• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Resolving Deep Sub-Wavelength Scattering of Nanoscale Sidewalls Using Parametric Microscopy

    2021-10-11 05:21:36NagendraParasadYadavJiChuanXiongWeiPingLiuWeiZeWangYunCaoAshishKumarXueFengLiu

    Nagendra Parasad Yadav | Ji-Chuan Xiong | Wei-Ping Liu | Wei-Ze Wang |Yun Cao | Ashish Kumar | Xue-Feng Liu

    Abstract—The quantitative optical measurement of deep sub-wavelength features with sub-nanometer sensitivity addresses the measurement challenge in the semiconductor fabrication process.Optical scatterings from the sidewalls of patterned devices reveal abundant structural and material information.We demonstrated a parametric indirect microscopic imaging (PIMI) technique that enables recovery of the profile of wavelength-scale objects with deep sub-wavelength resolution,based on measuring and filtering the variations of far-field scattering intensities when the illumination was modulated.The finite-difference time-domain (FDTD) numerical simulation was performed,and the experimental results were compared with atomic force microscopic (AFM) images to verify the resolution improvement achieved with PIMI.This work may provide a new approach to exploring the detailed structure and material properties of sidewalls and edges in semiconductor-patterned devices with enhanced contrast and resolution,compared with using the conventional optical microscopy,while retaining its advantage of a wide field of view and relatively low cost.

    1.lntroduction

    In recent years,gallium nitride (GaN)-based semiconductor nanowire devices have attracted considerable attention owing to their attractive optoelectronic properties and wide potential applications in nanophotonics[1]-[5].The sidewalls of the patterned devices,typically coated with metal,play a significant role in the performance of these devices[6].Resolving sub-100-nm characteristics of sidewall scatterings,especially the thicknesses of the layers and particles on the sidewalls’ surfaces,in the etched pattern is one of the most important issues in the fabrication of semiconductor-patterned devices.Conventional inspection tools,such as the atomic force microscopy (AFM) and scanning electron microscopy (SEM),have high resolving power for the nanoscale inspection.However,they cannot fulfill the rigid requirements of online inspections,especially the high demand for the measurement speed over large volumes.Optical microscopes that are cost-effective and have a large imaging area and high resolving power are highly required to examine the structural and material properties of these patterned devices[7]-[10].Recently,some researchers have reported the fabrication of GaN-based devices with nanoscale patterned structures on silicon substrates,placing an even higher demand on the resolution of optical inspection tools[11],[12].

    Due to the optical diffraction limit,the achievable resolution of a conventional optical microscope is intrinsically limited to~200 nm in the visible light spectrum.Thus,the development of new modalities of optical microscopes,to achieve higher resolution in the scattering fields of semiconductor and metallic devices,especially in patterned devices,is an active area of research[13]-[15].Moving towards breaking the diffraction limit,researchers have demonstrated optical imaging of the sidewall layers in patterned devices based on structural and scattering information[16].Recently,a scatterometry technique was developed[17],which is capable of measuring nano-textured samples with nanometric accuracy over a field of view on the order of cm2.The dark-field illumination has also been reported as a better option for obtaining scattering information of sidewalls compared with the bright-field illumination[18]-[20].

    Recently,we demonstrated the utilization of a parametric indirect microscopic imaging (PIMI) system for light scattering measurement of Cu2O particles[21],and others have proven the capability of this technique for sensing the scattering signals from a sub-micrometer particle[22].As reported previously,the PIMI technique achieves high resolution of nanoscale anisotropic structures by measuring and filtering the far-field optical scattering variation upon precise modulation of the illumination polarization[22].This measurement scheme primarily takes advantage of the high sensitivity of the polarization status of scattered photons from anisotropic structured materials,especially when the sample exhibits abrupt dimensional and dielectric variations at the locations of photons that have been scattered.Such scheme of PIMI is exactly suitable for the case when inspecting the scattered optical fields from the sidewalls of semiconductor-patterned devices,where the dielectric constant abruptly changes from the top layer to the substrate layer at the sharp sidewall edges.In a previously reported proof-of-concept study,we demonstrated the suitability of the PIMI technique for imaging surface particles and line edges of semiconductor devices as well as the contrast and resolution enhancements achieved with PIMI[23],[24].

