus reduces the interface charge recombination, leading to the increasements of VOC from 1.04 V to 1.07 V, JSC from 21.81 mA/cm2 to 23.15 mA/cm2 and the fill factor from 67.89% to 74.78%, and therefore an overall PCE of 18.53%.

    Keywords:Interface engineering Perovskite solar cell Two-dimensional perovskite Hole extraction layer Band alignment

    Organic-inorganic hybrid perovskite materials have been considered as one of the most promising materials in fabricating novel optoelectronic devices such as photodetectors, lightemitting diodes, and solar cells [1].They possess several remarkable properties,such as strong absorption coefficient,long carrier diffusion length,high ambipolar charge mobility and strong potential for solution processing [2–5].For perovskite solar cells(PSCs), the power conversion efficiency (PCE) has been improved rapidly in recent years[6,7].And in most of the PSCs with high PCE,the archetypal three-dimensional (3D) crystals, i.e., MAPbI3and FAPbI3,are still the primary choice[8,9].However,these 3D hybrid perovskites always show a poor tolerance to moist environment,due to the inevitable hygroscopicity and volatility of the small organic cations in their structures.Thus,the intrinsic instability of perovskite materials is still a major obstacle limiting their real applications [10,11].

    Recently, it has been reported that two-dimensional (2D)perovskites showed promising long-term stability upon humidity,heat stress, and light intensity compared to 3D perovskites,because of their hydrophobic nature of the relatively large organic cations in 2D crystal structures [12–16].Therefore, it is a feasible strategy to incorporate the 2D perovskites with long-chain alkylammonium halide into the 3D perovskites as active layer thus suppress the moisture-induced degradation [17,18].However,directly inserting the 2D segments would change the pristine 3D structure,which severely impairs the efficient charge transport[19–21].To overcome this problem, 2D perovskite could be employed as the capping layer on 3D crystalline films by using the spin-coating or cation exchange methods,thus forming the 3D/2D heterojunction structure [22–24].In this structure, 2D perovskite layers have strong potential in passivation of surfacedefect and grain-boundary for 3D perovskites[25–27].Meanwhile,it has been demonstrated that the formed 3D/2D interface could improve PCE and prolong device stability [28,29].But in the mentioned methods,it is important to find an optimal concentration of the long-chain organic molecular and proper reaction time for cation exchange.The improper concentration and reaction time may induce excessive or insufficient cation exchange,yielding poor device performance[19,22,30].Thus,it is critical to develop a facile method to reach the optimal balance for long-term durability and the high PCE.Meanwhile, the close contact between 3D and 2D perovskite layers is also important for the improvement of charge transporting within the PSCs.

    To address these mentioned problems, herein, we rationally designed the heterojunction with graded structure in PSCs, in which the 3D perovskite material(i.e.,MAPbI3)and 2D perovskite material(i.e.,(PEA)2PbI4)were used as the active layer and capping layer, respectively.It is noteworthy that the 2D (PEA)2PbI4NSs were synthesized firstly and incorporated between 3D MAPbI3and hole-transporting material (HTM) layers to realize the band alignment thus enhance the PCE.From the characterizations, the introduced (PEA)2PbI4NSs could form 3D/2D heterostructure within the PSCs thus improve the electron blocking and hole injection characteristics at the interface between MAPbI3and HTM.And a significant increasement in PCE from 15.40%to 18.53%could be achieved.Notably, the 2D (PEA)2PbI4NSs with hydrophobic property could enhance the device stability against moisture environment.

    The free-standing(PEA)2PbI4NSs with ultrathin thickness were synthesized by using a facile antisolvent method,which have been reported by us previously(see Experimental details in Supporting information) [31].Fig.1a shows the crystal structure of the synthesized NSs.The-NH2groups from the PEA cations are bonded to the [PbIx]2-xoctahedral thus assembled into the 2D structure.The transmission electron microscopy(TEM)images(Figs.1b and c) show the morphology of the synthesized (PEA)2PbI4NSs.The NSs with rectangle shape possess the lateral size up to several hundred nanometres.The statistical data (Fig.S1b in Supporting information)analyzed from the SEM image in Fig.S1a(Supporting information) shows that the average lateral size of the(PEA)2PbI4NSs is 647.5±185.0 nm.The X-ray diffraction(XRD)result(Fig.1d)shows the periodic diffraction pattern,i.e.,a series of(00 L)(l=2,4,6,8)reflections,which could be index to the interlayer spacing of(PEA)2PbI4.Meanwhile, the selected area electron diffraction(SAED) pattern (inset of Fig.1c) demonstrated the singlecrystalline nature of the(PEA)2PbI4NS.These results are consistent with our previous results [31].

