• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Amorphous carbon-linked TiO2/carbon nanotube film composite with enhanced photocatalytic performance: The effect of interface contact and hydrophilicity

    2021-10-12 08:49:22ZekunXinXioongZhoHuimingJiTinyiHuiLiShuhuiZhongZhuruiShen
    Chinese Chemical Letters 2021年7期

    Zekun Xin,Xioong Zho,Huiming Ji,Tinyi M,Hui Li**,Shuhui Zhong**,Zhurui Shen,*

    a School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin University,Tianjin 300350, China

    b School of Mathematics, Tianjin University, Tianjin 300350, China

    c School of Materials Science and Engineering, Nankai University, Tianjin 300350, China

    d Centre for Translational Atomaterials, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia

    ABSTRACT Carbon nanotube film (CNTF) can be used for photocatalysis and water treatment due to its porous structure,good stability and excellent electrical properties.In this work,TiO2/amorphous carbon/carbon nanotube film(TCC)composite with uniform structure was prepared by a simple atomization spraying method.Rhodamine B(RhB)was used to test the photocatalytic activity of TCC.TCC composite exhibits good photocatalytic activity under ultraviolet light.In particular,the degradation efficiency of rhodamine B(RhB)by TCC sprayed with 9 layers of TiO2(9TCC)increased by 1.45 times than of TiO2 under ultraviolet light.The enhanced photocatalytic activity of TCC is attributed to the CNTF,which can broaden the light response range of TCC and improve the migration efficiency of electrons.The existence of amorphous carbon will promote these advances.Moreover, the better hydrophilic properties would enhance the catalytic performance happened on the solid-liquid interface.Finally,the photocatalytic mechanism and degradation intermediates of the TCC composite were proposed.

    Keywords:Carbon nanotube film TiO2 Photocatalysis Hydrophilia Rhodamine B

    Water pollution caused by industrialization has been recognized as a severe challenge in the 21stcentury [1].Organic dye pollution has caused great concern due to its widespread application in industry.The discharge of high-color sewage can reduce the penetration of light, thereby reducing the ability of algae to produce food and oxygen [2].At present, using photocatalysts was proposed as an environmentally friendly potential strategy[3,4].TiO2,which is widely used in various fields,is nontoxicity, acid and alkali corrosion resistance and low cost [5].However, the TiO2powder is easy to agglomerate and requires a long precipitation time and efficient solid-liquid separation technology [6].In addition, the band gap of single-phase TiO2is around 3.2 eV, not sensitive to visible light which limits its development[7].Consequently,designing new TiO2-based photocatalysts to inhibit agglomeration, facilitate separation and improve photocatalytic activity is very attractive and challenging for sewage purification.

    At present,loading TiO2on glass,silica and film materials is one of the most effective methods to inhibit agglomeration and facilitate separation [8], such as glass fiber, zeolite [9,10].Compared with other substrates, thin film materials possess low density and can float on water,making it close to the air and water interface,enhancing the oxidation of the photocatalyst,which is a prerequisite for an efficient photocatalytic process [11].Among these widely explored film substrates, CNTF displays excellent response to entire range from ultraviolet to infrared light [12,13],and its network channel can form an electrons transmission channel, appearing excellent electronic properties[14–16], which can be used to couple with TiO2to enhance light absorption,promote the separation of photogenerated electrons and holes and further improve photocatalytic activity.

    In this work, the TCC composite was synthesized by a simple atomization spray method,using CNTF as the substrate and resin as the linking agent for TiO2spraying.TCC composite was annealed to carbonize the resin in the middle to amorphous carbon, coupling the titanium dioxide and improving the conductivity of electrons in the catalyst[17,18].The TCC composite sprayed with nine layers of TiO2can degrade 91.29%of RhB within 120 min.The total organic carbon (TOC) content in the RhB solution before and after the reaction was detected.TCC composite can completely mineralize most of the RhB with a mineralization rate of 61.7%.