    In this paper,we investigated the PIMI measurement technique further by numerically modeling the photon scattering and imaging processes and numerically solving Maxwell’s equations for anisotropic and periodic patterned device structures[25]-[31].The finite-difference time-domain (FDTD) simulation and AFM results were used to validate the capability of PIMI to resolving the sub-wavelength features of the sidewalls in semiconductor-patterned devices.In fact,in addition to the previously reported image contrast enhancement[23],fine sub-wavelength rippled sidewall features were clearly resolved by PIMI in various semiconductor-patterned devices.These new findings by PIMI may suggest opportunities to explore detailed structural and material properties of the sidewalls and edges in semiconductor-patterned devices,with enhanced contrast and resolution compared with using the conventional optical microscopy,while retaining the advantages of a wide field of view and relatively low cost.

    2.Configuration of the PlMl System and Sample Preparation

    As shown inFig.1,the PIMI system uses an Olympus reflection microscopic system (BX51),presented inFig.1 (a),as the basic optical patch,and a polarization-modulation module with the angle precision of 0.05° is inserted in the illumination beam path.In the beam path between the objective and the imaging sensor,a quarter-wave plate (QWP) and a high-extinction-ratio polarizer are inserted,with the fast axes oriented at 45°and 90°,respectively,with respect to the paper plane.The imaging sensor is a charged couple device (CCD)manufactured by Basler (piA2400-17gm) with the 3.45-μm pixel resolution and an output dynamic range of 12 bits.The 3.45-μm pixel resolution results in the maximum potential resolving power of 34.5 nm,if the diffraction limit is broken and the Nyquist principle is fulfilled in the microscopic system when working with a 100× objective[24].Using the control and analysis software (ANISOSCOPE) developed by our group,the polarization angle of the illumination was modulated precisely from 0° to 360° with the step of 18°,and the farfield scatterings under each illumination condition were automatically recorded.The intensity variations of each pixel in the recorded images were then fitted with the theoretical prediction,as presented inFig.2.Pixels with intensity variations that could not be fitted to the theoretical prediction with a certain fitting merit index,e.g.,correction determination factor (Adj-R-square) > 0.95,were filtered out from the resulting images.Then,the filtered images were utilized to calculate the Stokes parameters[24].The measurement was performed with the dark-field illumination for two different semiconductor-patterned devices with the periodic structure shown asFigs.1 (b)and(c).

    Fig.1.Construction of the PIMI system:(a) scheme of the polarization PIMI system measurement;(b) three dimensional and (c) top view showing the periodic structure of a patterned device.

    The sample was fabricated using the buffered oxide etch method.The fabrication process involves six steps:1) A 500-nm thin SiNxfilm was deposited on a GaN wafer followed by 2) photoresist coating,3) light exposure,4) photoresist development,5) dry and removal of SiNx/SiO2(mask),and 6) hydrogen annealing[11].The width of one finger and the gap between two fingers are 80 μm and 100 μm,respectively.The thickness of each finger is 500 nm.The sample was first cleaned by an ultrasonic bath with deionized water and then air-dried for half an hour before the experiment.

    Fig.2.Measured data and fitted curve of the intensity variation of one pixel from the same position under different polarization angles.

    The difference between the conventional microscopy and PIMI is illustrated inFig.3.In the conventional optical microscopy,the shape of the far-field point spread function (PSF) is traditional,as presented inFig.3 (a),and its resolution is limited by the diffraction limit.However,in PIMI,due to the difference in the scattering information obtained with different linear polarizations,the PSF shape deviations from the one obtained by the conventional microscopy are shown inFig.3 (c).The near-to-farfield coupling-based quantification of the far-field PSF and filtration of the irrelevant noise produced from the neighboring points enable the PIMI system to resolve the structural features of the sample under measurement (SUM) beyond the diffraction limit.The conventional microscopic and PIMI dark-field images recorded with the same optics are presented inFigs.3 (b)and(d),respectively.The PIMI parameter?,which denotes the angle between the slow axis and theExaxis,resolves the structural and scattering information of the sidewall more effectively than the conventional microscopic image (I00).Various sub-wavelength scattering details from the edge of the sidewall were revealed in the?image,which is barely seen in the conventional microscopic image (I00).The intensity profiles along the white lines inFigs.3 (b)and(d)were plotted for further comparison as shown inFig.4.As expected,the intensity profile shape obtained with the conventional microscopy exhibited just one peak,whereas within the area under the peak of theI00profile,several peaks appeared in the intensity profile of the?parameter image.This suggests the capability of PIMI to sense sidewall structural information beyond the diffraction limit.

