• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tailoring the polarity of polymer shell on BaTiO3 nanoparticle surface for improved energy storage performance of dielectric polymer nanocomposites

    2021-10-12 08:49:36HongfeiLiLiweiWangYingkeZhuPingkaiJiangXingyiHuang
    Chinese Chemical Letters 2021年7期

    Hongfei Li,Liwei Wang,Yingke Zhu,Pingkai Jiang,Xingyi Huang*

    Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, The State Key Laboratory of Metal Matrix Composites, Department of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

    ABSTRACT Nanocomposites comprising flexible polymers and high dielectric constant inorganic nanoparticles are considered to be one of the promising candidates for electrostatic capacitor dielectrics.However, the effect of interfacial property on electrical energy storage of dielectric polymer nanocomposites is still not clear.Herein, the role of the polarity of the interfacial region is investigated.For this purpose, three polymers with different polarity, polymethyl methacrylate (PMMA), polyglycidyl methacrylate, and polymethylsulfonyl ethyl methacrylate(PMSEMA)are attached onto BaTiO3(BT)nanoparticle surface via surface-initiated reversible addition-fragmentation chain transfer polymerization.It is found that the polarity of shell polymers shows an apparent effect on the dielectric and energy storage of dielectric polymer nanocomposites.For example, PMSEMA@BT (shell polymer possesses the highest polarity)increases dielectric loss and decreases the breakdown strength of the nanocomposites,leading to lower energy storage capability.However,PMMA@BT(shell polymer possesses the lowest polarity)can induce higher breakdown strength of the nanocomposites.As a result,the PMMA@BT nanocomposite exhibits the highest electrical energy storage capability among the three nanocomposites.This research provides new insight into the design of core-shell nanofillers for dielectric energy storage applications.

    Keywords:Core-shell Dielectric constant Polarity Space charge Energy density

    Dielectric energy storage materials play an important role in advanced electronics and electric power systems, such as organic field-effect transistors,pulsed power systems,and power grids[1–6].The electrical energy density stored in linear dielectrics can be expressed as Ue=1/2εε0Eb2,where ε is the dielectric constant,ε0is the vacuum permittivity, and Ebis the breakdown strength [7,8].One can see that dielectric constant and electric breakdown strength are two important parameters in determining the dielectric energy storage materials and the breakdown strength is more important because of the square relationship.

    Traditional ceramic dielectrics have high dielectric constant,but suffer from low breakdown strength and high dielectric loss.Polymer dielectrics have high breakdown strength and excellent processability, but their low dielectric constant restricts the increase of energy density, thus limiting their applications in energy storage devices [9,10].Introducing nanoparticles into dielectric polymers is a promising strategy to acquire high energy density, which utilizes the high polarization capability of the ceramic nanoparticles and high breakdown strength of polymers,drawing worldwide attention in recent years [11–13].

    The interfacial regions between nanoparticles and polymer matrix play a vital role in determining the energy storage capability of dielectric polymer nanocomposites.Up to now,engineering nanoparticle surface and tailoring nanoparticle morphology are two effective strategies to improve the energy storage performance of dielectric nanocomposites [14,15].In the case of nanoparticle surface engineering, both inorganic and organic ligands/shells are employed to tailor the nanoparticles via physical or chemical methods[16–20].Pan et al.use a hybrid onedimensional Ag@BaTiO3@polydopamine@Ag nanofiber as fillers for dielectric polymer nanocomposites [21].The corresponding composite film presents a discharged energy density of 17.2 J/cm3,which is much higher in comparison with the pristine polymer poly(vinylideneflyoride-co-hexafluroro propylene) (P(VDF-HFP)) (7.7 J/cm3).Compared with inorganic shell, organic shell covered nanoparticles provide several advantages: (1) the polymer shell can suppress aggregation of high-surface-energy nanoparticles via the strong interaction between nanoparticles and matrix, (2)polymer chains are robustly bonded on the nanoparticle surfaces,reducing interfacial defects, (3) highly electrically insulating polymer shell can impede the formation of charge migration pathway, suppressing the leakage current.For instance, fluoropolymer [22], ethylene propylene diene monomer [23], phthalocyanine [24], and poly(vinyl pyrrolidone) (PVP) [25] have been used as shells to fabricate core-shell structured polymer@nanofillers.Huang et al.describe the preparation of core-shell polymer@BT nanoparticles via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, poly(methyl acrylate)with different pendants are introduced onto the surface of BT nanoparticles[26].The results suggest that the coreshell polymer@BT nanoparticles with high electrical resistivity polymer shells are desirable for dielectric polymer nanocomposites.However, the role of the polarity of shell polymers in the properties of nanocomposite is still unclear.