    Fig.1.(a)Schematic illustration of 2D structure of(PEA)2PbI4 NSs.(b)TEM image of the(PEA)2PbI4 NSs.(c)TEM image of the single(PEA)2PbI4 NS.Inset:SAED pattern of a typical (PEA)2PbI4 NS.(d) XRD pattern of the (PEA)2PbI4 NSs.

    To determine the bandgap of the (PEA)2PbI4NSs and MAPbI3,UV–vis absorption spectroscopy was employed,and the results are shown in Fig.S2 (Supporting information).The optical band gap(Eg)could be calculated from the Tauc's formula.The Egof MAPbI3and (PEA)2PbI4NSs are 1.65 and 2.23 eV, respectively.Evidently,replacing MA+with larger cations leads to an increasement of bandgap [32].Meanwhile, ultra-violet photoemission spectra(UPS, Fig.2a) was used to investigate the energy levels of these perovskites (i.e., MAPbI3and 2D (PEA)2PbI4NSs) [33,34].The valence band maximum (VBM) level values could be calculated from Fig.2a.And the conduction band minimum (CBM) level values,calculated by using the equation CB =VB+energy gap,are 4.07 and 3.48 eV for MAPbI3and (PEA)2PbI4NSs, respectively.All above energy levels results are summarized in Table S1(Supporting information).From the aspect of band alignment in PSCs, the synthesized 2D (PEA)2PbI4NSs could be employed as the hole extraction layers in MAPbI3-based PSCs.The structure of fabricated device is ITO/TiO2/MAPbI3/2D (PEA)2PbI4NSs/spiro-OMeTAD/MoO3/Ag (see Methods in the Supporting information).Meanwhile,the schematic energy level diagram of each materials in the 3D/2D devices is provided in Fig.2b.From the analyses of energy levels for different components, the VBM of (PEA)2PbI4NS is located between the VBM of MAPbI3and the highest occupied molecular orbital(HOMO)of Spiro-MeOTAD,which could provide highly effective pathways for hole transport thus reduce the interfacial charge recombination loss.

    The corresponding cross-section scanning electron microscope(SEM) image of PSCs was taken to demonstrate the structure of devices, as shown in the Fig.2c.Different from the cross-section SEM image taken from the complete device,the top-down images were aimed to observe the uniformity and continuity of the(PEA)2PbI4NSs on the 3D MAPbI3layer.Figs.2d and e show the morphology of the 3D MAPbI3and 3D/2D MAPbI3/(PEA)2PbI4films,respectively.

    Apparently, the pristine 3D film was densely packed and composed of MAPbI3crystals with grain-size around 200 nm.After spin-coating the synthesized(PEA)2PbI4NSs,the surface of MAPbI3was fully covered with the (PEA)2PbI4NSs.After fabricated the whole device, the changes in the morphology of (PEA)2PbI4NSs based devices are negligible according to the cross-section SEM image due to the introduction of thicker spiro-OMeTAD layer.Meanwhile,the X-ray diffraction(XRD)measurement was carried out to prove the presence of (PEA)2PbI4NSs on the surface of MAPbI3.Fig.2f shows the composite films contain two sets of peaks, which could be indexed to the crystalline MAPbI3and(PEA)2PbI4NSs.After the deposition of (PEA)2PbI4NSs, the main diffraction peaks associated with the (110), (220) and (222) plane from MAPbI3show no changes.And a new set of diffraction peaks for 2D (PEA)2PbI4NSs associated with the (002) and (004) planes appeared in the patterns of composites film.Moreover, Fig.S3(Supporting information)presents the high resolution XPS spectra for the C, N, Pb and I elements in both MAPbI3and MAPbI3/(PEA)2PbI4composite film, respectively.The XPS spectra of the MAPbI3and MAPbI3/(PEA)2PbI4films show the same peak positions and comparable intensities.The binding energy for Pb 4f5/2and Pb 4f7/2are located at 142.7 eV and 137.9 eV, and the characteristic peaks for I 3d3/2and I 3d5/2are observed at 630.4 eV and 618.9 eV, respectively.

    Fig.2.(a) UPS spectra of MAPbI3 and (PEA)2PbI4 NS films on ITO glass as substrate.(b) Schematic energy level diagram of the 3D/2D MAPbI3/(PEA)2PbI4 PSCs.(c) Crosssectional SEM image of a typical MAPbI3 PSC with incorporation of 2D(PEA)2PbI4 NSs.(d)Top-view SEM image of MAPbI3 film.(e)Top-view SEM image of 2D(PEA)2PbI4 NSs covered on the MAPbI3 film.(f) XRD patterns of the (PEA)2PbI4 NS, MAPbI3 and MAPbI3/(PEA)2PbI4 composite films, respectively.