    The crystal structure of TiO2, CNTF and 9TCC were studied by XRD.As shown in Fig.S2a (Supporting information), the characteristic peaks of TiO2at 2θ=25.5°, 38.1°, 48.2°, 54.3°and 55.0°is corresponding to(101),(004),(200),(211)and(204)crystal planes of anatase TiO2respectively, which are consistent with JCPDS No.21-1272 [19,20].The diffraction peak of CNTF at 2θ=26.3°is indexed to the(002)crystal plane of graphite material[21].After coupled with TiO2, the characteristic peak of TiO2in 9TCC can be observed.Since the peak of the carbon in 9TCC is not obvious,we carry out further tests on the CNTF and 9TCC through Raman analysis.In Fig.S2b (Supporting information), the peak of TiO2at 144.96 cm-1(Eg), 639.37 cm-1(Eg), 517.56 cm-1(A1g, B1g)and 396.29 cm-1(B1g)can be clearly seen by the Raman spectrum of 9TCC,among which the characteristic peak of anatase TiO2can be obviously observed at 144.96 cm-1[22,23].In addition, the Raman spectroscopy is widely used to characterize the interaction of carbon materials with other substances.Peak D at 1358 cm-1is the characteristic peak of defects around carbon atoms,and peak G at 1586 cm-1is the stretching vibration of sp2hybridization of C atoms.The smaller the ID/IG,the higher degree of graphitization of carbon [24].It can be observed from the Fig.S2b that the ID/IGof TCC is greater than that of CNTF, mainly due to the amorphous carbon formed after the resin carbonization.

    The composition and valence of each element of 9TCC was monitored by the X-ray photoelectron spectroscopy (XPS) highresolution spectrum analysis.It can be seen from the Fig.S2d(Supporting information) that there are four states of C.The binding energy from low to high is sp2and sp3hybridized C--C bond at 284.8 eV, C--O bond at 285.8 eV, C--O--C bond at 286.7 eV,and C=O bond at 288.3 eV.The formation of these bonds are mainly due to resin cross linking [25].In Fig.S2e (Supporting information), the peaks of 529.5 eV and 532.2 eV correspond to O in TiO2and O in Ti2O3, respectively.The peak of 531.1 eV can be attributed to the O--H bond of TiO2[26].In addition,the spectrum of Ti 2p exhibits Ti 2p1/2and Ti 2p3/2energy levels.The difference of the two energy levels is 5.8 eV, which is consistent with the literature [27].The C--O bonds are also observed in the FT-IR spectrum (Fig.S3 in Supporting information).

    The microstructure of 9TCC was investigated by scanning electron microscopy(SEM)and transmission electron microscopy(TEM)analysis.Fig.1a can observe the network structure of CNTF,and Figs.1b-d are the SEM images of 3, 9 and 11 layers of TiO2sprayed.It can be concluded that the TiO2dispersion effect is better, and each particle is about 10-50 nm.While TiO2is uniformly loaded on the CNTF framework, it also has certain pores and sufficient reactive sites.With the growth of TiO2, the TiO2particles that did not adhere to the resin began to agglomerate due to the high surface tension,as shown in Fig.1d.We can observe from Fig.S4 (Supporting information) that TiO2is supported on CNTF.The lattice fringes of TiO2are clearly observed in Fig.1e.The lattice spacing of 0.35 nm is attributed to the(101)crystal plane of TiO2, and the lattice spacing of 0.19 nm corresponds to the (200)crystal plane[28].It is important to see that TiO2is in good contact with the carbonized resin,forming a good interface.In Fig.1f, the mapping spectrum of TCC also shows that the framework of CNTF contains three elements: C, O, and Ti, which proves that TiO2is successfully loaded on CNTF.

    Fig.1.SEM images of pure CNTF (a), 3TCC (b), 9TCC (c) and 11TCC (d).(e) HRTEM images of 9TCC.(f) Elemental mapping images of 9TCC.

    The photocatalytic activity was evaluated by the degradation of RhB under ultraviolet light irradiation.In Fig.2a, the degradation efficiency of RhB by spraying CNTF with different layers of TiO2in 120 min was detected.Among them, 9TCC displayed remarkable photocatalytic activity, with a degradation rate of 91.29% in 120 min.We can see from Fig.2b that the Rh B degradation effciencies over the pure TiO2was 63%.The degradation rate of 9TCC is 1.45 times that of pure TiO2powder.The phenomenon of CNTF has also been observed for comparison.Besides, the photocatalytic degradation reactions follow the first-order model(Langmuir–Hinshelwood kinetic)[29]: -ln(C0/C) = kt, where C0is the initial concentration,C is the concentration of RhB at the time t and k is the apparent rate constant.In Fig.2c,the apparent reaction rates of 9TCC(0.0233 min-1)was 2.7 times as high as that of pure TiO2(0.00859 min-1).The UV absorption spectrum of RhB in Fig.2d is consistent with the degradation curve of RhB by 9TCC.What is more, we conducted recycle experiments to evaluate the stability of the 9TCC.In Fig.2e,the RhB could still reach 88%within 120 min after three cycles, indicating that it had good cycle stability.Organic carbon degradation efficiency is an important factor in the practical application of photocatalysts.In Fig.2f, the TOC before and after 9TCC degradation of RhB are 8.07 mg/L and 3.09 mg/L, respectively, and the mineralization rate is 61.71%,which proves that the composite membrane can completely mineralize most of RhB into H2O and CO2.