    Fig.3.Comparison of conventional imaging and PIMI systems:(a) illustration diagram of a conventional imaging system on anisotropic SUM,(b) conventional dark-field image with a 100× magnification,(c) dark-field modulated polarization parameter imaging system,and (d) PIMI dark-field image with a 100× magnification.

    The details of the PIMI measurement principle and its applications for imaging sub-wavelength nanoparticles were previously reported[24],[32].However,its utilization for the characterization of line-shaped edges was not thoroughly investigated or validated.This is due to the difficulty faced in solving Maxwell’s equations for the far-field scattering optical field under relatively complex boundary conditions in the current study.Therefore,we adopted the FDTD method to numerically solve Maxwell’s equations under PIMI measurement illumination conditions,e.g.,rotating the polarization of the illumination,to obtain the scattering distributions in the far field,represented by the parametric images used in PIMI.As presented inFig.5,farfield indirect parametric images of the depolarization (Idp),the sine of the phase difference betweenExandEy(sinδ),and?were calculated at different locations,including the straight and curved edges of the patterned device,described inFig.1.

    Fig.4.Intensity profiles along the white lines in Figs.3 (b)and (d) for the I00 image (black line) and the PIMI image (?)(red line),respectively.

    Fig.5.Numerically simulated results of the straight (top)and curved (bottom) edges of the patterned device by FDTD.All units shown on the axes are expressed in microns.

    3.Results and Discussion

    As explained in Section 2,PIMI is capable of obtaining optical images (mappings) of Stokes parameters with high resolution by measuring and analyzing the far-field optical scattering intensities of the sidewalls of patterned devices[24].These images of indirect parameters of scattered optical waves can be further exploited to obtain structural and compositional information of these sidewalls with nanoscale resolution owing to the high sensitivity of Stokes parameters to sample anisotropy.Throughout this work,images were taken with a dark-field illumination configuration,as it imparts higher sensitivity to optical anisotropy compared with the bright-field illumination[18].

    Fig.6compares the conventional microscopic and PIMI images for the same sidewall of the sample(Fig.6 (a)).InFig.6 (c),the indirect image shows a ripple of scattering intensities from the edge of the sidewall,which is not shown in the conventional microscopic image (Fig.6 (b)).A comparison between theI00and?images was performed by plotting the intensity profiles along the lines presented inFigs.6 (b)and(c)and the results are drawn inFig.6 (d).The peaks that appeared in the?image intensity profile,i.e.,the red line inFig.6 (d),clearly confirm the capability of PIMI to sense sidewall structural information beyond the diffraction limit.Moreover,it demonstrates that the edge spread function of the?image is much narrower than that of theI00image,as indicated by the two dotted circles inFig.6 (d).Interestingly,two edge spread functions appeared in the intensity profile of the?image,whereas only one was revealed in theI00image.This result indicates that PIMI owns much higher contrast and resolving power compared with using the conventional microscope.

    Fig.6.Imaging comparison between the conventional microscopy and PIMI:(a) top view of the semiconductor-patterned device (sample);(b) conventional microscopic image (I00) and (c) PIMI indirect parameter image (?) of the sidewall of the sample with a 50× magnification;(d) intensity profiles of pixels along the white lines in (b) and (c).The intensities were normalized for ease of comparison.

    Furthermore,a comparison between conventional microscopic,PIMI,and AFM imaging was performed by imaging the same area of the sample,as presented inFig.7.Also,multiple morphological features were utilized to locate the same sidewall in the conventional microscopic image (I00),PIMI image (?),and AFM image,as indicated by the rectangles and circles inFig.7 (a)toFig.7 (c).The zoomed-in images of the rectangular areas,which cover the edge of the sidewall,were taken for detailed analysis and comparison of imaging results obtained from the conventional microscopy and PIMI (Figs.7 (d)and(g)).By plotting the intensity profile along the white line across the edge of the sidewall,the resolving abilities of the conventional microscopy and PIMI are demonstrated inFigs.7 (e)and(f).Significant improvement in the resolving ability of the structural features of sidewall scatterings is shown in the intensity profile of the PIMI?image inFig.7 (f).As the PIMI?image corresponds to the polarization azimuth of the scattered optical field,it is highly influenced by anisotropy of the sidewall when the scattering light with a certain polarization status.This is reasonable,as proven by the comparison between conventional microscopic and PIMI images inFig.7.A conventional microscope only records the intensity of scattered photons from the sidewall,but the information imposed on the polarization status variation of the scattered optical fields is annihilated.Conversely,in PIMI,the anisotropic scattering effect of the sidewall on the precisely controlled polarization of the incident optical wave is recorded and further enhanced by following the fitting and filtering procedures,thus resulting in high sensitivity of the PIMI image to the structural sidewall features.