    To investigate the function of(PEA)2PbI4NSs layers in PSCs,the current density versus voltage(J-V)curves for the best PSC devices under AM 1.5 G irradiation( MW/cm2)are shown in Fig.3a.The MAPbI3device as the reference device produced a PCE of 15.4%,with a VOCof 1.04 V, a JSCof 21.81 mA/cm2, and an FF of 67.89%.Upon the introduction of(PEA)2PbI4NSs at the interface of MAPbI3film and HTL layer (i.e., spiro-OMeTAD), the photovoltaic performance improved significantly.the 3D/2D MAPbI3/(PEA)2PbI4device produced a VOCof 1.07 V,a JSCof 23.15 mA/cm2,and an FF of 74.78%,corresponding to a PCE of 18.53%.The significant improved JSCand FF as well as the slightly increased VOCplay the key roles in the enhancement of PCE.To test the reproducibility,we fabricated twenty samples for each type of PSCs and evaluated their photovoltaic performance.Fig. 3b and Fig.S4 (Supporting information) show the statistics of detailed parameters for these two types of devices.The PCEs of MAPbI3/(PEA)2PbI4devices were distributed in a relatively narrow range, indicated their excellent reproducibility.The average photovoltaic parameters could be found in the Table S2(Supporting information).The average PCEs of MAPbI3and MAPbI3/(PEA)2PbI4PSCs obtained in our work were 14.12%±0.63%and 17.64%±0.47%,respectively.These results are consistent with that of the best parameters of two kinds of devices.And the performance is comparable to the best perovskite solar cells with 3D/perovskite nanomaterial heterostructures (Table S3 in Supporting information).

    Fig.3.(a) J-V characteristics of the best performing devices based on MAPbI3 and MAPbI3/(PEA)2PbI4 perovskite films.(b) Statistics of the PCE distribution for the fabricated MAPbI3 and MAPbI3/(PEA)2PbI4 PSCs (20 devices).(c) Steady-state photocurrent density of MAPbI3 PSCs at the maximum power point (0.79 V).(d)Steady-state photocurrent density of MAPbI3/(PEA)2PbI4 PSCs at the maximum power point (0.87 V).

    Photocurrent hysteresis is another important factor for the PSCs.In Fig.S5 and Table S4(Supporting information),the MAPbI3PSCs exhibited an obvious photocurrent hysteresis with PCEs of 15.40% and 7.58% under a reverse (from forward bias to short circuit) and forward scan (from short circuit to forward bias),respectively.Hence, the hysteresis factor could be quantified by using the following equation:

    Hysterresis factor = (PCEreverse- PCEforward)/PCEreverse

    Compared with the high hysteresis factor from MAPbI3PSCs(i.e., 50.8%), the MAPbI3/(PEA)2PbI4PSCs exhibited a decreased hysteresis factor of 43.7%.The current peak could be observed from the forward bias region for the reverse scans, indicating a typical signal for a diode.These results clearly demonstrated it requires a longer time to reach to the stable operation[32].According to the literature, the deteriorative degrade of hysteresis is strongly dependent on the device structure.At the same scan rate, the MAPbI3device with the planar structure shows a more obvious hysteresis[35].To further study the hysteresis,we also measured the steady-state photocurrent and PCE under the maximum power point over 400 s.According to the results from the Fig.3c and Table S5(Supporting information),the MAPbI3PSCs show a stabile photocurrent of 19.02 mA/cm2when the bias voltage is 0.79 V,and generate a PCE of 15.02% which is consistent with the PCE value calculated from the J-V measurements.In contrast, the PCE of MAPbI3/(PEA)2PbI4PSCs rapidly reached to a stable value of 18.35%at bias voltage of 0.87 V, which is close to the best PCE value of 18.53% (Fig.3d, Table S5).Compared to the MAPbI3PSCs, both photocurrent and PCE of MAPbI3/(PEA)2PbI4PSCs exhibited much faster response, which should be attributed to the less ionic migration, optimal graded interface, and/or synergistic of these two factors.Moreover,the faster stabilizing rate and higher stable PCE also demonstrated the less defects in the 3D/2D MAPbI3/(PEA)2PbI4perovskite film, which is also help for the decrease of charge recombination and alleviation of hysteresis.

    Fig.4.(a)UV–vis absorption spectrum of MAPbI3 and MAPbI3/(PEA)2PbI4 films.(b)Steady-state photoluminescence curves for MAPbI3 and MAPbI3/(PEA)2PbI4 films detected from the glass side in the wavelength range of 670-850 nm.Images of(c)original perovskite film and(d)perovskite film after exposing in an ambient environment at 30°C and with 90%±5% relative humidity for 5 h.Left: MAPbI3 film, right: MAPbI3/(PEA)2PbI4 film.