    Fig.2.Degradation of RhB by(a)TCC with different layers of TiO2 and(b)CNTF,TiO2,9TCC.(c)First-order plots for the photo-degradation of RhB and(d)liquid phase UV spectrum of 9TCC.(e) Cycling test of 9TCC; (f) TOC of 9TCC before and after the photo-degradation test.

    In general,the photocatalytic process mainly includes:(i)Light absorption,(ii)the generation and migration of electron-hole pairs and (iii) the redox reaction of active sites on the surface [30].We will explore the reasons for the improvement of photocatalytic activity from these aspects.First,the light absorption properties of TiO2and 9TCC were researched by UV–vis diffuse reflectance spectroscopy.In Fig.3a, it can be seen that the characteristic absorption edge of TiO2is about 400 nm,while 9TCC has a strong absorption of light and responds to light in the entire ultravioletvisible region.The band gap can be calculated by the following formula [31]: αhv = A(hν-Eg)m/4, where α is the absorption coefficient,h is Planck's constant,A is constant,m depends on the semiconductor type.As shown in Fig.3b,the calculated band gap width (Eg) of TiO2and 9TCC are 3.28 eV and 3.03 eV.The smaller band gap of 9TCC is beneficial to better utilization of light,in favor of improving the photocatalytic activity.In addition, the electrochemical impedance spectroscopy (EIS) and transient photocurrent response were also evaluated.Photocurrent refers to the situation in which electrons respond when the material is irradiated with light, and the electrons and holes are separated,migrate and form a current.Fig.3c illustrates that TiO2and 9TCC can form a stable current under the irradiation of a 300 W xenon lamp.A higher current density of 9TCC was observed, indicating that it has better separation of electron-hole pairs, which is consistent with the photocatalytic degradation efficiency of RhB.In Fig.3d, the Nyquist plots of 9TCC and TiO2are displayed.The equivalent circuit is shown in Fig.3d in the upper left corner.Rsis the interface resistance between the photocatalyst and the carrier,Reis the carrier migration resistance at the interface between the electrolyte and the counter electrode, and Rctis the carrier migration resistance between the electrolyte and the photocatalyst.Rctis an important parameter to characterize the photocatalytic activity [32,33].From the relevant parameters of the equivalent circuit diagram (Table S1 in Supporting information), it can be observed that the Rctof 9TCC is the smallest,indicating the lowest charge transfer resistance and the best separation of electron-hole pairs.

    Fig.3.(a)UV–vis-NIR diffuse-reflectance spectra and(b)converted Kubelka-Munk plot of TiO2 and 9TCC.(c)Transient photocurrent response diagram and(d)Nyquist plots of TiO2 and 9TCC.(e)PL emission spectra of TiO2 and 9TCC.(f)Contact angle of 9TCC.(g)Photodegradable RhB with scavenger agent.(h)Schematic diagram of photocatalytic process of 9TCC.

    Finally,we conducted a photoluminescence(PL)spectrum and hydrophilicity test.The recombination of electrons and holes can be detected by PL spectrum after the electron transition from valence band to conduction band.In Fig.3e,the PL spectrum shows that all materials have an emission peak at 370 nm.The stronger emission peaks of TiO2at 370 nm.Compared with TiO2,the peak of 9TCC is lower, which proves that it has a lower electron-hole recombination rate.According to reports,the hydrophilicity of the photocatalyst has a synergistic effect with the photocatalytic activity [34], so we measured the contact angle of TCC.In Fig.3f,the contact angle of CNTF is 106.62°, and the contact angles of 3TCC,5TCC and 9TCC are 87.78°,64.6°and 9.68°,respectively.The improved wettability of the TCC composite is attributed to the hydroxyl group on the surface of TiO2[35].The hydroxyl group can improve the wettability of the composite in aqueous solution,enhance the contact between the catalyst and the dye, and potentially increase the catalytic ability of the composite [36].