    In this work, three core-shell structured BT nanoparticles covered by polymethyl methacrylate (PMMA), polyglycidyl methacrylate (PGMA) and polymethylsulfonyl ethyl methacrylate(PMSEMA)are synthesized via surface-initiated RAFT polymerization,namely PMMA@BT,PGMA@BT and PMSEMA@BT,respectively.Then, these three core-shell nanoparticles are used to prepare nanocomposites with P(VDF-HFP)matrix.The polarity of the three polymers follows the order of PMSEMA (4.3D) > PGMA (2.1D) >PMMA (1.7D) and this work focuses on the role of polymer shell polarity on the dielectric and energy storage performance of the nanocomposites.The preparation procedure of the core-shell nanoparticles mainly includes the synthesis of DDMAT modified BT nanoparticles (BT-DDMAT) and the in- situ initiated RAFT polymerization at the nanoparticle surface, and the details are shown in Fig.1a.information).Compared with the pristine BT nanoparticles,the FTIR spectrum of BT-DDMAT shows new stretching absorption peaks at 1032 cm-1(--Si--O--), 1134 cm-1(--Si--C--), 1448 cm-1(--N--H--), 1626 cm-1(--C=O--), and 2800–3000 cm-1(--CH2, --CH3), indicating that the DDMAT is successfully anchored onto the surface of BT nanoparticles.After RAFT polymerization with different methacrylate-derivative monomers,the FT-IR spectra of the nanoparticles show a stretching absorption peak of ester carbonyl at 1730 cm-1,revealing that polymer shells are successfully formed on the surface of BT-DDMAT.More evidences are verified via1H NMR spectra, as shown in Figs.S2–S4 (Supporting information).

    Fig.1.(a)The preparation process of three core-shell structured BT nanoparticles.TEM images of (b) PMMA@BT, (c) PGMA@BT and (d) PMSEMA@BT nanoparticles.

    TGA measurements are carried out to confirm the successful preparation of the three core-shell nanoparticles, as shown in Fig.S1b(Supporting information).The pristine BT and BT-DDMAT have a weight loss of 2.0% and 3.8%, respectively, from room temperature to 800°C.By contrast, the core-shell nanoparticles exhibit a much higher loss of weight.For example,the weight loss of PGMA@BT is about 8.0%, also suggesting the successful introduction of polymer shells on the surface of BT-DDMAT.

    The microstructure of the core-shell nanoparticles is illustrated by TEM analysis,as shown in Fig.S1c(Supporting information)and Figs.1b–d.Fig.S1c shows the typical TEM image of a single pristine BT nanoparticle.One can see that it is a typical spherical filler and the surface is free of other materials.However,the TEM images of the three polymer functionalized BT nanoparticles show a coreshell structure with a shell thickness of about 4–5 nm(Figs.1b–d).This result further confirms that the polymer shells are successfully introduced onto the surface of the BT nanoparticles by RAFT polymerization [27].

    Herein, the polymer shell acts as a binder between inorganic fillers and polymer matrix[28],which may alter the crystallization and melting behavior of the P(VDF-HFP) matrix [29].Fig.S5(Supporting information) shows the DSC curves of the cooling processes of the pristine P(VDF-HFP)and the nanocomposites and Table S1 provides the detailed data derived from the DSC curves.One can see that the crystallization temperatures(Tc)are increased by about 2–3°C from 122°C of the pure polymer to 124–125°C of the nanocomposites.On the other hand, the nanocomposites exhibit similar melting temperature(Tm)and crystallinity(χc)with the pristine P(VDF-HFP).These data suggest that the core-shell BT nanoparticles act as nucleating agents but also alter the lamella thickness and the crystalline degree of P(VDF-HFP) in the nanocomposites.

    Nanoparticles may alter the polymorphs of PVDF-based polymers [30].Fig.S6 (Supporting information) displays the XRD curves of the pure P(VDF-HFP)and the nanocomposite films.One can see that the XRD patterns of the pure P(VDF-HFP) show diffraction peaks at 17.80°, 18.30°, 19.90°and 26.56°, which correspond to the(010),(020),(110),and(021)reflection of α phase[31].However, the diffraction peak at 26.56°almost cannot be recognized in the XRD patterns of the nanocomposites, and the diffraction peak at 19.90°shifts to 20.26°,which corresponds to the diffractions at the (110) and (200) planes of β phase P(VDF-HFP).This result demonstrates that the core-shell BT nanoparticles induce the formation of β phase.

    Fig. 2 and Fig.S7 (Supporting information) display the frequency dependent dielectric constant and dielectric loss tangent of the nanocomposites at room temperature.One can see from Figs.S7a–c that the nanocomposites show enhanced dielectric constants when compared with the pristine polymer

    Fig.2.(a)Frequency dependence of dielectric constant and dielectric loss of P(VDFHFP)with 2.0 vol%modified BT nanoparticles.(b)Dielectric constant and dielectric loss of nanocomposites with different volume fractions of modified nanoparticles at 103 Hz.

