• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surface plasmon resonance characteristics of a graphene nano-disk based on three-dimensional boundary element method

    2021-10-10 09:46:50WANGShuoHUBinLIUJuan
    中國光學(xué) 2021年5期
    關(guān)鍵詞:化學(xué)勢譜線圓盤

    WANG Shuo,HU Bin,LIU Juan

    (School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China)

    * Corresponding author,E-mail: hubin@bit.edu.cn

    Abstract: Compared with the commonly used simulation algorithms such as Finite Element Method (FEM)and Finite-Difference Time-Domain (FDTD) method, the Boundary Element Method (BEM) has the advantages of high accuracy, small memory consumption, and ability to deal with complex structures. In this paper,the basic principle of three-dimensional BEM is given, the corresponding program based on C++ language is written, and the Surface Plasmon Resonance (SPR) characteristics of a graphene nano-disk structure are studied. The Scattering Cross-Section (SCS) spectral lines of a graphene nano-disk under different chemical potentials, as well as the distributions of electromagnetic fields at the resonance wavelengths are calculated. The electromagnetic response of the graphene nano-disk in the infrared band is analyzed. In addition, considering the common corrugations of graphene materials caused by defects during processing, we study the influence of the geometric parameters of a convex structure in the center of the graphene nano-disk on the resonance intensity, wavelength and field distributions. A spring oscillator model of charge movement is used to explain the simulation results.

    Key words: three-dimensional boundary element method; graphene; surface plasmon resonance; scattering characteristics

    1 Introduction

    When light is incident on the metal surface, the free charges in the metal will be driven by the incident light field to form collective oscillations with strong scattering, absorption or coupling. This characteristic is called Surface Plasmon Polaritons(SPPs) resonance. The SPPs have a strong local field enhancement effect. Because their transmission wavelength is smaller than that of incident light, they can be used in optical waveguide[1], lithography[2]and other fields. When the metal size is reduced to tens or hundreds of nanometers, the electromagnetic wave transmitted along the surface will be confined on the surface, generating Localized Surface Plasmonic Resonance (LSPR). Since the resonance wavelength, resonance intensity and scattering spectrum of LSPR can be modulated by the material, shape and other factors of nanostructures,LSPR has been widely studied and applied in the fields such as biosensing[3], energy[4]and information[5].

    Graphene is a two-dimensional crystal made of a single layer of carbon atoms linked into honeycomb lattices[6], and is a good LSPR material with strong local field enhancement effect and low loss.In addition, the properties of graphene can be adjusted by the methods such as chemical doping and applied electric field, so graphene can be made into a new type of LSPR optical device with external modulation[6]. Graphene has a broad application prospect in optical waveguides[7-9], biosensors[10], metasurfaces[11], metamaterials[12,13], photoelectric devices[14]and other optical fields. Graphene nanodisk is a commonly used graphene structure. C.X.Cong et al.successfully prepared an ordered graphene nanodisk array by combining nanospheric lithography with reactive ion etching[15]. Sukosin Thongrattanasiri et al. investigated the application of graphene nanodisks in optical absorption and demonstrated a periodic graphene nanodisk array capable of achieving 100% optical absorption[16]. Zheyu Fang et al.proposed a tunable optical absorber based on graphene nanodisks and investigated the relationship between its absorption characteristics and the size, spacing and chemical potential of the nanodisks[17]. Hugen Yan et al. studied the coupling effect of graphene nanodisks and proved that different coupling modes would lead to different electromagnetic responses[18]. Jialong Peng et al. reported the study of a tunable terahertz half-wave plate based on coupled graphene nanodisks, using a reflective structure to achieve the function of half-wave plate[11]. Lauren Zundel et al. achieved infrared molecular sensing with subwavelength-level spatial resolution by utilizing the electrical tuning properties of the plasmon polaritons of graphene nanodisk arrays[19]. Vasilios D. Karanikolas et al. studied the role of graphene nanodisks between quantum emitters and demonstrated that the strong resonance of graphene nanodisks could increase the interaction distance between quantum emitters by an order of magnitude[20].

    However, all of these studies focused on the ideal planar graphene. As a kind of flexible material,graphene can produce convex/concave structures,corrugations and other non-planar defects in the machining process.