    In order to verify the band gap positions of semiconductor,Mott-Schottky tests for TiO2and 9TCC were performed.Fig.S6a and b(Supporting information)presents that the slope of TiO2and 9TCC are positive, which are typical n-type semiconductor.The intercept between the Mott-schottky curve and the X-axis is the flat band potential(VFB)of the semiconductor.The minimum value of the conduction band(CB)of the n-type semiconductor differs by 0.2 V from the respective VFB[37].Therefore, the CB of TiO2is-0.62 eV,and the VB is 2.66 eV calculated by ECB=EVB–Eg[38].The CB and VB of the 9TCC are -0.48 eV and 2.55 eV, respectively.In order to explore the main oxygen active substances in photocatalytic degradation, capture experiments were carried out with ammonium oxalate, p-benzoquinone and tert-butanol as scavengers for h+,·O2-and·OH.In Fig.3g,the degradation rate of RhB with scavenger added is exhibited.The inhibitory effect of adding hydroxyl radical traps is the most obvious,which proves that·OH is the main oxidizing species in the photodegradation process.Based on the above results, the photocatalytic mechanism of TCC is shown in Fig.3h.The electrons of TiO2in VB can be excited to CB to form photo-excited electrons, producing photo-excited holes in VB.Amorphous carbon is used as an electron transport channel to migrate the photo-excited electrons of TiO2to the CNTF, which accelerating the separation efficiency of the photogenerated carries and enhancing the photocatalytic reaction.For RhB degradation, the VB potential of n-TiO2(EVB=2.66 eV vs.NHE)can oxidize H2O into·OH (E(·OH/H2O) = 2.38 eV vs.NHE) [39].Finally, RhB can be mineralized to CO2and H2O by·OH.

    RhB intermediates in photodegradation were analyzed by HPLC-MS (Table S2 in Supporting information).The degradation of RhB is shown in Fig.S7 (Supporting information) and begins with N-de-ethylation reaction.The N,N-diethylrhodamine (DR)and N-ethylrhodamine (EER) with m/z peaks of 415 and 387, and rhodamine, a completely de-ethylated product are detected.The discoloration of the RhB solution may be caused by the deethylation process [40].This experiment can also detect phthalic anhydride and benzoic acid at the m/z peaks of 148 and 122,which proves that the oxygen-active species can further attack the carbon chain and cause a ring-opening reaction.Chain organic, such as oxalic acid,maleic acid and p-hydroxybenzoic acid[41].Finally,the photocatalyst completely mineralizes small molecular organics into H2O and CO2, which is consistent with the result of TOC.

    In this work, we prepared a novel TCC composite film for the degradation of RhB dyes.Compared with TiO2,TCC composite film exhibited much enhanced photocatalytic activity.The CNTF can enhance light absorption to improve the separation and mobility of electrons and holes.The existence of amorphous carbon will promote these advances.Besides,the better hydrophilic properties would enhance the catalytic performance happened on the solidliquid interface.In addition,we analyzed the degradation pathway of RhB by TCC based on the experimental results of TOC and HPLC-MS.The TCC composite film can oxidize the carbon on the benzene ring of RhB to decompose it into small organic molecules,and finally mineralize into H2O and CO2.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Nos.21872102 and 21906001).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.11.054.