    FT-IR spectra are performed to demonstrate the synthesis of functionalized BT nanoparticles, as shown in Fig.S1a (Supporting(about 11 at 100 Hz).For example, the pristine P(VDF-HFP) at 100 Hz,the dielectric constant of the nanocomposites increases to about 15 at 8.0 vol%.However, the dielectric enhancement is not significant because of the low nanoparticle loading, and the nanocomposites almost exhibit comparable dielectric constant at the loading level.This result suggests that the shell polarity shows a marginal effect on the dielectric constant in nanocomposites with low loading.

    Fig. 2b and Figs.S7d–f display the dielectric loss tangent of the nanocomposites.At low frequency range (Fig.2b), the dielectric loss of the three nanocomposites first decrease and then increase with the loading of the core-shell BT nanoparticles.Overall,PMMA@BT nanocomposites show lower dielectric loss while dielectric loss of the other two nanocomposites are higher but comparable.Interestingly, at high frequency range, PMMA@BT nanocomposites show a higher dielectric loss in comparison with the pristine P(VDF-HFP) while the other two nanocomposites show lower dielectric loss when compared with the pristine P(VDF-HFP).This phenomenon should be ascribed to different dielectric loss mechanisms.The loss at high frequency(above 105Hz)mainly originate from the relaxation process of polymer chain segments in the amorphous region [32].The PGMA@BT and PMSEMA@BT with higher shell polarity may have a stronger interaction with the macromolecular chains of the matrix, which restrains the movement of P(VDF-HFP) segments,resulting in the decreased dielectric loss.At low frequency range, the loss should mainly originate from the leakage current.In this case, the aforementioned dielectric loss results suggest that the PMMA@BT nanocomposites may have lower leakage current density.

    For clarifying the origin of the dielectric loss, leakage current density tests are carried out and the results are shown in Fig. 3a and Figs.S8d–f(Supporting information).In the case of PMMA@BT nanocomposites, as shown in Fig.S8d, the addition of core-shell nanoparticles results in comparable leakage current density with the pristine P(VDF-HFP).However, in the other two types of nanocomposites, the nanocomposites show increased leakage current density with the loading of the core-shell nanoparticles.In addition,the nanocomposites show higher leakage current density in comparison with the pristine P(VDF-HFP) even at low loading.Fig.3a compared the leakage current results of the three nanocomposites with 2.0 vol% core-shell nanoparticles.One can see that, compared with the pristine P(VDF-HFP), the PMMA@BT nanocomposite shows lower leakage current density while the other two nanocomposites show higher leakage current density.These results are consistent with the lower dielectric loss of PMMA@BT nanocomposites at low frequency range.

    Fig.3.(a)Leakage current density and(b)Weibull breakdown strength plots of the P(VDF-HFP)nanocomposites with 2.0 vol%of PMMA@BT,PGMA@BT and PMSEMA@BT.(c) Schematic illustration for the effect of shell polymer polarity on the space charge capture ability of the core-shell BT nanoparticles.

    A two-parameter Weibull statistic distribution method is employed to evaluate the breakdown strength (Eb) of the nanocomposites, as shown in Eq. 1 [11]:

    where P is the cumulative probability of electrical failure, β is a parameter related to the dispersion of the data,E is the experiment breakdown strength, and E0is the characteristic breakdown strength at the cumulative failure probability of 63.2%.The Weibull plots are shown in Fig.3b and Figs.S8a–c (Supporting information).One can see that the PMMA@BT nanocomposites have higher breakdown strength when compared with the PGMA@BT and PMSEMA@BT nanocomposites at the same loading.Interestingly,at 2.0 vol%, the PMMA@BT nanocomposite exhibits enhanced Ebwhen compared with the pristine P(VDF-HFP).These results are consistent with the leakage current density of the corresponding nanocomposites.Namely,higher leakage current density results in lower breakdown strength.

    Furthermore,the frequency dependence of imaginary modulus M′′of the nanocomposites at varied temperatures is plotted in Fig.S9 (Supporting information).The Arrhenius plot is described by lnfmaxversus 1/T as the following equation [33]:

    where fmaxis the peak frequency of M′′under a certain T, f0is the pre-exponential factor, Eais activation energy (represent the required energy of space charge motion), and k is the Boltzmann constant.The values of Eaof the PMMA@BT, PGMA@BT and PMSEMA@BT are 1.11 eV, 1.14 eV and 1.27 eV at 8.0 vol%, respectively.This indicates that the space charges require more energy to migrate from the interface to other regions in the PMSEMA@BT nanocomposites.In this case, the PMSEMA@BT nanocomposites may have a higher probability of electrical failure because of the space charges accumulation at the interfacial regions (Fig.3c),which is consistent with the leakage current density results.