    Meanwhile, with the progress of modern micro-nano machining technique, the three-dimensional structures with surface corrugations can also be fabricated by artificial stretching, squeezing, mechanical vibration and other methods, and their dimensional parameters can be controlled[21-23]. These three-dimensional structures can also modulate the SPP resonance of graphene. Penghong Liu et al.studied the SPP resonance mode of wedge-shaped graphene waveguides and obtained the SPP propagation constants and local field distributions in different modes[8]. Slipchenko et al. studied the SPP reflection properties of corrugated graphene layers and quantitatively described the effect of corrugations on the reflection intensity[24]. Shengxuan Xia et al. demonstrated the tunable electromagnetically-induced transparency of sinusoidal graphene layers[25].Li Wang et al. investigated the LSPR properties of bent graphene nanoribbon arrays molded on soft substrates and discovered a new decoupling mechanism[26]. However, the above studies were all based on two-dimensional structures. There are few reports on the non-planar graphene with a three-dimensional defect structure.

    In this paper, the three-dimensional boundary element method (3D-BEM or BEM) was used to study the SPR properties of flat and convex graphene nanodisks. Compared with other simulation algorithms in common use, the 3D-BEM can simplify the calculation of three-dimensional objects into the solution of the surface field of objects,that is, it can reduce the three-dimensional calculation to two-dimensional calculation. Therefore, this method can reduce the occupation of computer resources, and improve the calculation speed. We have written a 3D-BEM numerical calculation program based on C++ language. From the calculation results, it can be seen that the incident light in the mid-infrared band can stimulate the SPR phenomenon of graphene structure. By adjusting the electrochemical potential of graphene, we found that the resonance wavelength, the scattering intensity, and the FWHM (Full Width at Half Maximum) of the spectral lines all changed regularly. By adding a convex structure to the graphene structure, the scattering spectrum can also be shifted. We have made necessary explanation of the change law given in this paper by using the law of charge motion and the spring oscillator model. Our research will help understand the LSPR properties of graphene, and also expand the application of BEM algorithm.

    2 3D-BEM theory

    The schematic of scattering in three-dimensional space is shown in Fig. 1. In an isotropic free space, there is a three-dimensional scatterer, which is hit by infinite incident light. The scatterer surfaceSdivides the scatterer space into two parts, namely the outer regionV2and the inner regionV1. The outer normal vector of the scatterer is →n. The refractive index, relative dielectric constant and permeability of the regionV1aren1,ε1andμ1, respectively. The refractive index, relative dielectric constant and permeability of the regionV2aren2,ε2andμ2, respectively.

    Fig. 1 Schematic of three dimensional scattering圖 1 三維空間散射示意圖

    Fig. 2 Graphene model and surface-element division method (a) Graphene nanodisk model; (b) convex graphene nanodisk model; (c) mesh generation of graphene nanodisk model; (d) outer normal vectors of the meshes generated in graphene nanodisk(shown by blue arrows)圖 2 石墨烯模型以及面元劃分方法(a)石墨烯圓盤模型;(b)凸起石墨烯圓盤模型;(c)石墨烯圓盤建模的網(wǎng)格劃分;(d)石墨烯圓盤所建網(wǎng)格的外法向矢量(藍(lán)色箭頭所示,見網(wǎng)絡(luò)彩圖)

    Fig. 3 Flow chart of boundary element method圖 3 邊界元算法流程圖

    By combining the classical Maxwell's equations with Green's function of vector potential, the following equations can be derived to show the distribution of electric and magnetic fields in the whole space[27]:

    Next, we present the numerical method ofFirstly, the vector equations (3)and (4) are decomposed inx,yandzdirections to obtain 6 scalar equations[29], as shown in the appendix. Secondly, the surface of the scatterer is discretized and then divided intoMsurface elements.By using the values of electric and magnetic fields at the center of a surface element to approximate the electric and magnetic field distributions of the whole surface element, we can express the 6 scalar integral equations in the form of summation. Thus we can obtain the linear equation set of 6Munknowns[29], namely A6M×6MX6M=B6M. The 6Munknowns are the three components ofandin every surface elements, respectively, as shown in the appendix. Finally, by solving the linear equations, we can obtain the electric and magnetic field values of each surface element. It is worth noting that the calculated electric field value is only the tangential component of the actual electric field.

    After the distributions of electric and magnetic fields on the surface of the scatterer are obtained,the magnetic field at any point in space can be obtained by further discretizing the equation (1) and equation (2). Then, by using Maxwell's equationthe electric field at this point can be calculated, and the distributions of electric and magnetic fields in the whole space can be obtained.After that, we can calculate other physical quantities, such as Scattering Cross Section (SCS), Absorption Cross Section (ACS), etc.