    Fig.7.Imaging comparisons of the conventional microscopy,AFM,and PIMI:(a) conventional microscopic image of the sidewall of the sample,taken with a 100× objective (N.A.0.9) in the bright-field illumination,(b) AFM image of the same area,and (c) PIMI image of the same area with the same objective as used in (a);(d) and (g) zoomed-in images of a small area from (a) conventional microscopic and (c) PIMI images for further analysis and comparison;intensity profiles along a path across the edge of the sidewall for (e) conventional microscopic and (f) PIMI images.

    4.Conclusion and Perspectives

    In summary,an optical approach,namely PIMI,was presented to measure the sub-wavelength features of the sidewalls of semiconductor-patterned devices.PIMI demonstrates high potential for metrology applications in the nano-fabrication process.A semiconductor-patterned device was investigated using the presented technique,and the sub-wavelength features on the sidewalls were resolved by recording and analyzing the polarization status of the scattered optical field.The PIMI results were compared with those of AFM and the conventional microscopy to verify the superior resolving power of PIMI.The high resolving power on the sidewalls of semiconductor devices using the proposed method opens new opportunities for the development of a high-resolution,low-cost,and easy-to-use optical metrology system for nanoscale structures in integrated semiconductor circuits.

    Disclosures

    The authors declare no conflicts of interest.