    老司机深夜福利视频在线观看| 麻豆成人av在线观看| 亚洲人成网站高清观看| 亚洲精品色激情综合| 中国美女看黄片| 国产男靠女视频免费网站| 免费在线观看成人毛片| 五月伊人婷婷丁香| 三级男女做爰猛烈吃奶摸视频| 午夜久久久久精精品| 亚洲av电影不卡..在线观看| 亚洲av不卡在线观看| 日韩欧美在线二视频| 久久人妻av系列| 日本一本二区三区精品| 精品久久久噜噜| 联通29元200g的流量卡| 亚洲av免费高清在线观看| 日本 欧美在线| 波多野结衣高清作品| 国产精品久久久久久亚洲av鲁大| 欧美不卡视频在线免费观看| 亚洲人成网站高清观看| 91精品国产九色| 人妻少妇偷人精品九色| 波多野结衣高清作品| 国产高潮美女av| 日韩在线高清观看一区二区三区 | 精品午夜福利在线看| 神马国产精品三级电影在线观看| 久久久久性生活片| 免费电影在线观看免费观看| 99热6这里只有精品| 99国产精品一区二区蜜桃av| 美女高潮喷水抽搐中文字幕| 国产蜜桃级精品一区二区三区| 少妇被粗大猛烈的视频| 日韩精品有码人妻一区| 国产精品人妻久久久影院| 丰满乱子伦码专区| 天美传媒精品一区二区| 国产成人影院久久av| 毛片女人毛片| 老司机福利观看| 国产久久久一区二区三区| 天堂网av新在线| 色哟哟哟哟哟哟| 色哟哟哟哟哟哟| 国产精品一区二区性色av| 亚洲一区二区三区色噜噜| 久久精品人妻少妇| 少妇丰满av| 免费av毛片视频| 露出奶头的视频| 男插女下体视频免费在线播放| 欧美国产日韩亚洲一区| 日韩大尺度精品在线看网址| 成年人黄色毛片网站| 深夜a级毛片| 国产精品亚洲一级av第二区| 日韩一区二区视频免费看| 观看免费一级毛片| 婷婷丁香在线五月| 91精品国产九色| 老司机午夜福利在线观看视频| 亚洲国产精品成人综合色| 少妇的逼好多水| 色综合站精品国产| 国产乱人视频| 变态另类成人亚洲欧美熟女| 国产aⅴ精品一区二区三区波| 亚洲人成伊人成综合网2020| 美女cb高潮喷水在线观看| 九九热线精品视视频播放| 他把我摸到了高潮在线观看| 国产女主播在线喷水免费视频网站 | 男女视频在线观看网站免费| 一区福利在线观看| 国产精品亚洲美女久久久| 国产麻豆成人av免费视频| 国产av在哪里看| 99久久精品一区二区三区| 久久精品国产亚洲网站| 麻豆国产97在线/欧美| 国产私拍福利视频在线观看| 亚洲av.av天堂| 亚洲无线在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲四区av| 99在线视频只有这里精品首页| 亚洲在线观看片| 久久久久国产精品人妻aⅴ院| 国产精品国产高清国产av| 国产精品久久电影中文字幕| 少妇人妻精品综合一区二区 | 亚洲无线在线观看| 91麻豆精品激情在线观看国产| ponron亚洲| 国产在线男女| 91精品国产九色| 国产中年淑女户外野战色| 熟女人妻精品中文字幕| 女的被弄到高潮叫床怎么办 | 久久精品国产自在天天线| www.色视频.com| 亚洲黑人精品在线| 国产美女午夜福利| 国产成人av教育| 日韩高清综合在线| 欧美一区二区国产精品久久精品| 亚洲美女黄片视频| 国产av在哪里看| av.在线天堂| 午夜福利在线观看免费完整高清在 | 人人妻人人看人人澡| 最新在线观看一区二区三区| aaaaa片日本免费| 一进一出抽搐动态| 午夜福利在线观看吧| 18禁在线播放成人免费| 久久久久久久午夜电影| 在线天堂最新版资源| 国产大屁股一区二区在线视频| 国产精品一区二区免费欧美| 欧美成人免费av一区二区三区| 国产成人aa在线观看| 亚洲精品国产成人久久av| 黄色视频,在线免费观看| 欧美xxxx黑人xx丫x性爽| 桃色一区二区三区在线观看| 色av中文字幕| 国产精品人妻久久久久久| 又紧又爽又黄一区二区| av中文乱码字幕在线| 国产精品精品国产色婷婷| 国产精品久久久久久久久免| 在线观看免费视频日本深夜| 国产男人的电影天堂91| 无人区码免费观看不卡| 精品福利观看| 久久久久久久久久黄片| 热99re8久久精品国产| 亚洲午夜理论影院| 精品人妻1区二区| 精品免费久久久久久久清纯| 国产成人a区在线观看| 两个人的视频大全免费| 一夜夜www| 高清在线国产一区| 成人毛片a级毛片在线播放| 色哟哟·www| 中文字幕精品亚洲无线码一区| 国产精品99久久久久久久久| 黄色女人牲交| 