• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A pico-HPLC-LIF system for the amplification-free determination of multiple miRNAs in cells

    2021-10-12 08:49:28WenmeiZhngZunshengHnYingqiLingQiZhngXingnnDouGungshengGuoXiynWng
    Chinese Chemical Letters 2021年7期

    Wenmei Zhng,Zunsheng Hn,Yingqi Ling,Qi Zhng,Xingnn Dou,Gungsheng Guo,Xiyn Wng,*

    a Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, China

    b State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

    ABSTRACT MicroRNAs are a class of important biomarkers,and the simultaneous detection of multiple miRNAs can provide valuable information about many diseases and biological processes.Amplification-free determination has been developed for the analysis of multiple miRNAs because of its characteristic low cost and high fidelity.Herein, a method for the amplification-free analysis and simultaneous detection of multiple miRNAs based on a so-called pico-HPLC-LIF system is described.In this process,a bare open capillary with an inner diameter of 680 nm is used as a separation column for a sample volume of several hundreds of femtoliters (300 fL), followed by separation and detection.The technique has a zeptomolar limit of detection.The method was applied to detect cellular miRNA from adenocarcinomic human alveolar basal epithelial (A549) cell extracts, and the simultaneous detection of the mir-182,miR-155,and let-7a was achieved.The results showed that the expression of mir-182 and miR-155 was up-regulated and that of let-7a was down-regulated in A549 cells.This method for multiple miRNAs detection is expected to have broad applications in miRNA-based disease diagnosis,prognosis,treatment,and monitoring.

    Keywords:Multiple miRNAs Amplification-free Pico-HPLC Nanocapillary Laser-induced fluorescence

    MicroRNAs (miRNAs) are a class of short (19–25 nucleotides),protein non-coding RNAs that regulate gene expression by inducing messenger RNA (mRNA) degradation and translation inhibition.The abnormal expression of miRNA is associated with numerous biological processes and diseases [1,2], particularly cancers [3,4], heart disease [5–7], nervous system disease [8–10],and others [11–13].In addition, the progression of disease is accompanied by the aberrant expression of multiple miRNAs.Therefore,the detection and monitoring of multiple miRNAs at the same time is useful for medical diagnosis.Compared to other RNA,miRNA has many unique characteristics,including a small size,low abundance, easy degradation, and sequence similarities among family members [14,15].However, the direct quantitative detection of multiple miRNAs is challenging.Hence,the development of sensitive and quantitative detection technologies has attracted significant attention.

    MiRNA can be identified and quantified by many techniques.Most methods for multiple miRNAs detection are based on amplification or modification, such as quantitative real-time polymerase chain reaction (qRT-PCR) [16], microarray techniques[17], next generation sequencing (RNA-Seq) [18], and isothermal amplification [19].Among these approaches,qRT-PCR and microarray are the conventional methods for the quantitative detection of miRNAs.qRT-PCR is the gold standard and is used to verify miRNA screening experiments, which require high precision and accuracy [20].RNA-Seq is a high-throughput detection approach for profiling the transcriptome using deep-sequencing technologies [18] and has been the only platform to discover new miRNA.The isothermal-amplification-based methods have also been used to carry out multiple miRNAs analysis, and these are non-PCR amplification based methods[19,21].However,a key limitation is the complex probe design and the lack of suitable multiplex quantitative analysis methods.Further,amplification-based methods can suffer from quantitation bias and low fidelity.Amplification-free methods are generally less specific and sensitive than amplification-based methods.As a result, highly specific probes and highly sensitive instrumentation are required.Locked nucleic acids(LNA)and peptide nucleic acids(PNA)with high affinity and specificity and new nanomaterials are used for amplification-free detection of miRNA.For example, Metcalf et al.developed PNA-based fluorogenic biosensors based on an oligonucleotide template reaction for the detection of multiple miRNAs in body fluids[22].In addition,a molybdenum disulfide(MoS2)integrated silica colloidal crystal barcode for multiplex miRNA screening that functions by measuring the fluorescence of quantum dots (QDs)has been prepared [23].