    亚洲欧洲国产日韩| 三级男女做爰猛烈吃奶摸视频| 特级一级黄色大片| av.在线天堂| 中文字幕av成人在线电影| eeuss影院久久| 国产真实伦视频高清在线观看| 免费观看a级毛片全部| 国内揄拍国产精品人妻在线| 国产成人精品婷婷| or卡值多少钱| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久精品电影小说 | 日日摸夜夜添夜夜添av毛片| av在线亚洲专区| 欧美不卡视频在线免费观看| 国产免费一级a男人的天堂| av天堂在线播放| 哪个播放器可以免费观看大片| 我的女老师完整版在线观看| 国产国拍精品亚洲av在线观看| 成年女人永久免费观看视频| а√天堂www在线а√下载| 麻豆久久精品国产亚洲av| 午夜精品一区二区三区免费看| 国产精品野战在线观看| kizo精华| 亚洲欧美成人精品一区二区| 国产精品人妻久久久久久| 国产精品野战在线观看| 成人午夜精彩视频在线观看| 欧美最黄视频在线播放免费| 青春草视频在线免费观看| 97超碰精品成人国产| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕免费在线视频6| 亚洲av不卡在线观看| 欧美成人精品欧美一级黄| 色尼玛亚洲综合影院| 免费黄网站久久成人精品| 国产精品久久电影中文字幕| 国产探花在线观看一区二区| 看免费成人av毛片| 少妇熟女aⅴ在线视频| 欧美+日韩+精品| 黄色一级大片看看| 欧美日韩综合久久久久久| 精华霜和精华液先用哪个| 日本免费a在线| 亚洲人与动物交配视频| kizo精华| 18禁黄网站禁片免费观看直播| 国产精品精品国产色婷婷| 精品一区二区三区视频在线| 中出人妻视频一区二区| 人妻少妇偷人精品九色| 久久久久久久亚洲中文字幕| 欧美日韩综合久久久久久| 丰满的人妻完整版| 99久国产av精品国产电影| 日本三级黄在线观看| 国产白丝娇喘喷水9色精品| 国产午夜精品久久久久久一区二区三区| 激情 狠狠 欧美| 在线免费观看不下载黄p国产| 国产亚洲av片在线观看秒播厂 | 一夜夜www| 美女 人体艺术 gogo| 国产色婷婷99| av天堂在线播放| 亚洲精品粉嫩美女一区| 男女视频在线观看网站免费| 日韩欧美国产在线观看| 全区人妻精品视频| 国产一区二区在线观看日韩| 国产精品女同一区二区软件| 成人鲁丝片一二三区免费| 国产伦在线观看视频一区| 欧美又色又爽又黄视频| 日日干狠狠操夜夜爽| 午夜精品国产一区二区电影 | 日日啪夜夜撸| 成人漫画全彩无遮挡| 在线免费观看不下载黄p国产| 亚洲精华国产精华液的使用体验 | 欧美极品一区二区三区四区| 成年版毛片免费区| 黑人高潮一二区| 欧美色视频一区免费| 亚洲丝袜综合中文字幕| 欧美日韩在线观看h| 97在线视频观看| 国产精品一区www在线观看| 成人美女网站在线观看视频| 午夜福利在线在线| 嫩草影院精品99| 国产真实乱freesex| 波多野结衣巨乳人妻| av天堂在线播放| 日本免费a在线| 男人狂女人下面高潮的视频| 三级经典国产精品| 国产国拍精品亚洲av在线观看| 亚洲av免费高清在线观看| 国产在视频线在精品| 黄色日韩在线| av又黄又爽大尺度在线免费看 | 国产成人a∨麻豆精品| 国内精品宾馆在线| 99热这里只有是精品在线观看| 中文字幕久久专区| 一级黄色大片毛片| 国产精品,欧美在线| 性色avwww在线观看| 日本一本二区三区精品| 日本黄大片高清| 国产精品人妻久久久影院| 国产成人aa在线观看| 日韩视频在线欧美| 国产精品一区二区性色av| 久久久久久国产a免费观看| 最近2019中文字幕mv第一页| 成人永久免费在线观看视频| 高清日韩中文字幕在线| 国产美女午夜福利| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲激情五月婷婷啪啪| 1000部很黄的大片| 欧美xxxx性猛交bbbb| 国产中年淑女户外野战色| 嫩草影院入口| 一本久久中文字幕| 久久久久网色| 欧美成人精品欧美一级黄| 免费看av在线观看网站| 美女 人体艺术 gogo| 十八禁国产超污无遮挡网站| 看黄色毛片网站| 国产av在哪里看| av天堂在线播放| 在线免费观看的www视频| 欧美一区二区精品小视频在线| avwww免费| 哪里可以看免费的av片| 国产成人a∨麻豆精品| 51国产日韩欧美| 免费一级毛片在线播放高清视频| 亚洲欧美成人精品一区二区| 简卡轻食公司| 女人十人毛片免费观看3o分钟| 午夜老司机福利剧场| 国产精品蜜桃在线观看 | 国产精品久久久久久精品电影| 午夜福利在线在线| 十八禁国产超污无遮挡网站| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av电影不卡..