    We also analysed the absorption and photoluminescence spectra of these two films (i.e., MAPbI3and MAPbI3/(PEA)2PbI4)to get better understanding about the generation and recombination of electron-hole pairs.As shown in Fig.4a, the strong absorption of these films is mainly come from the active layer,i.e.,MAPbI3.Due to the thin thickness of the(PEA)2PbI4,there is a slight enhancement for the absorption of the (PEA)2PbI4below 500 nm.Meanwhile, because of small amount of (PEA)2PbI4NSs on the active layer, theoretically, the light absorption properties of(PEA)2PbI4NSs cannot improve the light harvesting strongly.Therefore, the difference in PCE should be ascribed to the graded interface introduced by the (PEA)2PbI4NSs on MAPbI3.To further investigate the interaction between the MAPbI3and (PEA)2PbI4NSs,photoluminescence measurements were employed.From the Fig.4b,the emission of both samples is centered at 770 nm,which is attribute to exciton recombination and luminescence of MAPbI3.However, compared to the MAPbI3, the decreased photoluminescence intensity indicates a faster electron-hole separation followed by the hole extraction with the introduced (PEA)2PbI4NSs on MAPbI3.According to the proposed mechanism from Fig.2b, the photo generated holes in the MAPbI3film could firstly transfer to the(PEA)2PbI4NSs then to the HTM layer,which is propitious to the improvement of PCE of PSCs.

    Besides the improved photovoltaic efficiency, another major concern is the durability of PSCs for real application, especially under moisture conditions.To directly evaluate their moisture stability, we tested the stability of the MAPbI3film (left image in Fig.4c) and MAPbI3/(PEA)2PbI4composite film (right image in Fig.4c)without any encapsulation under the ambient conditions at 30°C and with the relative humidity of 90%±5%.After 5 h,the pure MAPbI3film degraded dramatically, as shown in left image in Fig.4d.However, there were no obvious colour changes for MAPbI3/(PEA)2PbI4composite film (right image in Fig.4c),indicating the 2D (PEA)2PbI4NSs could provide sufficient protection for MAPbI3films from the high moisture environment.

    We fabricated PSCs based on 3D/2D MAPbI3/(PEA)2PbI4with dimensional graded heterojunction, which exhibited improved PCE and stability under moisture conditions.Comprehensive characterizations were carried out to investigate the effect of 2D(PEA)2PbI4NSs on the performance of PSCs.It is demonstrated that the graded structure of MAPbI3/(PEA)2PbI4could upshift the energy level, thus enhancing the hole extraction efficiency and decreasing the interface charge recombination.With the assistance of (PEA)2PbI4NSs, the improved interfacial characteristics lead to an increasement in PCE with enhanced VOC, JSCand FF.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    The authors acknowledge the financial support of the National Natural Science Foundation of China (No.61775011), and the Supplementary and Supportive Project for Teachers at Beijing Information Science and Technology University (2019-2021) (No.5029011103).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.12.052.