    In the past decade, highly sensitive laser-induced fluorescence (LIF) detection systems have been used for the analysis of multiple miRNA sequences.The LIF system is one of the most sensitive spectral techniques,having a limit of detection as low as the yoctomole [24].Using LIF in combination with capillary electrophoresis (CE), multiple miRNAs can be detected.For example, Jiang and co-workers developed an assay combining denaturing capillary gel electrophoresis with tandem adenosine-tailed DNA bridge-assisted splinted ligation to separate and detect miRNA in the Epstein–Barr virus [25].In addition,Krylov et al.reported a method for the direct quantitative analysis of multiple miRNA sequences (DQAMmiR) using bare fused-silica capillary electrophoresis [26], and the design of LNA–DNA probes and the application of a dual-temperature technique allowed single base resolution to be achieved [27].High-speed capillary sieving electrophoresis has also been reported to be an effective means for multiple miRNAs detection [28].However,capillary liquid chromatography has excellent reproducibility and stability compared to those of CE.Further, with the miniaturization of liquid chromatography technology, ultranarrow bore channels have extensively used because of their very small sample volume requirements and high-separation efficiencies [29,30].In this study, a pico-HPLC-LIF detection system for the amplification-free determination of multiple miRNAs was established.A capillary having an inner diameter of 680 nm was used as the separation chromatographic column.Single stranded DNA (ssDNA) probes of different lengths complementary to the target miRNAs were designed for hybridization with the miRNAs, and the RNA-DNA hybrids were dyed with the YOYO-1 nucleic acid dye.By combining this with a highly sensitive LIF detection system,the separation and detection of multiple miRNAs with high sensitivity was achieved.The key to the chromatographic separation is hydrodynamic chromatography (HDC) and wall electrostatic interaction (WaLEI) separation.

    A schematic of the pico-HPLC-LIF system for the detection and analysis of multiple miRNAs is presented in Fig.1, along with an illustration of the separation mechanism.A diagram of the detection device is shown in Fig.S1 (Supporting information).The miRNAs were added to a 200μL microcentrifuge tube with an excess of the ssDNA probe to ensure that most of the miRNAs was hybridized.Consequently,some redundant probes failed to bind to miRNAs (Fig.1a).The YOYO-1 nucleic acid dye was added to the mixture after hybridization, which was then incubated at room temperature, resulting in fluorescent RNA-DNA hybrids (Fig.1b)and non-fluorescent superfluous DNA probes.The dyed sample was injected into a capillary that had been washed with Tris–ethylenediaminetetraacetic acid (TE) buffer in advance, and then the hybrids was redistributed in the nanocapillary according to the molecular weight based on the HDC and WaLEI mechanism under nitrogen gas pressure-driven (Fig.1c).This resulted in the redistribution of the hybrids to the detection window at the end of the nanocapillary for detection by the LIF system (Fig.1d).

    Fig.1.(a–d)Schematic illustration of detection and analysis for multiple miRNAs in the pico-HPLC-LIF system.(e)Schematic illustration of hydrodynamic chromatography model.(f) Mechanism of wall-layer electrostatic interactions.

    The separation mechanism of pico-HPLC is based on HDC and WaLEI[31,32].The HDC mechanism is shown in Fig.1e.As shown,the velocity of a pressure-driven fluid in a nanocapillary has a parabolic profile because of hydrodynamic forces.Larger molecules have a greater hydrodynamic radius and move in the region of high velocity at the center of the channel; thus, the large molecules are eluted earlier than smaller molecules.Fig.1f illustrates the WaLEI mechanism.When the pH of the solution is greater than 3,the silica hydroxy groups on the inner wall surface of the nanocapillary are dissociated, resulting in a negatively charged surface.RNA–DNA hybrids are negatively charged in solution,and electrostatic repulsion causes the RNA–DNA hybrids to move from the wall toward the center of the nanocapillary channel.The RNA-DNA hybrids with longer chain lengths have a greater negative charge,therefore,these longer chains experience greater electrostatic repulsion from the wall and are redistributed toward the high-velocity region at the center of the capillary.Thus,the longer hybrids elute earlier than the shorter ones.

    The concentration and pH of the eluent buffer are significant parameters affecting the chromatographic behavior.Therefore,we studied the influence of the concentration and pH for RNA-DNA hybrids separation.Under pressure-driven conditions,the order of elution of the RNA-DNA hybrids is determined by the molecular weight.The ssDNA probe for mir-182 has a tag with the greatest drag,so the mir-182 hybrid is first to elute,followed by the hybrids of miR-155 and let-7a.The concentration of the

    TE eluent also has a significant impact on the separation of RNADNA hybrids.Fig.2 shows the separation chromatogram of the RNA-DNA hybrids at different TE concentrations (5–200 mmol/L).Under a constant driving pressure of 1300 psi, only TE concentrations of 15, 25 and 50 mmol/L yielded clearly resolved chromatographic peaks.Table S1 (Supporting information) lists the resolution and theoretical plates for all RNA-DNA hybrids at TE concentrations of 15,25 and 50 mmol/L.Complete separation was achieved when the concentration of TE was 25 mmol/L, and the resolution was 2.0.The efficiencies of all hybrids were more than nine hundred thousand plates/meter, and more than one million plates/meter for let-7a hybrids has been achieved.When the TE concentration decreases, the electric double layer (EDL) on the capillary wall increases, so the radial migration of RNA-DNA hybrids is limited, and the effect of redistribution is weakened.However, the retention times of the hybrids increased and the separation effect decreased when the concentration of the TE eluent was greater than 25 mmol/L, which may be caused by the increase in solution viscosity and decrease in hydrodynamic effects at high concentrations.