在线观看| 一个人看视频在线观看www免费| 亚洲电影在线观看av| av天堂在线播放| av免费观看日本| 亚洲av男天堂| 91在线精品国自产拍蜜月| 18禁在线无遮挡免费观看视频| 亚洲精品国产av成人精品| 性欧美人与动物交配| 99久久成人亚洲精品观看| 中文在线观看免费www的网站| 国产精品野战在线观看| 亚洲激情五月婷婷啪啪| 欧美性猛交黑人性爽| 久久精品久久久久久久性| 国产在线男女| 欧美三级亚洲精品| 寂寞人妻少妇视频99o| 哪个播放器可以免费观看大片| 波多野结衣高清作品| 国产精品精品国产色婷婷| 1024手机看黄色片| 99久国产av精品| 久久人妻av系列| 欧美+日韩+精品| 久久久久久九九精品二区国产| 一级黄色大片毛片| 亚洲成人中文字幕在线播放| 免费观看人在逋| 日韩一区二区三区影片| 国产亚洲av片在线观看秒播厂 | av专区在线播放| 夫妻性生交免费视频一级片| 99国产极品粉嫩在线观看| av免费在线看不卡| 免费人成视频x8x8入口观看| 国产淫片久久久久久久久| 国产在线精品亚洲第一网站| 精品久久久噜噜| 白带黄色成豆腐渣| 日本免费一区二区三区高清不卡| 欧美日韩精品成人综合77777| 一级毛片电影观看 | 黄色配什么色好看| 在线观看av片永久免费下载| 成年女人永久免费观看视频| 18禁裸乳无遮挡免费网站照片| 欧美丝袜亚洲另类| 丝袜喷水一区| 国产亚洲精品av在线| 亚洲第一区二区三区不卡| av免费在线看不卡| 狠狠狠狠99中文字幕| 最新中文字幕久久久久| 有码 亚洲区| 久久草成人影院| 日本黄大片高清| 在线观看美女被高潮喷水网站| 国产色爽女视频免费观看| 日本免费一区二区三区高清不卡| 六月丁香七月| 成人午夜精彩视频在线观看| 久久久成人免费电影| 最近手机中文字幕大全| 九草在线视频观看| 一级毛片电影观看 | 亚洲人与动物交配视频| 精品不卡国产一区二区三区| a级毛片免费高清观看在线播放| 婷婷色av中文字幕| 国产午夜福利久久久久久| 国产黄色小视频在线观看| 免费看av在线观看网站| 97超碰精品成人国产| 国产av一区在线观看免费| 一进一出抽搐动态| 精品久久久久久久久久久久久| 久久久久免费精品人妻一区二区| 一区二区三区高清视频在线| 99热只有精品国产| 国产片特级美女逼逼视频| 成人一区二区视频在线观看| 日韩av不卡免费在线播放| 久久久久久国产a免费观看| 性色avwww在线观看| 午夜久久久久精精品| 少妇熟女aⅴ在线视频| 18禁黄网站禁片免费观看直播| 日本av手机在线免费观看| 人妻久久中文字幕网| 日韩成人伦理影院| 欧美+亚洲+日韩+国产| 国产精品一及| 插阴视频在线观看视频| 蜜桃久久精品国产亚洲av| 大香蕉久久网| 国产精品一及| 最近手机中文字幕大全| 国产成人一区二区在线| 亚洲熟妇中文字幕五十中出| 亚洲国产精品久久男人天堂| 只有这里有精品99| 18禁在线无遮挡免费观看视频| 国产午夜精品论理片| 亚洲一级一片aⅴ在线观看| 国产中年淑女户外野战色| 国产精品一区二区三区四区免费观看| 国国产精品蜜臀av免费| 又爽又黄a免费视频| 大型黄色视频在线免费观看| 亚洲av免费高清在线观看| 大香蕉久久网| 91在线精品国自产拍蜜月| 亚洲丝袜综合中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 午夜激情欧美在线| 欧美人与善性xxx| 亚洲精品乱码久久久久久按摩| 一个人看的www免费观看视频| 内射极品少妇av片p| 欧美精品一区二区大全| 黄片无遮挡物在线观看| 久久精品国产自在天天线| 精品久久国产蜜桃| 久久九九热精品免费| 天堂网av新在线| 国内精品美女久久久久久| 亚洲内射少妇av| 简卡轻食公司| 丝袜喷水一区| 亚洲激情五月婷婷啪啪| 听说在线观看完整版免费高清| 麻豆av噜噜一区二区三区| 黄色配什么色好看| 亚洲一级一片aⅴ在线观看| 在线观看午夜福利视频| 又爽又黄a免费视频| 一级黄色大片毛片| 97超视频在线观看视频| 国产精品一二三区在线看| 国产高潮美女av| 免费人成视频x8x8入口观看| 国产成人freesex在线| 综合色av麻豆| 又爽又黄a免费视频| 国产午夜精品久久久久久一区二区三区| 午夜爱爱视频在线播放| 色综合色国产| 一个人免费在线观看电影| 成人综合一区亚洲| 久久婷婷人人爽人人干人人爱| 午夜激情欧美在线| av.