99热6这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av美国av| 亚洲七黄色美女视频| 在现免费观看毛片| 精品久久久久久久久久免费视频| 99久久久亚洲精品蜜臀av| 久久精品夜夜夜夜夜久久蜜豆| 欧美黑人欧美精品刺激| 亚洲黑人精品在线| 99久久无色码亚洲精品果冻| 超碰av人人做人人爽久久| 熟女人妻精品中文字幕| 成人鲁丝片一二三区免费| 欧美成人免费av一区二区三区| 99热这里只有是精品在线观看| 91精品国产九色| 一卡2卡三卡四卡精品乱码亚洲| 国产在视频线在精品| 国产探花极品一区二区| 自拍偷自拍亚洲精品老妇| 国产男人的电影天堂91| 国产精品久久久久久av不卡| 免费在线观看成人毛片| 亚洲人成网站在线播放欧美日韩| 淫秽高清视频在线观看| 国产久久久一区二区三区| 日本黄色视频三级网站网址| 俄罗斯特黄特色一大片| 久久精品国产亚洲av天美| 国产一区二区三区视频了| 亚洲性夜色夜夜综合| 老司机午夜福利在线观看视频| 国产精品亚洲一级av第二区| 亚洲av一区综合| 国内久久婷婷六月综合欲色啪| 亚洲中文字幕一区二区三区有码在线看| 成年女人永久免费观看视频| 一卡2卡三卡四卡精品乱码亚洲| 动漫黄色视频在线观看| 岛国在线免费视频观看| 国产欧美日韩精品一区二区| 久久精品国产亚洲av香蕉五月| 久久久国产成人免费| 欧美+日韩+精品| 高清日韩中文字幕在线| 乱人视频在线观看| 午夜福利在线观看吧| а√天堂www在线а√下载| 免费观看人在逋| 久久久国产成人免费| 18禁黄网站禁片午夜丰满| 亚洲va在线va天堂va国产| 亚洲五月天丁香| 国产亚洲精品久久久com| 97热精品久久久久久| 久久久色成人| 久久久久精品国产欧美久久久| 国产毛片a区久久久久| 最新中文字幕久久久久| 国产伦人伦偷精品视频| 欧美丝袜亚洲另类 | 欧美精品国产亚洲| 亚洲图色成人| 亚洲精品一区av在线观看| 久久午夜福利片| 看片在线看免费视频| 久久精品夜夜夜夜夜久久蜜豆| 国产成人aa在线观看| 不卡视频在线观看欧美| 色综合站精品国产| 欧美国产日韩亚洲一区| 无遮挡黄片免费观看| 久久午夜亚洲精品久久| 国产乱人伦免费视频| 有码 亚洲区| 亚洲人成网站在线播| 又粗又爽又猛毛片免费看| 97热精品久久久久久| 韩国av一区二区三区四区| 日韩欧美三级三区| 欧美另类亚洲清纯唯美| 午夜影院日韩av| 亚洲四区av| 婷婷亚洲欧美| 我要搜黄色片| 国产精品人妻久久久久久| 亚洲一级一片aⅴ在线观看| 两人在一起打扑克的视频| 熟女电影av网| 精品久久久久久久末码| 久久精品国产亚洲av涩爱 | 亚洲av.av天堂| 欧美丝袜亚洲另类 | 亚洲一区高清亚洲精品| 人妻夜夜爽99麻豆av| 免费搜索国产男女视频| a级一级毛片免费在线观看| 色综合亚洲欧美另类图片| 啦啦啦啦在线视频资源| 男女啪啪激烈高潮av片| 日本一二三区视频观看| 日本成人三级电影网站| 啪啪无遮挡十八禁网站| 少妇熟女aⅴ在线视频| 亚洲国产欧美人成| 亚洲三级黄色毛片| 日本 av在线| 欧美色欧美亚洲另类二区| 亚洲一区二区三区色噜噜| 夜夜爽天天搞| 色综合色国产| 一区二区三区四区激情视频 | 国产在线精品亚洲第一网站| 精品一区二区免费观看| 欧美高清性xxxxhd video| 国产三级中文精品| 真实男女啪啪啪动态图| 国产真实伦视频高清在线观看 | 91av网一区二区| 亚洲人与动物交配视频| 成人毛片a级毛片在线播放| 一边摸一边抽搐一进一小说| 色综合色国产| 欧美zozozo另类| 18+在线观看网站| 日本精品一区二区三区蜜桃| 国产又黄又爽又无遮挡在线| 香蕉av资源在线| 亚洲精品456在线播放app | 精品99又大又爽又粗少妇毛片 | 又爽又黄a免费视频| 精华霜和精华液先用哪个| 一进一出抽搐动态| 欧美一区二区精品小视频在线| 在线观看午夜福利视频| 国产乱人伦免费视频| 日本免费a在线| 国产欧美日韩精品一区二区| 九色成人免费人妻av| 国产在视频线在精品| 国产一区二区在线观看日韩| 女的被弄到高潮叫床怎么办 | 又爽又黄a免费视频| 3wmmmm亚洲av在线观看| 成人鲁丝片一二三区免费| 男女啪啪激烈高潮av片| 国产麻豆成人av免费视频| 国产午夜福利久久久久久| 一区二区三区免费毛片| 日韩,欧美,国产一区二区三区 | 国产视频一区二区在线看| 搡老妇女老女人老熟妇| 国产午夜精品论理片| 久久久久久国产a免费观看| 又黄又爽又刺激的免费视频.