    Fig.2.Separation of a mixture of hybrids with different concentrations of TE buffer.The mixture of the hybrids contained three groups of DNA/miRNA.Peaks from left to right are mir-182, mir155 and let-7a.The concentration of the hybrids was 1.67μmol/L,and the separation nanocapillary had an inner diameter of 680 nm and a total length of 50 cm(45 cm effective).The sample was injected at 200 psi for 20 s,and the separation was carried out at 1300 psi.

    As mentioned, the silica hydroxy groups on the inner wall of the capillary are ionized in aqueous solution, and the capillary wall is negatively charged.The eluent pH effects the dissociation efficiency of silica hydroxy groups on the capillary and affects the separation efficiency in capillary chromatography.Moreover, the stability of nucleic acid fragments is also affected by pH,especially that of the RNA-DNA hybrids.Therefore, it was necessary to identify the optimal pH of TE eluent to balance the ionization of silica hydroxy groups and then improve the reproducibility of sample migration.The degree of dissociation of the hydroxy groups increased rapidly with increase in pH above pH 3.Thus, to optimize the pH with respect to separation efficiency,seven different pH values(6.4,7.0,7.3,7.6,8.0,8.3 and 8.6) of 25 mmol/L TE buffer were tested.In addition, each TE buffer was injected into the capillary 1 h before sample injection to balance the capillary.The separation results are shown in Fig.S3 (Supporting information), and the effect of the eluent pH on the resolution is depicted in Fig.S4 (Supporting information).The RNA-DNA hybrids could not be separated effectively when the eluent pH was less than 8.0, probably because of the lower dissociation of hydroxy groups under these conditions.The density of negative charge on the wall of the nanocapillary in acid solution is low,and the electrostatic interaction is relatively small.The electrostatic interaction is increased with the increasing of elute pH, so the resolution is improved.Highly alkaline conditions lead DNA to denature into ssDNA [33], so the experiment was not attempted at higher pH conditions.However,the separation efficiency of RNA-DNA hybrids reached baseline separation with little difference when the eluent pH was greater than or equal to 8.0.Considering that nucleic acids are easily denatured under highly alkaline condition, pH 8.0 TE buffer was selected for this work.

    The effect of elution pressure (600–1400 psi) was investigated for RNA-DNA hybrids in a 48-cm long, 680-nm inner diameter capillary, and the separation results are shown in Fig.S5(Supporting information).The retention time of the sample decreased proportionally with increase in elution pressure.The driving pressure and the volume velocity yielded a good linear correlation coefficient of 0.9937 (Fig.S6 in Supporting information).The resolution of adjacent RNA-DNA hybrids under different driving pressures was calculated, and the results are shown in Fig.S7 (Supporting information).The resolutions of RNA-DNA hybrids were markedly improved with increase in driving pressure, reaching a maximum at 1200 psi, after which they decreased slightly.The optimal elution pressured changed with changes in the experimental conditions,such as the composition of eluent,eluent pH,and channel size.To reduce the retention time,a higher elution pressure than that required for maximum elution efficiency is generally required (Fig.3).

    Fig.3.Chromatogram of a 26.04 nmol/L mixture of the RNA-DNA hybrids.The capillary had an internal diameter of 680 nm and a total length of 68 cm(effective length of 62 cm).The sample was injected at 200 psi for 20 s,and the separation was carried out at a pressure of 1500 psi.

    The limit of detection (LOD) was determined from the analysis of samples with known concentrations of the analyte and is the lowest detectable concentration.Typically, the LOD is calculated as three times signal-to-noise ratio (S/N ≥3).Thus, a sample was progressively diluted and analyzed.The injection time was 20 s at 200 psi,and the sample was driven at 1500 psi.Using an injection volume of 300 fL, the LOD was 26.04 nmol/L (S/N ≈3.72) or 7.8 zmol (26.04 nmol/L ×300 fL).The volume of a single cell is typically picoliter in scale[34],so the sample volume requirement is less than that of a single cell.MiRNAs which is upregulated in cells was detected to more than 104copies and the downregulated was less than 1000 copies[35].Therefore,this approach can potentially be used to detect miRNAs in single cells.