    D-E loops are measured to evaluate electric polarization and energy storage performance of the nanocomposites, which are shown in Fig. 4 and Fig.S10 (Supporting information).For each nanocomposite, the electrical displacement increases with the nanoparticle loading because BT has a much higher dielectric constant than that of the P(VDF-HFP).In addition, higher shell polarity leads to both higher polarization and remnant polarization(Pr).However,Ebof the nanocomposites becomes lower at high BT loading, and Ebof the nanocomposites with 8.0 vol% decreases to 320–400 MV/m, which is 50–130 MV/m lower than that of the P(VDF-HFP).

    Energy densities of the nanocomposites are calculated according to the D-E loops shown in Fig. 4b and Fig.S11 (Supporting information).One can see that at the same loading,the PMMA@BT nanocomposites show higher energy densities when compared with the PGMA@BT and PMSEMA@BT nanocomposites.For instance, at 2.0 vol%, the maximum charge energy density of the PMMA@BT nanocomposite is 12.6 J/cm3, which is higher in comparison with the pristine P(VDF-HFP) (10.7 J/cm3), the PGMA@BT nanocomposite (12.4 J/cm3) and the PMSEMA@BT nanocomposite (10.5 J/cm3).The main reason is that the PMMA@BT nanocomposites show higher Ebthan those of the others.

    Fig.4.(a)D-E loops and(c)charge-discharge efficiency of the P(VDF-HFP)nanocomposites with 2.0 vol%core-shell nanoparticles.(b)The maximum charge energy density and (d) the maximum discharge energy density of nanocomposite films.

    Finally, charge-discharge efficiency (η) of the nanocomposites are shown in Fig. 4c and Figs.S10d–f (Supporting information).Compared with the pristine P(VDF-HFP), the nanocomposites show comparable or slightly higher η at low loading, but have lower η as the loading increases to 8.0 vol%.Among the three nanocomposites, P(VDF-HFP) with 2.0 vol% PMMA@BT has the highest η, which maintains 70% when the electric field is lower than 200 MV/m.However, η decreases with the increases of loading,and becomes< 60%at 8.0 vol%,which is lower than that of the pristine P(VDF-HFP).This phenomenon can be ascribed to the increased Pr, higher dielectric loss and leakage current density.Therefore,it should develop new strategies to suppress these three factors in future work.

    In summary, three kinds of core-shell BT nanoparticles are synthesized by surface-initiated RAFT polymerization.The role of the shell polarity in dielectric and energy storage properties of the P(VDF-HFP)nanocomposites is investigated.It is found that space charges tend to accumulate at the shell layer with higher polarity,which may cause a higher probability of electrical breakdown.Accordingly, the nanocomposite with BT covered by the lowpolarity shell (i.e., PMMA) exhibits lower dielectric loss, higher breakdown strength, higher discharged energy density and efficiency than the others.These results demonstrate that the coupling interaction between shell and polymer matrix is a key role in improving the energy storage capacity of dielectric nanocomposite nanocomposites, which may guide the future design and fabrication of dielectric nanocomposites.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The financial support from National Natural Science Foundation of China (No.51877132) was acknowledged.This work was based on the Thesis of Liwei Wang.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.12.032.