    国产精品一区二区性色av| 午夜精品国产一区二区电影 | 精品人妻视频免费看| 少妇人妻一区二区三区视频| 免费看a级黄色片| 日日摸夜夜添夜夜添av毛片| 欧美成人精品欧美一级黄| 色播亚洲综合网| 亚洲自偷自拍三级| 91aial.com中文字幕在线观看| 亚洲av欧美aⅴ国产| 成人毛片a级毛片在线播放| 精品酒店卫生间| 国产大屁股一区二区在线视频| 少妇 在线观看| 69人妻影院| 中文精品一卡2卡3卡4更新| 黄片无遮挡物在线观看| 在线a可以看的网站| 久久精品熟女亚洲av麻豆精品| 97精品久久久久久久久久精品| 亚洲国产精品成人综合色| 国产成年人精品一区二区| 中文字幕av成人在线电影| 波多野结衣巨乳人妻| 女的被弄到高潮叫床怎么办| 亚洲四区av| 国产精品女同一区二区软件| 亚洲综合色惰| 国产爱豆传媒在线观看| 岛国毛片在线播放| 精品久久久噜噜| 亚洲国产精品成人久久小说| 日本av手机在线免费观看| 国产成年人精品一区二区| 国产午夜精品久久久久久一区二区三区| 久久久久久久久久人人人人人人| 天堂网av新在线| 高清毛片免费看| 久久久久国产精品人妻一区二区| 深爱激情五月婷婷| 国产男人的电影天堂91| 亚洲精品日韩av片在线观看| 观看美女的网站| 日韩av不卡免费在线播放| 国产精品成人在线| av又黄又爽大尺度在线免费看| 亚洲av一区综合| 国产在视频线精品| 青春草国产在线视频| 中文字幕人妻熟人妻熟丝袜美| 国产伦精品一区二区三区四那| 伦精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产一区二区三区综合在线观看 | 最近手机中文字幕大全| 色婷婷久久久亚洲欧美| 成人免费观看视频高清| 国产老妇伦熟女老妇高清| 丝袜美腿在线中文| 丰满乱子伦码专区| 我的女老师完整版在线观看| av免费观看日本| 午夜福利网站1000一区二区三区| 最新中文字幕久久久久| 亚洲性久久影院| 国产伦理片在线播放av一区| 免费人成在线观看视频色| 男女那种视频在线观看| av线在线观看网站| 中文字幕人妻熟人妻熟丝袜美| 极品少妇高潮喷水抽搐| 国产在线一区二区三区精| 久久精品国产亚洲av天美| 久久久久久久久久久丰满| 伊人久久国产一区二区| 日韩国内少妇激情av| 免费看日本二区| 国产欧美日韩一区二区三区在线 | 卡戴珊不雅视频在线播放| 欧美激情在线99| 在线观看免费高清a一片| 18禁在线无遮挡免费观看视频| 国产精品久久久久久av不卡| 天天躁日日操中文字幕| 视频中文字幕在线观看| 一区二区三区四区激情视频| 一区二区三区四区激情视频| 久久韩国三级中文字幕| 天天躁日日操中文字幕| 亚洲欧美清纯卡通| 午夜爱爱视频在线播放| 久久精品国产亚洲网站| 亚洲精品中文字幕在线视频 | 欧美激情久久久久久爽电影| 网址你懂的国产日韩在线| 亚洲成人av在线免费| 永久网站在线| 天天躁夜夜躁狠狠久久av| 日韩人妻高清精品专区| 男女啪啪激烈高潮av片| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩无卡精品| 亚洲天堂av无毛| 搡女人真爽免费视频火全软件| 丰满人妻一区二区三区视频av| 各种免费的搞黄视频| 久久久精品欧美日韩精品| 久久精品久久精品一区二区三区| 在线观看免费高清a一片| 插阴视频在线观看视频| 日本欧美国产在线视频| 色视频www国产| 女的被弄到高潮叫床怎么办| 欧美极品一区二区三区四区| 丝瓜视频免费看黄片| 中文字幕人妻熟人妻熟丝袜美| 中文字幕人妻熟人妻熟丝袜美| 久久久a久久爽久久v久久| 亚洲在线观看片| 99久久精品一区二区三区| 日韩在线高清观看一区二区三区| 久久久欧美国产精品| 国产精品国产av在线观看| 青春草视频在线免费观看| 亚洲精华国产精华液的使用体验| av在线亚洲专区| 亚洲欧美精品自产自拍| 国产真实伦视频高清在线观看| 亚洲美女视频黄频| 七月丁香在线播放| 国产成年人精品一区二区| 久久久精品94久久精品| 嫩草影院新地址| 91精品伊人久久大香线蕉| 国产亚洲av嫩草精品影院| 国产美女午夜福利| 晚上一个人看的免费电影| 日本三级黄在线观看| 国产色爽女视频免费观看| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩东京热| 色网站视频免费| 久久精品人妻少妇| 精品久久久久久久久亚洲| 最近最新中文字幕免费大全7| 国产精品人妻久久久影院| 国产av不卡久久| 