    The SCS and ACS can be calculated by using the equations (5) and (6)[30]:

    whereWsandWaare the scattering power and the absorption power. They can be calculated by using a closed surfaceГsurrounding the scatterer and the energy flux density (Poynting vector):

    3 Modeling of the graphene nonadisk

    We first consider the graphene nanodisk structure, with a diameter ofd=60 nm, located in thex-yplane, as shown in Figure 2(a). To study the graphene structure with a defect, we assume that there is a bulge at the center of the graphene nanodisk. This convex structure can be obtained by the mechanical vibration of a resonator[23]. The height of the bulge ish, as shown in Figure 2(b). The width of the bulge, marked as “w”, is defined as the length when the height is changed intoh/exp(1). Then the coordinates of the wrinkled nanodisk in thezdirection can be described as:

    Next, we need to divide the surface elements of the graphene nonodisk structure through mesh generation. In the modeling process, the graphene thickness is set as 1 nm[32]. We consider the graphene nanodisk as a cylindrical model with very small height. Since the thickness of two-dimensional graphene material is very small relative to the size of the whole structure, the calculation instability can be caused easily. Therefore, an appropriate mesh generation method should be selected. The mesh generation here mainly follows the following two principles. Firstly, the aspect ratio of each mesh must not be too large. The maximum aspect ratio in this paper is 1.5:1. The structural change in the edge area is more complex than that in the central area, so the edge meshes should be denser. According to these two principles, meshes are generated in the disk, as shown in Figure 2(c). The upper and lower surfaces are divided into 11 rings. The width of each ring and the number of surface elements are shown in Table 1.

    The flank is divided into two layers, each of which has 116 surface elements. Therefore, there are 1224 surface elements in total. The position of the center point of each face element and its outer normal vector are shown in Figure 2(d) (Color online). The mesh generation in a convex structure is realized by projecting the meshes of flat disk structure onto the convex structure along thezaxis.

    Tab. 1 Parameters of mesh generation on the upper and lower surfaces of graphene nanodisk表 1 石墨烯納米圓盤上下表面網(wǎng)格劃分參數(shù)

    The optical parameters of graphene are calculated using the method in the reference [32]. Its dielectric constant can be calculated by the following equation:

    whereε0is the vacuum dielectric constant,ωis the angular frequency of the incident light,σis the conductivity of graphene, i is the imaginary unit, andtis the thickness of graphene. The conductivity of graphene in the far-infrared and terahertz bands can be expressed as[7,33]:

    whereeis the charge per unit,EFis the chemical potential of graphene, andτis the carrier relaxation time.

    Our numerical calculation program is written in C++ language. Under the sub-surface element condition mentioned above, the program occupies about 1.6 G of memory. It takes about 5 minutes for an ordinary personal computer (configuration: i7-8550U,4.0 GHz, 8G RAM) to calculate a wavelength point.The calculation process of the whole algorithm is shown in Figure 3.

    4 Simulation results and analysis

    4.1 Comparison of the results from BEM and FDTD

    In order to verify the correctness of the threedimensional boundary element program written, we first calculated the SCS spectrum of graphene nanodisk in the wavelength range of 5~11 μm and the electric and magnetic field distributions at the resonant position, and then compared the results obtained by BEM with those obtained by the commercial software Lumerical FDTD Solutions based on Finite-Difference Time Domain (FDTD) method. The graphene disk under calculation has a diameter ofd=60 nm and a chemical potential ofEF=0.25 eV.The incident light perpendicular to the disk and incident along the ?zaxis is linearly polarized light,and the polarization direction of electric field is along theyaxis. The normalized SCS spectra of the two algorithms are shown in Figure 4(a) and Figure 4(d) respectively. It can be seen that, in the calculated band, only one scattering resonance peak is obtained in either of the two algorithms. The resonant peaks in BEM and FDTD are at 7.04 μm and 7.3 μm, respectively, with the relative error of 3.6%.

    The electric and magnetic field distributions calculated by BEM and FDTD under the resonant wavelength are shown in Fig. 4(b)~4(c) and 4(e)~4(f), respectively. By comparison, it can be seen that the electric and magnetic field distributions obtained by the two methods are very similar.For the electric field, the corresponding light fields are mainly concentrated in the two areas along the polarization direction of the incident light (ydirection). The magnetic field distribution is perpendicular to the electric field. This is mainly because the electric field component of the incident light forces the free electrons inside the graphene to oscillate collectively in the direction of electric field to form the plasmon resonance. Therefore, the resonant peaks in Figures 4(a) and 4(d) are the enhanced scattering phenomena caused by the SPR of graphene.