    国产亚洲精品久久久久5区| 国产av又大| 制服诱惑二区| 亚洲欧美日韩高清在线视频| 亚洲五月色婷婷综合| www.自偷自拍.com| 成人亚洲精品一区在线观看| 国产欧美日韩一区二区精品| 久久午夜综合久久蜜桃| 国产精品亚洲一级av第二区| 国产免费av片在线观看野外av| 18禁美女被吸乳视频| 久久香蕉激情| 麻豆一二三区av精品| 久久久久久免费高清国产稀缺| 日韩欧美一区二区三区在线观看| 欧美在线一区亚洲| 色av中文字幕| 成年版毛片免费区| 丰满的人妻完整版| 一级片免费观看大全| 精品久久蜜臀av无| 国产成+人综合+亚洲专区| 精品电影一区二区在线| 免费高清在线观看日韩| 国产亚洲欧美98| 人人妻人人看人人澡| 99久久久亚洲精品蜜臀av| 免费电影在线观看免费观看| 成人手机av| 久久久久精品国产欧美久久久| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 国产一区二区在线av高清观看| 精品欧美国产一区二区三| 正在播放国产对白刺激| 精品国产亚洲在线| 久久精品影院6| 后天国语完整版免费观看| 天堂影院成人在线观看| 久久久久久免费高清国产稀缺| 国产精品免费一区二区三区在线| 午夜免费激情av| 亚洲国产中文字幕在线视频| 欧美成人午夜精品| 亚洲熟妇中文字幕五十中出| 亚洲成人久久爱视频| 欧美久久黑人一区二区| 色哟哟哟哟哟哟| www.999成人在线观看| 欧美黑人巨大hd| 色综合欧美亚洲国产小说| 女人爽到高潮嗷嗷叫在线视频| ponron亚洲| 久久精品影院6| 国产欧美日韩一区二区精品| 国产亚洲精品av在线| av天堂在线播放| 亚洲无线在线观看| 两人在一起打扑克的视频| 91九色精品人成在线观看| av天堂在线播放| 俄罗斯特黄特色一大片| 熟女少妇亚洲综合色aaa.| www日本在线高清视频| 在线视频色国产色| 大型av网站在线播放| 久久久久国产一级毛片高清牌| 欧美乱色亚洲激情| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久久久精品吃奶| 欧洲精品卡2卡3卡4卡5卡区| 妹子高潮喷水视频| 一个人免费在线观看的高清视频| 久久久久国产一级毛片高清牌| 亚洲国产精品合色在线| 免费av毛片视频| 午夜福利在线观看吧| 久久久久精品国产欧美久久久| 黑人巨大精品欧美一区二区mp4| 丰满的人妻完整版| 在线观看免费日韩欧美大片| 中文字幕精品亚洲无线码一区 | 成人国产一区最新在线观看| 日本成人三级电影网站| 精品久久久久久久人妻蜜臀av| www日本在线高清视频| 国产高清视频在线播放一区| 欧美黑人精品巨大| 成人免费观看视频高清| 亚洲黑人精品在线| 可以在线观看的亚洲视频| 亚洲av电影不卡..在线观看| 精品国内亚洲2022精品成人| 亚洲一区中文字幕在线| 欧美又色又爽又黄视频| 国产黄a三级三级三级人| 久久精品国产亚洲av高清一级| 别揉我奶头~嗯~啊~动态视频| 国产激情久久老熟女| 两个人看的免费小视频| 欧美国产精品va在线观看不卡| 精品国产乱子伦一区二区三区| 大型黄色视频在线免费观看| 精品国产超薄肉色丝袜足j| 日韩精品青青久久久久久| 啦啦啦 在线观看视频| 人成视频在线观看免费观看| 国内精品久久久久久久电影| 人人澡人人妻人| www日本在线高清视频| 18禁观看日本| 午夜免费观看网址| 满18在线观看网站| x7x7x7水蜜桃| 免费观看精品视频网站| 亚洲专区国产一区二区| 亚洲国产精品sss在线观看| 国产高清有码在线观看视频 | 欧美色欧美亚洲另类二区| 99国产精品一区二区三区| 一区二区日韩欧美中文字幕| 在线观看日韩欧美| 色婷婷久久久亚洲欧美| 久久精品aⅴ一区二区三区四区| www.www免费av| 国产成人av激情在线播放| 精品电影一区二区在线| 一个人观看的视频www高清免费观看 | 久久国产精品男人的天堂亚洲| 亚洲七黄色美女视频| 国产av一区在线观看免费| 亚洲精品中文字幕在线视频| 中文字幕另类日韩欧美亚洲嫩草| 午夜久久久在线观看| 久久香蕉精品热| 亚洲精品国产精品久久久不卡| 国产视频内射| 国产精品亚洲一级av第二区| 琪琪午夜伦伦电影理论片6080| 欧美丝袜亚洲另类 | 狠狠狠狠99中文字幕| 国产成人啪精品午夜网站| 午夜两性在线视频| 少妇裸体淫交视频免费看高清 | 高潮久久久久久久久久久不卡| 精品电影一区二区在线| 最近最新免费中文字幕在线| 国产激情偷乱视频一区二区| av欧美777| 