成人漫画全彩无遮挡| 毛片一级片免费看久久久久| 亚洲婷婷狠狠爱综合网| 国产免费一区二区三区四区乱码| 国产片特级美女逼逼视频| 青春草国产在线视频| 亚洲成人一二三区av| 成年av动漫网址| 观看免费一级毛片| 午夜免费观看性视频| 人妻一区二区av| 久久久久国产网址| 欧美区成人在线视频| 欧美三级亚洲精品| 国产高潮美女av| 国产乱人视频| 蜜臀久久99精品久久宅男| 免费观看a级毛片全部| 日日撸夜夜添| 亚洲自偷自拍三级| 国产一区二区亚洲精品在线观看| 国产视频首页在线观看| 久久久久久久精品精品| 久久精品久久精品一区二区三区| 色播亚洲综合网| 婷婷色综合www| 久久久久网色| 狂野欧美白嫩少妇大欣赏| 免费看av在线观看网站| 亚洲av不卡在线观看| 别揉我奶头 嗯啊视频| 免费少妇av软件| 国产午夜精品一二区理论片| 97超碰精品成人国产| 麻豆成人av视频| 伊人久久精品亚洲午夜| 免费av不卡在线播放| 高清午夜精品一区二区三区| 亚洲电影在线观看av| 1000部很黄的大片| 22中文网久久字幕| 免费高清在线观看视频在线观看| 亚洲欧美日韩无卡精品| 最新中文字幕久久久久| 亚洲av男天堂| 久久久精品94久久精品| 视频中文字幕在线观看| 亚洲高清免费不卡视频| 插阴视频在线观看视频| 亚洲人与动物交配视频| 99热全是精品| 欧美成人精品欧美一级黄| 在线观看人妻少妇| 国产日韩欧美在线精品| 日韩在线高清观看一区二区三区| 五月开心婷婷网| 亚洲国产高清在线一区二区三| 午夜福利网站1000一区二区三区| 2021天堂中文幕一二区在线观| 99热国产这里只有精品6| 爱豆传媒免费全集在线观看| 97在线视频观看| 观看美女的网站| 六月丁香七月| 亚洲精品国产av成人精品| 久久久久国产精品人妻一区二区| 一级av片app| 新久久久久国产一级毛片| 亚洲丝袜综合中文字幕| 国产伦在线观看视频一区| av福利片在线观看| av网站免费在线观看视频| 欧美日韩在线观看h| 少妇人妻久久综合中文| 欧美少妇被猛烈插入视频| 久久久久久久精品精品| 一级毛片我不卡| 国产黄色视频一区二区在线观看| 中文字幕免费在线视频6| 最近最新中文字幕大全电影3| 看黄色毛片网站| h日本视频在线播放| 亚洲精品日韩在线中文字幕| 丰满乱子伦码专区| 国产精品久久久久久精品电影小说 | 哪个播放器可以免费观看大片| 综合色av麻豆| 国产片特级美女逼逼视频| 亚洲精品乱码久久久v下载方式| 一个人看视频在线观看www免费| 亚洲激情五月婷婷啪啪| 国产精品人妻久久久影院| 久久午夜福利片| 国产久久久一区二区三区| 夜夜爽夜夜爽视频| 白带黄色成豆腐渣| 国产精品秋霞免费鲁丝片| 一二三四中文在线观看免费高清| 亚洲国产精品成人久久小说| 尤物成人国产欧美一区二区三区| 亚洲经典国产精华液单| 日韩中字成人| 精品少妇久久久久久888优播| 热re99久久精品国产66热6| 可以在线观看毛片的网站| 免费观看av网站的网址| 亚洲怡红院男人天堂| 久久99热这里只频精品6学生| 久久久久精品性色| 国产精品伦人一区二区| 国产探花在线观看一区二区| 老司机影院毛片| 亚洲伊人久久精品综合| 听说在线观看完整版免费高清| 久久久久国产精品人妻一区二区| 免费人成在线观看视频色| 欧美三级亚洲精品| 久久久成人免费电影| 日本av手机在线免费观看| 久久久久性生活片| 国产精品麻豆人妻色哟哟久久| 日韩成人伦理影院| 1000部很黄的大片| av又黄又爽大尺度在线免费看| 午夜老司机福利剧场| 久久精品国产鲁丝片午夜精品| 一个人看视频在线观看www免费| 婷婷色综合大香蕉| 免费大片18禁| a级毛色黄片| 亚洲精品一二三| 亚洲精品亚洲一区二区| 在线观看三级黄色| 欧美日韩国产mv在线观看视频 | 毛片女人毛片| 午夜精品国产一区二区电影 | 大话2 男鬼变身卡| 男女下面进入的视频免费午夜| 午夜免费鲁丝| 99热全是精品| 国产又色又爽无遮挡免| 成人二区视频| 免费人成在线观看视频色| 欧美精品一区二区大全| 各种免费的搞黄视频| 禁无遮挡网站| 高清在线视频一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲自拍偷在线| 天美传媒精品一区二区| 99热全是精品| 伦精品一区二区三区| 成人黄色视频免费在线看| 国产精品精品国产色婷婷| 女的被弄到高潮叫床怎么办| 亚洲,欧美,日韩| 蜜臀久久99精品久久宅男| 听说在线观看完整版免费高清| 中文字幕制服av| 国内精品美女久久久久久| 激情五月婷婷亚洲| 欧美xxxx性猛交bbbb| 久久久精品免费免费高清| 国产乱人视频| 精品久久久久久久久av| 国语对白做爰xxxⅹ性视频网站| 如何舔出高潮| .