    Fig. 4 Comparison of the results from BEM and FDTD. (a) SCS spectrum obtained by BEM; (b) magnetic field distribution obtained by BEM under the resonance wavelength; (c) electric field distribution obtained by BEM under the resonance wavelength; (d) SCS spectrum obtained by FDTD; (e) magnetic field distribution obtained by FDTD under the resonance wavelength; (f) electric field distribution obtained by FDTD under the resonance wavelength圖 4 邊界元算法與有限時域差分算法結(jié)果對比圖。(a)邊界元獲得的SCS譜線;(b)共振波長下邊界元獲得的磁場分布;(c)共振波長下邊界元獲得的電場分布;(d)有限時域差分獲得的SCS譜線;(e)共振波長下有限時域差分獲得的磁場分布;(f)共振波長下有限時域差分獲得的電場分布

    4.2 Dependence of SCS spectrum on the chemical potential of graphene

    One advantage of graphene over other materials is that its chemical potential can be dynamically adjusted by an applied electric field and other methods. Therefore, we calculated the influence of the change of chemical potential on the scattering characteristics of a graphene disk, without changing other parameter settings as shown in Figure 4. The chemical potentialEFwas set as 0.1, 0.15, 0.2 and 0.25 eV respectively. The calculation results are shown in Figure 5(a). It can be seen from the calculation results that, with the increase of chemical potential, the resonance wavelength is blue-shifted, the scattering intensity gradually increases, and the resonance peak width gradually decreases.

    According to the reference [17], the relationship between the plasmon resonance frequency and electrochemical potential of graphene is ωp~(EF/D)1/2. Therefore, as the chemical potential of graphene increases, the resonant angular frequency will increase and the resonant wavelength will be blue-shifted. The number of charge carriers and the density of free charges gathered at both ends of the disk will increase with the chemical potential of graphene, leading to stronger scattering field intensity. The spring oscillator model presented in[32, 34] can explain many SPR phenomena. The scattering spectrum and absorption spectrum in the models meet the following linear law:

    whereris the parameter related to structure and material, and Γaand Γsare the absorption coefficient and scattering coefficient respectively.

    Since the SCS spectrum obtained by calculation is similar to the ACS spectrum, we only use the SCS spectrum to study the properties of graphene structure. By fitting the equations (12) and (13) with the ACS spectrum and SCS spectrum, we can obtain the scattering coefficientГsand the absorption coefficientГa. It is worth noting that since only the equation (13) is used to fit the scattering spectrum to obtain three relevant parameters, we should pay attention to the way of fitting and combine equation(13) with equation (12) in order to obtain accurate results. Ifω=ω0, both the SCS and ACS will be peaks, and the results will be as follows:

    From the above two equations,andcan be obtained.Cabs_maxandCsca_maxcan be obtained from the scattering and absorption spectra. Therefore, we can fit the one parameterГsonly through equation (13), and obtain accurate results.

    In Fig. 5(b), we show the relationship between the scattering coefficientГsand the chemical potential. It can be seen thatГsincreases with the chemical potential, which further explains the change rule of the scattering intensity. Also as shown in [32], for the narrow-band model structure of graphene in our paper, the scattering coefficient is directly proportional to the square of the charge involved in resonance and inversely proportional to the square of the resonance wavelength. This can also explain the change rule of the scattering coefficient. According to Reference [32], the half peak width of the scattering spectrum is directly proportional to the extinction coefficientГand the square of the wavelengthλ, that is, Δλ~Γ·λ2, where the extinction coefficientГis the sum of the scattering coefficientГsand the absorption coefficientГa. The relationship between the physical quantity ?!う?and the chemical potential is given in Figure 5(c). The physical quantity will decrease with the increase of chemical potential, thus explaining the change rule of half peak width.