    To test our method, we used a complex biological sample of miRNAs extracted from adenocarcinomic human alveolar basal epithelial (A549) cells.The ssDNA probes (5μmol/L) were incubated with the complex miRNA sample for hybridization.Fig.4 shows the separation results for the pure A549 cell lysate and the lysate spiked with let-7a.The concentration of spiked let-7a was 2.5μmol/L and the final concentration of spiked let-7a was 230 nmol/L.Only two peaks were detected in the pure A549 cell lysate,whereas three peaks were detected from the sample of the lysate spiked with the let-7a.It can be inferred that two peaks of pure A549 cell lysate were mir-182 and mir-155, respectively,indicating that mir-182 and mir-155 were highly expressed in A549 cells.It is known that mir-182 and miR-155 are upregulated[36,37]and let-7a is downregulated[38]in A549 cells;thus,our results are consistent with those of previous studies.These results illustrated that our method can be used for the detection and quantitative analysis of miRNA in complex samples.

    Fig.4.Detection of multiple miRNAs from A549 cell extract:(a)5μmol/L of three ssDNA probes added to a sample of A549 cell extract and (b) 5μmol/L of three ssDNA probes spiked with 2.5μmol/L of let-7a and incubated with A549 cell extract.The nanocapillary had an internal diameter of 680 nm and was 65 cm long(60 cm effective length).The sample was injected at 200 psi for 20 s, and the separation was carried out at 1400 psi.

    In summary, we have demonstrated a pico-HPLC-LIF system for the amplification-free detection of multiple miRNAs.In addition, we have demonstrated the effects of eluent concentration, eluent pH, and driving pressure on the chromatographic behavior of the RNA-DNA hybrids.The optimal eluent concentration and pH were 25 mmol/L and 8.0,and the driving pressure was higher than 1200 psi.A nanocapillary having an inner diameter of 680 nm was used as a chromatographic column, and the RNADNA hybrids were separated via the HDC and WaLEI mechanisms.We found that a 300-fL sample was sufficient for separation and detection, and the limit of detection was 7.8 zmol or 4.7×103molecules.The pico-HPLC-LIF strategy showed good performance in the simultaneous amplification-free detection of multiple miRNA sequences from complex A549 cells lysates, thus, a promising method for disease monitoring based on the detection of multiple miRNAs.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.21625501,21527808), the Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910005017).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.12.007.