| 国产主播在线观看一区二区| 欧洲精品卡2卡3卡4卡5卡区| 精华霜和精华液先用哪个| 国产视频内射| av在线观看视频网站免费| 国产人妻一区二区三区在| 国产午夜福利久久久久久| 一区二区三区免费毛片| 成年版毛片免费区| 欧美黑人巨大hd| 亚洲欧美日韩东京热| 极品教师在线免费播放| 国产伦在线观看视频一区| a级毛片a级免费在线| 99热这里只有是精品50| 久久中文看片网| 精品久久久久久久久久久久久| 国内揄拍国产精品人妻在线| 欧洲精品卡2卡3卡4卡5卡区| 日韩中字成人| 特大巨黑吊av在线直播| 欧美bdsm另类| 亚洲图色成人| 高清日韩中文字幕在线| 国产精品一区二区免费欧美| 国产精品一区二区三区四区久久| 亚洲三级黄色毛片| 色噜噜av男人的天堂激情| 桃红色精品国产亚洲av| 男女那种视频在线观看| 在线观看66精品国产| 午夜福利欧美成人| 91在线精品国自产拍蜜月| 亚洲av不卡在线观看| 观看免费一级毛片| 少妇高潮的动态图| 久久这里只有精品中国| 搡老妇女老女人老熟妇| 精品日产1卡2卡| 国产精品亚洲一级av第二区| 一本久久中文字幕| 999久久久精品免费观看国产| 久久久久国内视频| av.在线天堂| 一本久久中文字幕| 身体一侧抽搐| 亚洲国产色片| 此物有八面人人有两片| 久久久久性生活片| 国产av在哪里看| 午夜福利视频1000在线观看| 成人二区视频| 国内毛片毛片毛片毛片毛片| 成人av在线播放网站| 久久久久久久久久久丰满 | 波野结衣二区三区在线| 亚洲真实伦在线观看| 欧美性猛交黑人性爽| 精品午夜福利视频在线观看一区| 永久网站在线| 在线天堂最新版资源| 黄色视频,在线免费观看| 国产大屁股一区二区在线视频| 亚洲成人精品中文字幕电影| 春色校园在线视频观看| 亚洲午夜理论影院| 国产伦精品一区二区三区视频9| 成人二区视频| 国内揄拍国产精品人妻在线| 国产在视频线在精品| 免费电影在线观看免费观看| 精品久久久噜噜| 欧美精品国产亚洲| 麻豆一二三区av精品| 久久久久久大精品| 欧美人与善性xxx| 亚洲av一区综合| 内射极品少妇av片p| 观看美女的网站| 少妇熟女aⅴ在线视频| 99国产精品一区二区蜜桃av| 在线a可以看的网站| 性色avwww在线观看| 中文亚洲av片在线观看爽| 男人的好看免费观看在线视频| 日本黄色视频三级网站网址| 好男人在线观看高清免费视频| 国产一区二区三区视频了| 在现免费观看毛片| 国产一级毛片七仙女欲春2| 亚洲黑人精品在线| 中国美白少妇内射xxxbb| 精品久久国产蜜桃| 日本一本二区三区精品| 午夜福利18| x7x7x7水蜜桃| 我的老师免费观看完整版| 嫁个100分男人电影在线观看| 亚洲国产精品合色在线| a级毛片a级免费在线| 免费人成在线观看视频色| 久久久成人免费电影| 蜜桃久久精品国产亚洲av| 久久人人精品亚洲av| 日韩 亚洲 欧美在线| 日本黄色视频三级网站网址| 午夜福利在线观看吧| 国产精品亚洲美女久久久| 91麻豆精品激情在线观看国产| 日韩欧美在线二视频| 国产三级在线视频| 可以在线观看的亚洲视频| 亚洲人成网站在线播放欧美日韩| 一个人免费在线观看电影| 国产精品人妻久久久久久| 亚洲18禁久久av| 久久国产精品人妻蜜桃| 精品国产三级普通话版| 两人在一起打扑克的视频| 身体一侧抽搐| 69av精品久久久久久| 国产亚洲精品综合一区在线观看| 精品午夜福利在线看| 亚洲不卡免费看| 深夜a级毛片| 很黄的视频免费| 国产老妇女一区| 女人十人毛片免费观看3o分钟| 日韩在线高清观看一区二区三区 | 一夜夜www| 少妇的逼水好多| 亚洲av成人av| 国产高清三级在线| 露出奶头的视频| 亚洲欧美日韩东京热| 一区二区三区免费毛片| 国产精品综合久久久久久久免费| xxxwww97欧美| 久久精品国产自在天天线| 乱码一卡2卡4卡精品| 少妇的逼好多水| 欧美日本视频| 毛片一级片免费看久久久久 | 国产精品久久久久久av不卡| 国内精品美女久久久久久| 国产中年淑女户外野战色| 亚洲成人中文字幕在线播放| 级片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 日韩中字成人| 国产精品伦人一区二区| av中文乱码字幕在线| 韩国av在线不卡| 