一本久久中文字幕| 中文字幕精品免费在线观看视频| 十八禁网站免费在线| 99久久精品国产亚洲精品| 亚洲av五月六月丁香网| 国产亚洲欧美在线一区二区| 久久伊人香网站| 999精品在线视频| or卡值多少钱| 黑人欧美特级aaaaaa片| 免费看a级黄色片| 久久久久久久精品吃奶| 我的亚洲天堂| 麻豆久久精品国产亚洲av| 久久久久久大精品| 国产高清videossex| 麻豆久久精品国产亚洲av| 久久中文字幕一级| 精品久久久久久久久久免费视频| 成人三级黄色视频| 国产熟女午夜一区二区三区| 777久久人妻少妇嫩草av网站| 哪里可以看免费的av片| 国产激情久久老熟女| 老司机靠b影院| 女性生殖器流出的白浆| 欧美国产日韩亚洲一区| 99国产极品粉嫩在线观看| 两个人视频免费观看高清| 91大片在线观看| 18禁观看日本| 午夜免费激情av| 黑人操中国人逼视频| 一区福利在线观看| x7x7x7水蜜桃| 精品国产亚洲在线| 亚洲黑人精品在线| 亚洲中文日韩欧美视频| 美女高潮喷水抽搐中文字幕| 久久久国产成人精品二区| 又紧又爽又黄一区二区| 欧美性猛交╳xxx乱大交人| 欧洲精品卡2卡3卡4卡5卡区| 男人舔奶头视频| 国产成人精品无人区| 50天的宝宝边吃奶边哭怎么回事| 亚洲片人在线观看| 国内精品久久久久久久电影| 999精品在线视频| 搡老妇女老女人老熟妇| 日日爽夜夜爽网站| 香蕉av资源在线| x7x7x7水蜜桃| 黑人巨大精品欧美一区二区mp4| 国产亚洲欧美在线一区二区| 日韩欧美国产在线观看| 国产精品久久久av美女十八| 欧美乱妇无乱码| 久久久久免费精品人妻一区二区 | 亚洲美女黄片视频| 老司机福利观看| 国产熟女午夜一区二区三区| xxx96com| 欧美成人午夜精品| 午夜免费观看网址| 久久九九热精品免费| 成人18禁高潮啪啪吃奶动态图| 日韩中文字幕欧美一区二区| 男女下面进入的视频免费午夜 | 久久九九热精品免费| 国产成人av激情在线播放| 亚洲中文字幕日韩| 亚洲国产欧洲综合997久久, | 久久国产精品影院| 午夜免费观看网址| 丝袜人妻中文字幕| 成人18禁高潮啪啪吃奶动态图| 精品少妇一区二区三区视频日本电影| 久久香蕉精品热| 国产一区二区在线av高清观看| 男女之事视频高清在线观看| 99热6这里只有精品| 国产激情欧美一区二区| 大型黄色视频在线免费观看| а√天堂www在线а√下载| 欧美性长视频在线观看| 国产午夜福利久久久久久| 岛国视频午夜一区免费看| 亚洲五月天丁香| 中文在线观看免费www的网站 | 日本熟妇午夜| 搡老岳熟女国产| 真人做人爱边吃奶动态| 精品一区二区三区视频在线观看免费| 精品国产美女av久久久久小说| 欧美成人一区二区免费高清观看 | 99国产综合亚洲精品| 性欧美人与动物交配| 无限看片的www在线观看| 欧美在线黄色| 色播亚洲综合网| 最新美女视频免费是黄的| 亚洲三区欧美一区| 男女床上黄色一级片免费看| 黑丝袜美女国产一区| 免费在线观看影片大全网站| 黄色视频,在线免费观看| 最近在线观看免费完整版| 一区二区三区国产精品乱码| 女人高潮潮喷娇喘18禁视频| 亚洲欧美一区二区三区黑人| 国产成人啪精品午夜网站| 欧美不卡视频在线免费观看 | 亚洲成人久久性| 亚洲久久久国产精品| 欧美色视频一区免费| 一级毛片精品| 成人国产一区最新在线观看| 亚洲精品国产精品久久久不卡| 免费在线观看成人毛片| 韩国av一区二区三区四区| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影| 美女扒开内裤让男人捅视频| 欧美不卡视频在线免费观看 | 在线观看一区二区三区| 老鸭窝网址在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产高清在线一区二区三 | 亚洲人成电影免费在线| 中文字幕高清在线视频| 国产高清视频在线播放一区| 在线天堂中文资源库| 制服诱惑二区| 久久国产亚洲av麻豆专区| 12—13女人毛片做爰片一| 日韩欧美三级三区| 一区二区三区精品91| 国产99久久九九免费精品| 日本黄色视频三级网站网址| 99热只有精品国产| 俺也久久电影网| 免费观看精品视频网站| 成人av一区二区三区在线看| 久久久国产精品麻豆| 在线av久久热| 又黄又爽又免费观看的视频| 日韩欧美一区二区三区在线观看| 国产成人影院久久av| 久久国产精品人妻蜜桃| 成年版毛片免费区| 精品国产美女av久久久久小说| 亚洲成av人片免费观看| 黄色a级毛片大全视频| 