    亚洲av成人一区二区三| 91大片在线观看| 国产精品 国内视频| 一级片免费观看大全| 久久久国产成人免费| 欧美色视频一区免费| 在线看三级毛片| 国产亚洲欧美精品永久| 亚洲在线自拍视频| 黄色a级毛片大全视频| 亚洲最大成人中文| 欧美日韩精品网址| 中文字幕精品免费在线观看视频| 99国产精品99久久久久| 国产精品亚洲美女久久久| 又黄又粗又硬又大视频| 黄色成人免费大全| 一区二区三区高清视频在线| 日本a在线网址| 国产日本99.免费观看| 亚洲 欧美一区二区三区| 精品不卡国产一区二区三区| 岛国视频午夜一区免费看| 视频在线观看一区二区三区| 国产精品永久免费网站| 久久国产精品影院| 国产精品免费一区二区三区在线| 麻豆av在线久日| 欧美另类亚洲清纯唯美| 欧美日韩瑟瑟在线播放| 在线观看一区二区三区| 麻豆av在线久日| 日本三级黄在线观看| 日韩精品中文字幕看吧| 色综合亚洲欧美另类图片| 久久久久久久精品吃奶| 欧美中文综合在线视频| 女同久久另类99精品国产91| 亚洲第一青青草原| 在线观看日韩欧美| 黑人操中国人逼视频| 自线自在国产av| av有码第一页| e午夜精品久久久久久久| 99国产精品99久久久久| 久久久国产欧美日韩av| 日日干狠狠操夜夜爽| 性欧美人与动物交配| 国产亚洲精品一区二区www| 亚洲精品在线观看二区| 久久精品国产亚洲av高清一级| 国产精品亚洲av一区麻豆| 中文资源天堂在线| 美女午夜性视频免费| 成人午夜高清在线视频 | 妹子高潮喷水视频| 国产一区二区在线av高清观看| 亚洲色图 男人天堂 中文字幕| 精品第一国产精品| 国产精品综合久久久久久久免费| 黑丝袜美女国产一区| 99久久国产精品久久久| 男男h啪啪无遮挡| 亚洲专区中文字幕在线| 99国产综合亚洲精品| 国产视频内射| 欧美日韩瑟瑟在线播放| 在线永久观看黄色视频| 精品欧美国产一区二区三| 黄色a级毛片大全视频| 丝袜在线中文字幕| 叶爱在线成人免费视频播放| 狂野欧美激情性xxxx| 欧美绝顶高潮抽搐喷水| 国产精品久久久人人做人人爽| a级毛片在线看网站| 国产精品 欧美亚洲| 国产精品99久久99久久久不卡| 一区二区日韩欧美中文字幕| 国产色视频综合| 亚洲人成网站高清观看| 国产成人欧美| or卡值多少钱| 国产单亲对白刺激| 777久久人妻少妇嫩草av网站| 两个人免费观看高清视频| 最近最新免费中文字幕在线| 高潮久久久久久久久久久不卡| 色哟哟哟哟哟哟| 亚洲精品美女久久av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品电影一区二区三区| 国产男靠女视频免费网站| 叶爱在线成人免费视频播放| 狂野欧美激情性xxxx| 激情在线观看视频在线高清| 深夜精品福利| 可以在线观看的亚洲视频| 热re99久久国产66热| 免费看a级黄色片| 亚洲九九香蕉| 国产精品永久免费网站| 国产一区二区三区视频了| 国产精品九九99| 黄色片一级片一级黄色片| 国产熟女xx| 搡老岳熟女国产| 亚洲黑人精品在线| 国产人伦9x9x在线观看| 亚洲一区二区三区色噜噜| 国产三级黄色录像| 两人在一起打扑克的视频| 老司机深夜福利视频在线观看| 久久国产精品男人的天堂亚洲| 免费人成视频x8x8入口观看| 久久久久久久久免费视频了| 男人舔女人的私密视频| 露出奶头的视频| 亚洲人成伊人成综合网2020| 在线十欧美十亚洲十日本专区| 国产精品香港三级国产av潘金莲| 国产亚洲av嫩草精品影院| 中文字幕av电影在线播放| 欧美又色又爽又黄视频| 一个人观看的视频www高清免费观看 | 岛国视频午夜一区免费看| 欧美日韩一级在线毛片| 亚洲国产精品合色在线| 亚洲av美国av| 国产亚洲欧美98| 欧美激情久久久久久爽电影| 久久精品影院6| 中文字幕精品亚洲无线码一区 | 在线天堂中文资源库| 人人妻人人澡人人看| 91九色精品人成在线观看| 美女午夜性视频免费| 在线观看午夜福利视频| 国产亚洲精品综合一区在线观看 | 99国产精品一区二区蜜桃av| 午夜免费鲁丝| 国产又色又爽无遮挡免费看| 91国产中文字幕| 可以在线观看毛片的网站| 国产男靠女视频免费网站| 最近最新中文字幕大全免费视频| 欧美最黄视频在线播放免费| 中文字幕人成人乱码亚洲影| 国产色视频综合| 看黄色毛片网站| 国产成人系列免费观看| 国产熟女午夜一区二区三区| 亚洲一区中文字幕在线| 国产一区二区在线av高清观看| 欧美黄色淫秽网站| 