久久热精品热| 久久天躁狠狠躁夜夜2o2o| 人妻制服诱惑在线中文字幕| 亚洲最大成人av| 成人无遮挡网站| 我要搜黄色片| 亚洲午夜理论影院| 久久久久久大精品| 成人综合一区亚洲| 久久久成人免费电影| 成年女人毛片免费观看观看9| 久久欧美精品欧美久久欧美| 简卡轻食公司| av在线蜜桃| 97热精品久久久久久| 国产乱人伦免费视频| 成人午夜高清在线视频| 特级一级黄色大片| 午夜亚洲福利在线播放| 全区人妻精品视频| 中文字幕精品亚洲无线码一区| 亚洲美女黄片视频| 乱码一卡2卡4卡精品| 欧美一区二区国产精品久久精品| 国产精品国产高清国产av| 日本欧美国产在线视频| 97碰自拍视频| 欧美日韩亚洲国产一区二区在线观看| 国产成年人精品一区二区| 真人做人爱边吃奶动态| 色播亚洲综合网| 日本-黄色视频高清免费观看| 禁无遮挡网站| 国产亚洲精品久久久久久毛片| 久久亚洲真实| 欧美精品啪啪一区二区三区| 九色成人免费人妻av| 国产在视频线在精品| 精品人妻视频免费看| 韩国av在线不卡| 一区二区三区激情视频| www.www免费av| 日本黄色视频三级网站网址| 久久久久国内视频| 国语自产精品视频在线第100页| 亚洲性夜色夜夜综合| 天堂网av新在线| 男女下面进入的视频免费午夜| 99在线视频只有这里精品首页| 欧美精品啪啪一区二区三区| 亚洲性夜色夜夜综合| 成人综合一区亚洲| 国产蜜桃级精品一区二区三区| 国产久久久一区二区三区| avwww免费| 亚洲一区高清亚洲精品| 日韩一本色道免费dvd| 亚洲黑人精品在线| 国产av麻豆久久久久久久| 色综合亚洲欧美另类图片| 亚洲欧美精品综合久久99| 3wmmmm亚洲av在线观看| 国内久久婷婷六月综合欲色啪| www.色视频.com| 久久久久久久久久久丰满 | 一区福利在线观看| 国产精品久久久久久久久免| 国产男靠女视频免费网站| 少妇人妻精品综合一区二区 | 久久久成人免费电影| 久久久久久久久久久丰满 | 久久国内精品自在自线图片| 又紧又爽又黄一区二区| 午夜福利视频1000在线观看| 国产亚洲精品久久久久久毛片| 性插视频无遮挡在线免费观看| 欧美精品啪啪一区二区三区| 床上黄色一级片| 亚洲av成人精品一区久久| 免费不卡的大黄色大毛片视频在线观看 | 少妇人妻一区二区三区视频| 别揉我奶头~嗯~啊~动态视频| 亚洲第一区二区三区不卡| 亚洲精品久久国产高清桃花| 国产精品久久久久久久电影| videossex国产| 网址你懂的国产日韩在线| 性色avwww在线观看| 悠悠久久av| 麻豆成人午夜福利视频| 人妻夜夜爽99麻豆av| a在线观看视频网站| av.在线天堂| 高清毛片免费观看视频网站| 亚洲成人免费电影在线观看| 亚洲欧美清纯卡通| 动漫黄色视频在线观看| 国产亚洲精品久久久com| 国产高潮美女av| 少妇人妻精品综合一区二区 | 精品久久久久久久末码| 精品不卡国产一区二区三区| 亚洲av免费高清在线观看| 大型黄色视频在线免费观看| 热99re8久久精品国产| 色噜噜av男人的天堂激情| 麻豆一二三区av精品| www.www免费av| 国产真实伦视频高清在线观看 | 国产黄色小视频在线观看| 国内精品美女久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av二区三区四区| 亚洲成a人片在线一区二区| 国产精品国产三级国产av玫瑰| 成人永久免费在线观看视频| 久久国内精品自在自线图片| 此物有八面人人有两片| 91麻豆av在线| 亚洲美女视频黄频| 最近最新中文字幕大全电影3| 在线免费观看的www视频| 精品久久久久久久久久久久久| 久久久久久久久大av| 可以在线观看毛片的网站| 国产精品三级大全| 91狼人影院| 久久6这里有精品| 亚洲av五月六月丁香网| 最近中文字幕高清免费大全6 | 最好的美女福利视频网| 亚洲欧美精品综合久久99| 国产精品av视频在线免费观看| 国产大屁股一区二区在线视频| 亚洲熟妇熟女久久| 久久久久久久久中文| 两个人视频免费观看高清| 国产精品久久久久久久电影| 国产美女午夜福利| 成人三级黄色视频| av黄色大香蕉| 亚洲国产欧美人成| 少妇熟女aⅴ在线视频| 俺也久久电影网| 在线观看av片永久免费下载| 午夜福利成人在线免费观看| or卡值多少钱| 亚洲一区二区三区色噜噜| 别揉我奶头 嗯啊视频| 99九九线精品视频在线观看视频| 亚洲成人久久性|