在线天堂| av卡一久久| 国产欧美日韩精品一区二区| av天堂在线播放| 亚洲av免费在线观看| 免费av毛片视频| 欧美在线一区亚洲| 亚洲欧美日韩高清在线视频| 男女啪啪激烈高潮av片| 91麻豆精品激情在线观看国产| 免费观看人在逋| 日本三级黄在线观看| 不卡视频在线观看欧美| kizo精华| 欧美bdsm另类| 国产精品女同一区二区软件| 欧美激情在线99| 亚洲欧美日韩高清在线视频| 少妇的逼水好多| 亚洲av中文av极速乱| 偷拍熟女少妇极品色| 国产成人a区在线观看| 国产成人精品久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 午夜精品在线福利| 国产伦理片在线播放av一区 | 黑人高潮一二区| 亚洲av成人av| 国产亚洲av嫩草精品影院| 国产 一区 欧美 日韩| 亚洲精品日韩在线中文字幕 | 午夜精品一区二区三区免费看| 国语自产精品视频在线第100页| 色哟哟哟哟哟哟| 91久久精品国产一区二区三区| 又爽又黄无遮挡网站| av天堂中文字幕网| 变态另类丝袜制服| 久久精品久久久久久久性| 欧美人与善性xxx| 亚洲国产欧美在线一区| 免费观看的影片在线观看| 可以在线观看毛片的网站| 晚上一个人看的免费电影| 色哟哟哟哟哟哟| 免费搜索国产男女视频| 99在线视频只有这里精品首页| 校园春色视频在线观看| 国产成人精品久久久久久| 一级毛片久久久久久久久女| 亚洲第一电影网av| 美女脱内裤让男人舔精品视频 | 国产极品天堂在线| 日韩欧美精品免费久久| 成人综合一区亚洲| 人妻夜夜爽99麻豆av| 欧美激情在线99| 啦啦啦观看免费观看视频高清| 亚洲电影在线观看av| 美女xxoo啪啪120秒动态图| 国产又黄又爽又无遮挡在线| 国内精品美女久久久久久| 美女xxoo啪啪120秒动态图| 十八禁国产超污无遮挡网站| 日本-黄色视频高清免费观看| 一个人免费在线观看电影| 在线免费十八禁| kizo精华| avwww免费| 国产精品久久久久久av不卡| 国产色婷婷99| 国产精品av视频在线免费观看| av卡一久久| 国产成人freesex在线| 久久精品综合一区二区三区| 免费黄网站久久成人精品| 亚洲精品亚洲一区二区| 亚洲国产精品成人综合色| 国产成人精品一,二区 | 少妇的逼好多水| 一卡2卡三卡四卡精品乱码亚洲| 网址你懂的国产日韩在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产一区亚洲一区在线观看| 久久精品久久久久久久性| 国产精品1区2区在线观看.| 我要搜黄色片| 99久久人妻综合| 一进一出抽搐gif免费好疼| 久久韩国三级中文字幕| 美女被艹到高潮喷水动态| 在线免费观看的www视频| 夜夜夜夜夜久久久久| 全区人妻精品视频| 欧美一区二区国产精品久久精品| 亚洲国产精品国产精品| 久久久久久九九精品二区国产| 久久韩国三级中文字幕| 看黄色毛片网站| 久久久久久久久久黄片| 久久精品国产亚洲网站| 国产精品1区2区在线观看.| 一级毛片电影观看 | 日本欧美国产在线视频| 看免费成人av毛片| 亚洲欧洲日产国产| 成人综合一区亚洲| av国产免费在线观看| 日本欧美国产在线视频| 日日摸夜夜添夜夜添av毛片| 亚洲精品色激情综合| 直男gayav资源| 18禁黄网站禁片免费观看直播| a级毛色黄片| 欧美区成人在线视频| 免费观看人在逋| 久久久久久久久中文| 高清日韩中文字幕在线| 51国产日韩欧美| 三级男女做爰猛烈吃奶摸视频| 国产黄色小视频在线观看| 日韩视频在线欧美| 在线观看一区二区三区| 一本久久精品| 亚洲色图av天堂| 国产精品女同一区二区软件| 99热这里只有是精品50| 欧美+亚洲+日韩+国产| 久久国内精品自在自线图片| 成人高潮视频无遮挡免费网站| 丰满的人妻完整版| 三级毛片av免费| 国内精品一区二区在线观看| 爱豆传媒免费全集在线观看| 国产视频内射| 国产高潮美女av| 欧美一区二区国产精品久久精品| 亚洲第一电影网av| 亚洲精品日韩av片在线观看| 在线免费观看不下载黄p国产| 国产精品乱码一区二三区的特点| 久久中文看片网| 性色avwww在线观看| 97超碰精品成人国产| 少妇人妻一区二区三区视频| 久久精品夜色国产| 天堂影院成人在线观看| 伊人久久精品亚洲午夜| 国产精品久久久久久亚洲av鲁大| 精品午夜福利在线看| 亚洲精品影视一区二区三区av| 