日本 av在线| 久久性视频一级片| 国产精品亚洲美女久久久| 久久精品国产亚洲av香蕉五月| 国产亚洲av嫩草精品影院| 一区二区三区国产精品乱码| 草草在线视频免费看| 久久九九热精品免费| 成人精品一区二区免费| 在线永久观看黄色视频| 国产视频内射| 亚洲中文字幕一区二区三区有码在线看 | 精品电影一区二区在线| 午夜福利在线观看吧| 一级毛片女人18水好多| 欧美av亚洲av综合av国产av| 久久性视频一级片| 婷婷亚洲欧美| 欧美日韩中文字幕国产精品一区二区三区| 国产精品永久免费网站| av中文乱码字幕在线| 夜夜爽天天搞| 窝窝影院91人妻| 精华霜和精华液先用哪个| 一本久久中文字幕| www日本在线高清视频| 欧美激情 高清一区二区三区| 国产成人一区二区三区免费视频网站| 一边摸一边做爽爽视频免费| 日本免费a在线| 国产片内射在线| 天天躁夜夜躁狠狠躁躁| 一级片免费观看大全| 免费一级毛片在线播放高清视频| 日韩欧美一区二区三区在线观看| а√天堂www在线а√下载| 成人三级做爰电影| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品在线观看二区| 欧美乱妇无乱码| 精品国产国语对白av| 日本 av在线| 日本一区二区免费在线视频| 亚洲午夜精品一区,二区,三区| 亚洲精品色激情综合| 国产区一区二久久| 国产一区二区三区视频了| 制服丝袜大香蕉在线| 成人18禁高潮啪啪吃奶动态图| 日本五十路高清| 18美女黄网站色大片免费观看| 中文字幕av电影在线播放| av在线播放免费不卡| 好男人在线观看高清免费视频 | www.www免费av| 国产亚洲精品综合一区在线观看 | 亚洲五月婷婷丁香| www日本在线高清视频| 老汉色av国产亚洲站长工具| 欧美国产日韩亚洲一区| 精品久久久久久,| 给我免费播放毛片高清在线观看| 欧美日韩瑟瑟在线播放| 极品教师在线免费播放| 国产激情欧美一区二区| 久久亚洲精品不卡| 桃色一区二区三区在线观看| 日韩免费av在线播放| 日日干狠狠操夜夜爽| 免费在线观看日本一区| 婷婷六月久久综合丁香| 国产亚洲欧美98| 精品国产亚洲在线| 99久久无色码亚洲精品果冻| 美国免费a级毛片| 国产精品久久久久久精品电影 | 国产亚洲精品一区二区www| 老司机福利观看| 人人妻人人看人人澡| 97碰自拍视频| 色综合站精品国产| 国产成人一区二区三区免费视频网站| 91老司机精品| 熟女电影av网| 日本精品一区二区三区蜜桃| 嫁个100分男人电影在线观看| 正在播放国产对白刺激| 日本黄色视频三级网站网址| 国产精品,欧美在线| 在线观看免费日韩欧美大片| 人妻丰满熟妇av一区二区三区| ponron亚洲| 亚洲狠狠婷婷综合久久图片| 欧美色欧美亚洲另类二区| 午夜日韩欧美国产| 精华霜和精华液先用哪个| 亚洲国产精品成人综合色| 在线播放国产精品三级| 国产99白浆流出| 日日干狠狠操夜夜爽| 久久国产亚洲av麻豆专区| 久久天堂一区二区三区四区| 精品午夜福利视频在线观看一区| 999久久久国产精品视频| 在线观看午夜福利视频| 国产精品99久久99久久久不卡| 亚洲人成77777在线视频| 久久午夜综合久久蜜桃| 国产蜜桃级精品一区二区三区| 欧美丝袜亚洲另类 | 热re99久久国产66热| 亚洲成人国产一区在线观看| www国产在线视频色| ponron亚洲| a在线观看视频网站| 国产精品乱码一区二三区的特点| 欧美激情极品国产一区二区三区| 高潮久久久久久久久久久不卡| 欧美黑人精品巨大| 97超级碰碰碰精品色视频在线观看| 国产一区二区三区视频了| 亚洲国产欧美一区二区综合| 激情在线观看视频在线高清| 亚洲七黄色美女视频| 成人精品一区二区免费| 国产一区二区在线av高清观看| 日韩欧美国产在线观看| 国产主播在线观看一区二区| 欧美人与性动交α欧美精品济南到| 99国产精品99久久久久| 欧美在线黄色| 99久久国产精品久久久| 久久久久久九九精品二区国产 | 久久国产精品人妻蜜桃| 在线永久观看黄色视频| 老司机午夜福利在线观看视频| 久久精品人妻少妇| 在线观看日韩欧美| 国产高清视频在线播放一区| 国产亚洲av嫩草精品影院| 国产精品99久久99久久久不卡| 欧美日韩乱码在线| 熟妇人妻久久中文字幕3abv| 久久久久久国产a免费观看| 两个人看的免费小视频| 午夜免费观看网址| 欧美大码av| 中文资源天堂在线| 亚洲av成人av| 国产在线精品亚洲第一网站| 