国产精品久久| 日本午夜av视频| 久久人人爽av亚洲精品天堂 | 一个人观看的视频www高清免费观看| 久久精品久久久久久久性| 久热这里只有精品99| 国产永久视频网站| 中文精品一卡2卡3卡4更新| 春色校园在线视频观看| 亚洲精品乱码久久久v下载方式| 欧美日本视频| 亚洲av中文av极速乱| 久久午夜福利片| 最近的中文字幕免费完整| 欧美潮喷喷水| 国产精品国产三级专区第一集| 欧美少妇被猛烈插入视频| 亚洲精品第二区| 亚洲精品一二三| 国产精品无大码| 校园人妻丝袜中文字幕| 国产精品蜜桃在线观看| 内射极品少妇av片p| 国产精品成人在线| 日本av手机在线免费观看| 嘟嘟电影网在线观看| 欧美人与善性xxx| av国产免费在线观看| 色视频在线一区二区三区| 国产精品久久久久久精品古装| 欧美+日韩+精品| 日本午夜av视频| 少妇猛男粗大的猛烈进出视频 | 大话2 男鬼变身卡| 有码 亚洲区| 精品人妻熟女av久视频| 国产午夜精品一二区理论片| 国产真实伦视频高清在线观看| 69av精品久久久久久| 亚洲精品一区蜜桃| 成人亚洲欧美一区二区av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人二区视频| .国产精品久久| 久久久国产一区二区| 国产精品一区www在线观看| 久久精品熟女亚洲av麻豆精品| 日韩一本色道免费dvd| 夫妻午夜视频| 亚洲精品日本国产第一区| 大又大粗又爽又黄少妇毛片口| 国产乱人视频| 一级毛片久久久久久久久女| 国产精品久久久久久精品古装| 麻豆成人av视频| 国产一区二区在线观看日韩| 69av精品久久久久久| 极品教师在线视频| 人人妻人人澡人人爽人人夜夜| 3wmmmm亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 欧美高清性xxxxhd video| 成人亚洲精品一区在线观看 | 欧美老熟妇乱子伦牲交| 3wmmmm亚洲av在线观看| 亚洲国产精品成人综合色| 久热久热在线精品观看| 欧美区成人在线视频| 有码 亚洲区| 91精品国产九色| 免费观看在线日韩| 国产亚洲午夜精品一区二区久久 | 99精国产麻豆久久婷婷| 777米奇影视久久| 国产亚洲一区二区精品| 大陆偷拍与自拍| 亚州av有码| 水蜜桃什么品种好| 99re6热这里在线精品视频| 少妇人妻久久综合中文| 禁无遮挡网站| 国产又色又爽无遮挡免| 日韩精品有码人妻一区| 能在线免费看毛片的网站| 联通29元200g的流量卡| 国产亚洲5aaaaa淫片| 免费观看无遮挡的男女| 又黄又爽又刺激的免费视频.| 久久精品人妻少妇| 免费大片18禁| 中文字幕亚洲精品专区| 永久网站在线| 97在线视频观看| 又爽又黄无遮挡网站| 99精国产麻豆久久婷婷| 又粗又硬又长又爽又黄的视频| 美女高潮的动态| 一个人看的www免费观看视频| 欧美精品国产亚洲| 欧美xxxx性猛交bbbb| 免费大片黄手机在线观看| 中国三级夫妇交换| 亚洲欧美一区二区三区国产| 天天一区二区日本电影三级| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 婷婷色av中文字幕| 九草在线视频观看| 国产国拍精品亚洲av在线观看| 免费看av在线观看网站| 大陆偷拍与自拍| 噜噜噜噜噜久久久久久91| 免费黄网站久久成人精品| 三级国产精品欧美在线观看| 国产综合精华液| 极品少妇高潮喷水抽搐| 免费高清在线观看视频在线观看| 一区二区三区乱码不卡18| 亚洲无线观看免费| 亚洲av免费在线观看| 99热全是精品| 国产高清不卡午夜福利| 久久久精品94久久精品| 亚洲美女搞黄在线观看| 国产精品国产三级专区第一集| 欧美变态另类bdsm刘玥| 男女啪啪激烈高潮av片| 亚洲aⅴ乱码一区二区在线播放| 亚洲在线观看片| 少妇被粗大猛烈的视频| 麻豆成人午夜福利视频| www.av在线官网国产| 麻豆国产97在线/欧美| 国产亚洲一区二区精品| 日本免费在线观看一区| 激情 狠狠 欧美| 最近最新中文字幕大全电影3| 黄片无遮挡物在线观看| 亚洲欧美清纯卡通| 久久久久久久久久成人| 国产伦精品一区二区三区视频9| 久久人人爽人人片av| 全区人妻精品视频| 久久99热这里只频精品6学生| 国产日韩欧美在线精品| 