欧美丝袜亚洲另类| 赤兔流量卡办理| 国产午夜福利久久久久久| 一级av片app| 精品国内亚洲2022精品成人| 亚洲av二区三区四区| 国产精品无大码| 嫩草影院精品99| 99在线视频只有这里精品首页| 国产色爽女视频免费观看| av福利片在线观看| 久久精品久久久久久噜噜老黄 | av国产免费在线观看| 欧美激情在线99| 欧美丝袜亚洲另类| 看黄色毛片网站| 久久热精品热| 日韩制服骚丝袜av| 日日摸夜夜添夜夜爱| 久久久久网色| 精品久久久噜噜| 人体艺术视频欧美日本| 97人妻精品一区二区三区麻豆| 我要看日韩黄色一级片| 欧美xxxx性猛交bbbb| 久久久欧美国产精品| 天天躁夜夜躁狠狠久久av| 麻豆国产97在线/欧美| 在线免费十八禁| 可以在线观看毛片的网站| 12—13女人毛片做爰片一| 久久精品国产亚洲av香蕉五月| 欧美性猛交黑人性爽| 最近2019中文字幕mv第一页| 少妇高潮的动态图| 午夜亚洲福利在线播放| 国内精品久久久久精免费| 国内少妇人妻偷人精品xxx网站| 哪里可以看免费的av片| 亚洲欧美中文字幕日韩二区| 欧美日本视频| 亚洲成人精品中文字幕电影| 超碰av人人做人人爽久久| 国产一级毛片在线| 亚洲人成网站在线观看播放| 中文字幕av成人在线电影| 97在线视频观看| 日韩亚洲欧美综合| 国产探花在线观看一区二区| 国内精品美女久久久久久| 一边亲一边摸免费视频| av女优亚洲男人天堂| 欧美变态另类bdsm刘玥| 午夜福利在线在线| 亚洲欧洲日产国产| 午夜福利在线观看吧| 免费看日本二区| 白带黄色成豆腐渣| 丰满的人妻完整版| 亚洲av免费高清在线观看| 黄色欧美视频在线观看| 中文字幕av成人在线电影| 欧美性猛交╳xxx乱大交人| 美女高潮的动态| 婷婷亚洲欧美| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 国产在视频线在精品| 不卡一级毛片| 狂野欧美激情性xxxx在线观看| 久久久国产成人免费| 国产伦精品一区二区三区四那| 你懂的网址亚洲精品在线观看 | www.av在线官网国产| 日韩制服骚丝袜av| 老司机影院成人| 97超碰精品成人国产| 亚洲国产精品sss在线观看| 国产成人a∨麻豆精品| 天堂影院成人在线观看| 日本黄色视频三级网站网址| 男女边吃奶边做爰视频| 久久99热6这里只有精品| 少妇熟女aⅴ在线视频| 久久久久久久久大av| 国产精品美女特级片免费视频播放器| 国产亚洲精品av在线| av国产免费在线观看| 亚洲欧美清纯卡通| 成人一区二区视频在线观看| 久久人人精品亚洲av| 少妇猛男粗大的猛烈进出视频 | 少妇的逼水好多| 哪个播放器可以免费观看大片| 国产成人影院久久av| 中国美白少妇内射xxxbb| 久久这里只有精品中国| 最近手机中文字幕大全| 国产成人一区二区在线| 中文精品一卡2卡3卡4更新| 最近的中文字幕免费完整| 日日摸夜夜添夜夜添av毛片| 男女做爰动态图高潮gif福利片| 三级毛片av免费| 日本黄色视频三级网站网址| 两个人视频免费观看高清| 国产探花在线观看一区二区| 中文精品一卡2卡3卡4更新| 国产色爽女视频免费观看| 97人妻精品一区二区三区麻豆| 又爽又黄无遮挡网站| 大型黄色视频在线免费观看| 久久精品夜色国产| 村上凉子中文字幕在线| 欧美成人精品欧美一级黄| 久久精品夜夜夜夜夜久久蜜豆| 一区二区三区四区激情视频 | 国内揄拍国产精品人妻在线| 国产乱人偷精品视频| 国产高清视频在线观看网站| 99热精品在线国产| 精华霜和精华液先用哪个| 特大巨黑吊av在线直播| 91aial.com中文字幕在线观看| 晚上一个人看的免费电影| 我的老师免费观看完整版| 一级黄片播放器| 91aial.com中文字幕在线观看| 国产单亲对白刺激| 中文欧美无线码| 国产一级毛片在线| 精品人妻视频免费看| 女的被弄到高潮叫床怎么办| 高清日韩中文字幕在线| 麻豆一二三区av精品| a级毛片免费高清观看在线播放| 国产激情偷乱视频一区二区| 97在线视频观看| 亚洲最大成人中文| 春色校园在线视频观看| 亚洲一区二区三区色噜噜| 日本撒尿小便嘘嘘汇集6| 久久精品久久久久久噜噜老黄 | 亚洲av二区三区四区| 99在线视频只有这里精品首页| 久久99精品国语久久久| 欧洲精品卡2卡3卡4卡5卡区| 国产成人精品婷婷| 中国美白少妇内射xxxbb| 女人十人毛片免费观看3o分钟| 日韩国内少妇激情av| 亚洲欧美清纯卡通| 日韩精品青青久久久久久| 国产在视频线在精品| 岛国在线免费视频观看|