黄色 视频免费看| 国产一区二区激情短视频| 最新在线观看一区二区三区| 成人永久免费在线观看视频| 国产精品影院久久| 国产伦人伦偷精品视频| 日韩欧美在线二视频| 国产视频一区二区在线看| 久久天堂一区二区三区四区| 国产成人影院久久av| 国产99久久九九免费精品| 日韩欧美国产一区二区入口| 91av网站免费观看| 久久草成人影院| 女同久久另类99精品国产91| 波多野结衣高清作品| 亚洲成av人片免费观看| 波多野结衣巨乳人妻| 亚洲成人精品中文字幕电影| 亚洲一码二码三码区别大吗| 一本精品99久久精品77| 老汉色∧v一级毛片| 香蕉丝袜av| 欧美大码av| 在线观看66精品国产| 岛国视频午夜一区免费看| 亚洲成人久久爱视频| 搡老熟女国产l中国老女人| 欧美在线黄色| 一本一本综合久久| 中文字幕高清在线视频| 色在线成人网| 大型av网站在线播放| svipshipincom国产片| 国产一级毛片七仙女欲春2 | 亚洲天堂国产精品一区在线| 精品一区二区三区视频在线观看免费| 欧美日韩中文字幕国产精品一区二区三区| 国产视频内射| 曰老女人黄片| 午夜免费观看网址| 国产精品美女特级片免费视频播放器 | 亚洲专区中文字幕在线| 免费看美女性在线毛片视频| 精品午夜福利视频在线观看一区| 曰老女人黄片| 亚洲国产欧洲综合997久久, | 亚洲精品在线观看二区| 久久精品国产亚洲av高清一级| 伦理电影免费视频| 国产一区二区三区视频了| a级毛片a级免费在线| 老司机福利观看| 亚洲一区二区三区色噜噜| 中文在线观看免费www的网站 | 精品国产亚洲在线| 90打野战视频偷拍视频| 亚洲avbb在线观看| 欧美日韩黄片免| 国产精品爽爽va在线观看网站 | 亚洲自偷自拍图片 自拍| 久久久国产欧美日韩av| 麻豆av在线久日| 在线国产一区二区在线| 久久精品夜夜夜夜夜久久蜜豆 | 波多野结衣av一区二区av| 色精品久久人妻99蜜桃| 国产精品自产拍在线观看55亚洲| 色av中文字幕| 男人舔女人的私密视频| 欧美黑人巨大hd| 久久久久久久久中文| 国产又色又爽无遮挡免费看| 麻豆国产av国片精品| 欧美日韩瑟瑟在线播放| 国产欧美日韩精品亚洲av| 亚洲第一欧美日韩一区二区三区| 身体一侧抽搐| 日韩av在线大香蕉| 国产激情偷乱视频一区二区| 亚洲片人在线观看| 99精品久久久久人妻精品| 欧美日韩精品网址| 国产91精品成人一区二区三区| bbb黄色大片| 欧美成人午夜精品| 久久中文字幕一级| 欧美大码av| 亚洲成人精品中文字幕电影| 久久精品成人免费网站| 男男h啪啪无遮挡| 久久精品aⅴ一区二区三区四区| 久久香蕉激情| 欧美不卡视频在线免费观看 | 亚洲中文av在线| 亚洲国产中文字幕在线视频| 精品电影一区二区在线| 一级片免费观看大全| 黑人操中国人逼视频| 在线免费观看的www视频| 最新在线观看一区二区三区| 久久久久久免费高清国产稀缺| 叶爱在线成人免费视频播放| 日本一本二区三区精品| 日韩成人在线观看一区二区三区| 久久精品成人免费网站| 国产亚洲精品一区二区www| 天堂动漫精品| 国产亚洲欧美精品永久| 天天躁夜夜躁狠狠躁躁| 久久天躁狠狠躁夜夜2o2o| 欧美乱色亚洲激情| 99在线人妻在线中文字幕| 人妻久久中文字幕网| 亚洲专区中文字幕在线| 久久久久九九精品影院| 亚洲国产欧美网| 免费在线观看完整版高清| 欧美色欧美亚洲另类二区| 国产99白浆流出| 精品国产乱码久久久久久男人| 脱女人内裤的视频| 搡老岳熟女国产| 99精品久久久久人妻精品| 婷婷精品国产亚洲av| 国产亚洲欧美在线一区二区| 正在播放国产对白刺激| 18禁黄网站禁片免费观看直播| tocl精华| 国产精品98久久久久久宅男小说| 亚洲无线在线观看| 日本一本二区三区精品| 欧美在线黄色| av片东京热男人的天堂| 午夜视频精品福利| 久久精品成人免费网站| 不卡av一区二区三区| 国产三级黄色录像| 亚洲第一电影网av| 丁香欧美五月| 亚洲欧美激情综合另类| 亚洲精品中文字幕在线视频| 一个人观看的视频www高清免费观看 | 丁香六月欧美| 亚洲成人国产一区在线观看| 成人三级做爰电影| 婷婷精品国产亚洲av在线| 国产在线观看jvid| 最近最新免费中文字幕在线| 女人爽到高潮嗷嗷叫在线视频| 欧美久久黑人一区二区| 熟女电影av网| 俄罗斯特黄特色一大片| 中文在线观看免费www的网站 | 欧美日韩黄片免| 亚洲五月天丁香| 国产精品乱码一区二三区的特点| videosex国产| 精品国产乱子伦一区二区三区| 