97人妻精品一区二区三区麻豆| 中文乱码字字幕精品一区二区三区| 欧美+日韩+精品| 啦啦啦在线观看免费高清www| 国产精品久久久久久精品古装| 人妻夜夜爽99麻豆av| 国产免费视频播放在线视频| 久久久欧美国产精品| 一本色道久久久久久精品综合| 99热这里只有是精品在线观看| 白带黄色成豆腐渣| 美女xxoo啪啪120秒动态图| 欧美一级a爱片免费观看看| 亚洲欧美精品专区久久| 男人爽女人下面视频在线观看| 精品国产露脸久久av麻豆| 天美传媒精品一区二区| 国产欧美日韩精品一区二区| 26uuu在线亚洲综合色| 国产美女午夜福利| 日本免费在线观看一区| 久久久久久久精品精品| 波多野结衣巨乳人妻| 中国三级夫妇交换| 亚洲av在线观看美女高潮| 久久精品国产自在天天线| 免费黄色在线免费观看| 夜夜看夜夜爽夜夜摸| 女人十人毛片免费观看3o分钟| 少妇的逼水好多| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品自拍成人| 大片免费播放器 马上看| 白带黄色成豆腐渣| 舔av片在线| 小蜜桃在线观看免费完整版高清| 亚洲欧洲国产日韩| 久久精品国产亚洲网站| 欧美日韩综合久久久久久| 一级二级三级毛片免费看| 小蜜桃在线观看免费完整版高清| 免费av毛片视频| 中文字幕亚洲精品专区| 男人舔奶头视频| 99久国产av精品国产电影| 网址你懂的国产日韩在线| 欧美性感艳星| 日韩一区二区视频免费看| 成人国产av品久久久| 一级毛片我不卡| 在线播放无遮挡| 国产av不卡久久| 最近最新中文字幕大全电影3| 久久国产乱子免费精品| 乱系列少妇在线播放| av天堂中文字幕网| 在线观看美女被高潮喷水网站| 国产一区有黄有色的免费视频| 欧美日韩在线观看h| 99热6这里只有精品| 1000部很黄的大片| 久久国内精品自在自线图片| 一个人看的www免费观看视频| 亚洲精品久久午夜乱码| 欧美变态另类bdsm刘玥| 国产成人福利小说| 亚洲在线观看片| 免费电影在线观看免费观看| 蜜桃久久精品国产亚洲av| 91aial.com中文字幕在线观看| 黄色视频在线播放观看不卡| 国产精品一区二区在线观看99| 久久6这里有精品| 91狼人影院| 国产一区二区亚洲精品在线观看| 免费黄频网站在线观看国产| 搡女人真爽免费视频火全软件| 女的被弄到高潮叫床怎么办| 久久99精品国语久久久| 水蜜桃什么品种好| 交换朋友夫妻互换小说| 亚洲av免费高清在线观看| 在线天堂最新版资源| 国模一区二区三区四区视频| 一个人看的www免费观看视频| 午夜免费鲁丝| 国产成人午夜福利电影在线观看| 夫妻午夜视频| 青春草视频在线免费观看| 日日撸夜夜添| 高清毛片免费看| 26uuu在线亚洲综合色| 香蕉精品网在线| 亚洲欧美日韩无卡精品| 欧美丝袜亚洲另类| 交换朋友夫妻互换小说| 2021少妇久久久久久久久久久| 大陆偷拍与自拍| 王馨瑶露胸无遮挡在线观看| 国产黄片美女视频| 久久97久久精品| 不卡视频在线观看欧美| 观看美女的网站| 内射极品少妇av片p| 日韩成人av中文字幕在线观看| 麻豆成人av视频| 日本av手机在线免费观看| 亚洲无线观看免费| 2018国产大陆天天弄谢| 黄色欧美视频在线观看| 亚洲内射少妇av| 精品视频人人做人人爽| 男女边吃奶边做爰视频| 美女被艹到高潮喷水动态| xxx大片免费视频| 亚洲av成人精品一区久久| 我的女老师完整版在线观看| 尤物成人国产欧美一区二区三区| 少妇人妻久久综合中文| 久久久a久久爽久久v久久| 在线观看三级黄色| 国产欧美日韩精品一区二区| 九色成人免费人妻av| 久久精品熟女亚洲av麻豆精品| 久久久久久久午夜电影| 国产精品人妻久久久久久| 欧美性感艳星| 国产一区二区三区综合在线观看 | 久久久久久久久久成人| 久久人人爽av亚洲精品天堂 | 国产成人午夜福利电影在线观看| 精品一区在线观看国产| 在线播放无遮挡| 色视频在线一区二区三区| 黄色配什么色好看| 亚洲精品影视一区二区三区av| 三级男女做爰猛烈吃奶摸视频| 午夜老司机福利剧场| 亚洲电影在线观看av| 五月天丁香电影| 久久热精品热| 国产视频内射| 成人黄色视频免费在线看| 极品教师在线视频| 搡女人真爽免费视频火全软件| 亚洲天堂国产精品一区在线| 黑人高潮一二区| 人妻 亚洲 视频| 欧美激情在线99| 两个人的视频大全免费| 欧美3d第一页| 日日撸夜夜添| 免费看不卡的av| 欧美zozozo另类| 成人亚洲精品一区在线观看 | 女人十人毛片免费观看3o分钟|