一区二区日韩欧美中文字幕| 国产v大片淫在线免费观看| 男人舔奶头视频| 久9热在线精品视频| 精品不卡国产一区二区三区| 亚洲黑人精品在线| 精品福利观看| 亚洲黑人精品在线| 手机成人av网站| 欧美激情高清一区二区三区| 欧美乱色亚洲激情| 免费看美女性在线毛片视频| 国产精品亚洲美女久久久| 哪里可以看免费的av片| 少妇的丰满在线观看| 国产99白浆流出| 国产高清视频在线播放一区| 久久久久国产精品人妻aⅴ院| 国产91精品成人一区二区三区| 国产单亲对白刺激| 黄色 视频免费看| 亚洲国产看品久久| 麻豆成人午夜福利视频| xxx96com| 午夜福利在线在线| 免费人成视频x8x8入口观看| 波多野结衣巨乳人妻| av在线播放免费不卡| www.www免费av| 超碰成人久久| 18禁国产床啪视频网站| 久9热在线精品视频| 国产激情偷乱视频一区二区| 亚洲自拍偷在线| 俄罗斯特黄特色一大片| 国产又黄又爽又无遮挡在线| 91字幕亚洲| 免费看十八禁软件| 亚洲国产欧美网| 在线观看一区二区三区| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| 美女高潮喷水抽搐中文字幕| 51午夜福利影视在线观看| 窝窝影院91人妻| 国产在线观看jvid| 国产精品av久久久久免费| 精品久久久久久成人av| 精品电影一区二区在线| 99国产精品一区二区蜜桃av| 成人精品一区二区免费| 中文字幕人成人乱码亚洲影| 在线观看日韩欧美| 日韩精品中文字幕看吧| 亚洲国产欧洲综合997久久, | 妹子高潮喷水视频| 丝袜美腿诱惑在线| 国产精品一区二区免费欧美| 精品国产一区二区三区四区第35| 三级毛片av免费| 国产一级毛片七仙女欲春2 | 一级a爱视频在线免费观看| 露出奶头的视频| 一级毛片精品| 亚洲精品色激情综合| 久久伊人香网站| 99国产极品粉嫩在线观看| 高清毛片免费观看视频网站| 国产亚洲精品av在线| 国产91精品成人一区二区三区| 欧美黄色淫秽网站| 色哟哟哟哟哟哟| 欧美成人性av电影在线观看| 日日爽夜夜爽网站| av欧美777| 热99re8久久精品国产| 久久精品91蜜桃| 亚洲九九香蕉| 日本在线视频免费播放| 亚洲专区中文字幕在线| 亚洲精华国产精华精| 亚洲国产日韩欧美精品在线观看 | 97人妻精品一区二区三区麻豆 | 麻豆一二三区av精品| 草草在线视频免费看| 亚洲成a人片在线一区二区| 一区二区三区激情视频| 中文字幕另类日韩欧美亚洲嫩草| 久久青草综合色| 国产精品免费一区二区三区在线| 久久青草综合色| 琪琪午夜伦伦电影理论片6080| 一级毛片高清免费大全| 国内毛片毛片毛片毛片毛片| 欧美日韩瑟瑟在线播放| 一边摸一边抽搐一进一小说| 亚洲一区二区三区色噜噜| 老鸭窝网址在线观看| 男男h啪啪无遮挡| 一进一出好大好爽视频| 国产视频内射| 悠悠久久av| 夜夜爽天天搞| 免费一级毛片在线播放高清视频| 亚洲精品久久成人aⅴ小说| 亚洲人成伊人成综合网2020| 国产男靠女视频免费网站| 亚洲成国产人片在线观看| 搡老岳熟女国产| 午夜久久久在线观看| 精品国产美女av久久久久小说| 正在播放国产对白刺激| 亚洲精品美女久久av网站| 精品高清国产在线一区| 一夜夜www| 91九色精品人成在线观看| 午夜福利18| 久久人人精品亚洲av| 母亲3免费完整高清在线观看| 啦啦啦观看免费观看视频高清| 婷婷精品国产亚洲av在线| 禁无遮挡网站| 日韩精品中文字幕看吧| 久久中文字幕一级| 亚洲欧洲精品一区二区精品久久久| 99re在线观看精品视频| 欧美一级毛片孕妇| 男人舔女人的私密视频| 高清毛片免费观看视频网站| 亚洲av五月六月丁香网| 免费看美女性在线毛片视频| 看黄色毛片网站| 国产高清激情床上av| 国产极品粉嫩免费观看在线| 婷婷亚洲欧美| 久久久精品欧美日韩精品| 亚洲第一电影网av| 美女午夜性视频免费| 桃色一区二区三区在线观看| 久久久久久九九精品二区国产 | a级毛片在线看网站| 日韩国内少妇激情av| 啦啦啦韩国在线观看视频| 91麻豆精品激情在线观看国产| 黄色视频不卡| 午夜福利视频1000在线观看| 黑人操中国人逼视频| 亚洲精品美女久久久久99蜜臀| 欧美性猛交╳xxx乱大交人| 男人操女人黄网站| 变态另类成人亚洲欧美熟女| 黄频高清免费视频| 美国免费a级毛片| 亚洲人成77777在线视频| 99国产精品99久久久久| 在线天堂中文资源库| 国产激情久久老熟女| 最好的美女福利视频网| 