男女做爰动态图高潮gif福利片| 免费看日本二区| 日韩欧美国产一区二区入口| 香蕉国产在线看| 一级a爱视频在线免费观看| 免费观看人在逋| 久久 成人 亚洲| 黄色视频不卡| 国产97色在线日韩免费| 久热爱精品视频在线9| 国产欧美日韩精品亚洲av| 欧美色欧美亚洲另类二区| 久久久久国产精品人妻aⅴ院| 久久久久亚洲av毛片大全| 久久久久久国产a免费观看| 日韩一卡2卡3卡4卡2021年| 黑人操中国人逼视频| 91字幕亚洲| 国产亚洲欧美在线一区二区| 男人操女人黄网站| 精品国产乱子伦一区二区三区| 精品久久久久久,| 别揉我奶头~嗯~啊~动态视频| 精品乱码久久久久久99久播| 国产97色在线日韩免费| 久久精品人妻少妇| 久久香蕉激情| 精品国产超薄肉色丝袜足j| www.www免费av| 手机成人av网站| 中文字幕另类日韩欧美亚洲嫩草| 午夜日韩欧美国产| 久久久久久久午夜电影| 黄色a级毛片大全视频| 精品国产美女av久久久久小说| 欧美中文综合在线视频| 国产又爽黄色视频| 亚洲免费av在线视频| 波多野结衣高清无吗| 麻豆成人午夜福利视频| 精品国产亚洲在线| 桃红色精品国产亚洲av| 亚洲欧美精品综合一区二区三区| 99国产精品一区二区蜜桃av| 亚洲国产欧美网| 91成年电影在线观看| 精品久久久久久久人妻蜜臀av| 国产一区二区激情短视频| 亚洲 欧美一区二区三区| 亚洲av美国av| 日本在线视频免费播放| 国内揄拍国产精品人妻在线 | 91九色精品人成在线观看| 亚洲av电影在线进入| 99久久99久久久精品蜜桃| 在线天堂中文资源库| 我的亚洲天堂| 日本精品一区二区三区蜜桃| 国产精品一区二区免费欧美| 国产主播在线观看一区二区| √禁漫天堂资源中文www| av欧美777| 国产精品久久电影中文字幕| 亚洲第一av免费看| 国产亚洲欧美98| 国产男靠女视频免费网站| 在线看三级毛片| 午夜福利在线在线| 亚洲人成伊人成综合网2020| 欧美+亚洲+日韩+国产| 国产极品粉嫩免费观看在线| 午夜视频精品福利| 国产精品美女特级片免费视频播放器 | 岛国视频午夜一区免费看| 天堂影院成人在线观看| 91麻豆精品激情在线观看国产| 国产精品永久免费网站| 色综合亚洲欧美另类图片| 中文字幕最新亚洲高清| 国产蜜桃级精品一区二区三区| 国产精品 欧美亚洲| 草草在线视频免费看| 国产激情久久老熟女| 久久婷婷人人爽人人干人人爱| 亚洲第一电影网av| 精品国产美女av久久久久小说| 最近最新中文字幕大全电影3 | 欧美成狂野欧美在线观看| 夜夜看夜夜爽夜夜摸| 好男人在线观看高清免费视频 | 久久久国产成人免费| 999精品在线视频| 午夜精品久久久久久毛片777| 亚洲欧美精品综合一区二区三区| a级毛片a级免费在线| 国内精品久久久久精免费| 国产黄a三级三级三级人| 亚洲第一电影网av| 精品久久久久久,| 国产区一区二久久| 亚洲真实伦在线观看| av片东京热男人的天堂| 日韩成人在线观看一区二区三区| 精品午夜福利视频在线观看一区| 国产精品香港三级国产av潘金莲| 亚洲国产精品久久男人天堂| 午夜免费观看网址| 人妻丰满熟妇av一区二区三区| 长腿黑丝高跟| 免费在线观看日本一区| 91成年电影在线观看| 国产伦一二天堂av在线观看| 亚洲欧美一区二区三区黑人| 欧美精品啪啪一区二区三区| 69av精品久久久久久| 国产精品1区2区在线观看.| 一区二区三区精品91| 亚洲国产欧美日韩在线播放| 可以在线观看的亚洲视频| 国产男靠女视频免费网站| 亚洲第一欧美日韩一区二区三区| 在线观看一区二区三区| 国产精品永久免费网站| 久久久久久久久久黄片| 丁香六月欧美| av在线天堂中文字幕| 不卡av一区二区三区| 欧美成人一区二区免费高清观看 | aaaaa片日本免费| 18禁黄网站禁片免费观看直播| 日本在线视频免费播放| 亚洲精品美女久久久久99蜜臀| 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 国产乱人伦免费视频| 欧美乱妇无乱码| av中文乱码字幕在线| 亚洲av电影不卡..在线观看| 精品国产美女av久久久久小说| 脱女人内裤的视频| 免费看美女性在线毛片视频| 婷婷精品国产亚洲av| 国产熟女午夜一区二区三区| 女人高潮潮喷娇喘18禁视频| 欧美中文综合在线视频| 日本精品一区二区三区蜜桃| 在线国产一区二区在线| 大型av网站在线播放| 久久久久久免费高清国产稀缺| 很黄的视频免费| 国内揄拍国产精品人妻在线 | 免费在线观看影片大全网站|