国产区一区二久久| 此物有八面人人有两片| 好男人在线观看高清免费视频 | 欧美日韩亚洲综合一区二区三区_| 中文字幕久久专区| 国产一卡二卡三卡精品| 久久中文看片网| 很黄的视频免费| 老司机靠b影院| tocl精华| 麻豆成人av在线观看| a级毛片a级免费在线| 国产激情欧美一区二区| 99精品欧美一区二区三区四区| 成人18禁高潮啪啪吃奶动态图| 久久精品国产亚洲av香蕉五月| 亚洲精品国产一区二区精华液| 亚洲国产精品sss在线观看| 在线观看日韩欧美| 色哟哟哟哟哟哟| 欧美成狂野欧美在线观看| 久久久久国产精品人妻aⅴ院| 日韩欧美免费精品| 一本综合久久免费| 成在线人永久免费视频| 精品国产国语对白av| 露出奶头的视频| 看黄色毛片网站| 亚洲中文av在线| 人妻丰满熟妇av一区二区三区| 亚洲久久久国产精品| 黑人欧美特级aaaaaa片| 18禁国产床啪视频网站| 中文在线观看免费www的网站 | 久久国产乱子伦精品免费另类| 久久久久久亚洲精品国产蜜桃av| 免费看a级黄色片| 亚洲成a人片在线一区二区| 欧美日本亚洲视频在线播放| 首页视频小说图片口味搜索| 亚洲自拍偷在线| 可以免费在线观看a视频的电影网站| 日韩成人在线观看一区二区三区| 亚洲免费av在线视频| 人人妻人人澡欧美一区二区| 国内精品久久久久久久电影| av天堂在线播放| 十分钟在线观看高清视频www| 欧美日本亚洲视频在线播放| 久久精品国产99精品国产亚洲性色| 午夜免费观看网址| 中文资源天堂在线| 午夜免费激情av| 欧美又色又爽又黄视频| 精品久久久久久久久久久久久 | 91老司机精品| 少妇裸体淫交视频免费看高清 | 婷婷精品国产亚洲av在线| 日本三级黄在线观看| 女性生殖器流出的白浆| 国产精品98久久久久久宅男小说| 国产极品粉嫩免费观看在线| 国产高清激情床上av| 久久国产亚洲av麻豆专区| 啪啪无遮挡十八禁网站| 亚洲专区中文字幕在线| 日本在线视频免费播放| 天堂√8在线中文| 精品卡一卡二卡四卡免费| av超薄肉色丝袜交足视频| 99久久久亚洲精品蜜臀av| 可以免费在线观看a视频的电影网站| 深夜精品福利| 亚洲最大成人中文| 欧美日韩一级在线毛片| 久久亚洲精品不卡| 色综合婷婷激情| 久久久久国内视频| 久久人人精品亚洲av| 黄片播放在线免费| 亚洲七黄色美女视频| 色哟哟哟哟哟哟| 精品日产1卡2卡| 国产欧美日韩精品亚洲av| 亚洲最大成人中文| 操出白浆在线播放| 两个人免费观看高清视频| 亚洲中文日韩欧美视频| 日韩高清综合在线| 村上凉子中文字幕在线| 亚洲欧美日韩高清在线视频| 51午夜福利影视在线观看| 悠悠久久av| 午夜久久久在线观看| 淫秽高清视频在线观看| 亚洲熟女毛片儿| 少妇的丰满在线观看| 哪里可以看免费的av片| 婷婷精品国产亚洲av| 99热6这里只有精品| 国产精品久久久人人做人人爽| 91在线观看av| 成年人黄色毛片网站| 精华霜和精华液先用哪个| 亚洲精品av麻豆狂野| 最近最新免费中文字幕在线| 女人高潮潮喷娇喘18禁视频| 人人澡人人妻人| 国产成人精品久久二区二区91| 亚洲全国av大片| 亚洲欧洲精品一区二区精品久久久| 欧美日韩亚洲综合一区二区三区_| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品粉嫩美女一区| 婷婷精品国产亚洲av| 两人在一起打扑克的视频| 亚洲成av片中文字幕在线观看| 又黄又爽又免费观看的视频| 国产极品粉嫩免费观看在线| 久久天堂一区二区三区四区| 欧美绝顶高潮抽搐喷水| 可以在线观看的亚洲视频| 欧美午夜高清在线| 欧美 亚洲 国产 日韩一| 免费在线观看黄色视频的| 国产欧美日韩一区二区三| 欧美 亚洲 国产 日韩一| 可以在线观看的亚洲视频| 91麻豆精品激情在线观看国产| 老司机深夜福利视频在线观看| 在线观看免费午夜福利视频| 香蕉av资源在线| 亚洲最大成人中文| 久久久精品国产亚洲av高清涩受| 91麻豆精品激情在线观看国产| 日韩国内少妇激情av| 一进一出抽搐动态| 久久精品国产清高在天天线| 欧美性长视频在线观看| 无人区码免费观看不卡| 亚洲激情在线av| 757午夜福利合集在线观看| 在线观看免费午夜福利视频| 1024香蕉在线观看| www日本在线高清视频| 久久这里只有精品19| 国产精品,欧美在线| 国产精品乱码一区二三区的特点| 99久久国产精品久久久| 美女高潮喷水抽搐中文字幕| 国产乱人伦免费视频| 在线av久久热|