    Fig. 6 Influence of convex shape on SCS spectrum. (a) Relationship between SCS spectrum and convex height; (b) relationship between SCS spectrum and convex width圖 6 凸起的形狀對SCS譜線的影響。(a)SCS譜線與凸起高度的關(guān)系;(b)SCS譜線與凸起寬度的關(guān)系

    4.3 Scattering spectrum changing with convex shape

    In practical use, graphene may exhibit structural deformation due to the reasons mentioned earlier.Therefore, we also considered the influence of nonplanar convex structure on the LSPR of graphene.We calculated a disk-shaped planar graphene structure (as shown in Figure 4) with a bulge in the center and a chemical potential ofEF=0.2 eV. At first,the total width of the bulge was set as 20 nm, and its height was set as 10, 20, 30, and 40 nm respectively.The SCS spectrum results were obtained, as shown in Figure 6(a). We found that, with the increase of the bulge height, the resonance peak moved to the long-wave direction, resulting in a red shift. At the same time, the resonance peak intensity increased.The red shift of the resonance wavelength was mainly caused by two reasons. First, with the increase of the bulge height, the path of charge movement from one end of the graphene structure to the other end became longer[32]. Second, as the charge passed through the bulge, it could only be driven by the component of the electric field of the incident light in the direction of the path. Therefore, the increase of the bulge height led to the decrease of the charge-driving force, thereby slowing down the response of a charge to the incident light field[26]. That is to say, the bulge hindered the movement of the charge. Both reasons led to a longer cyclical movement period of the free charge, a lower resonance frequency and a red shift of the resonance wavelength. On the other hand, the increase of scattering intensity was possibly caused by the increase of the bulge height, which might lead to the increase of charge carriers inside the graphene and the increase of the charges gathering at both ends of the graphene structure to form a stronger scattering field. From this, we inferred that if the height of the bulge was fixed and its width was changed, a similar changing trend could also be generated to cause a resonance red shift and enhanced scattering. Then we did the calculation and obtained the results shown in Figure 6(b). We set the height ash=30 nm and the width changing from 10 nm to 20.5 nm. The calculation results were similar to what we expected, except that the SCS spectrum had no significant change until the bulge width was more than 18 nm.

    5 Conclusion

    In this paper, the SPR properties of the graphene nanodisk were studied by using the boundary element method. We established the numerical model of the geometrical structure of a graphene nanodisk, wrote a 3D-BEM algorithm based on C++language, and calculated the scattering spectrum of the nanodisk and its electric and magnetic field distributions at resonant wavelength.At first, we compared the results obtained by BEM with those obtained by the commercial software based on FDTD and verified the correctness of our program. Then we calculated the scattering spectra of the graphene disk under different chemical potentials. We found that with the increase of chemical potential, the resonance wavelength was blue-shifted, the scattering intensity increased, and the resonance peak width decreased gradually. Finally, we added a convex structure to the original graphene nanodisk model,and considered the influence of the convex structure on the scattering properties of graphene. Our research will contribute to the understanding of the physical law of graphene LSPR and the influence of surface corrugations on the LSPR phenomenon.

    ——中文對照版——

    1 引 言

    當(dāng)光照射到金屬表面,金屬內(nèi)的自由電荷在入射光場的驅(qū)動下形成集體震蕩,表現(xiàn)出強(qiáng)烈的散射、吸收或者耦合,這個特性稱為表面等離子體激元共振(Surface Plasmon Polaritons, SPPs)。SPPs具有很強(qiáng)的局域場增強(qiáng)效應(yīng),由于其傳導(dǎo)波長比入射光小,因此可以應(yīng)用于光波導(dǎo)[1]、光刻[2]等領(lǐng)域。當(dāng)金屬尺寸縮小至幾十納米或者幾百納米時,沿表面?zhèn)鲗?dǎo)的電磁波將會被束縛在表面,形成局域表面等離子體共振(Localized Surface Plasmonic Resonance, LSPR)。由于LSPR的共振波長、共振強(qiáng)度、散射譜線等能夠通過改變納米結(jié)構(gòu)的材料、形狀等因素調(diào)節(jié),所以在生物傳感[3]、能源[4]、信息[5]等領(lǐng)域被廣泛研究和應(yīng)用。

    石墨烯是由碳原子按蜂窩晶格鏈接而成的單原子層二維晶體[6],是一種良好的LSPR材料,可以實現(xiàn)超強(qiáng)的局域場增強(qiáng)效應(yīng),同時損耗較低,此外,石墨烯的性質(zhì)能夠通過化學(xué)摻雜或者外加電場等方法進(jìn)行調(diào)節(jié),因而石墨烯可以用于實現(xiàn)外部調(diào)制的新型LSPR光學(xué)器件[6],在光波導(dǎo)[7–9]、生物傳感[10]、超表面[11]、超材料[12,13]、光電器件[14]等光學(xué)領(lǐng)域具有廣闊的應(yīng)用前景。石墨烯納米圓盤是一種常用的石墨烯結(jié)構(gòu),C.X.Cong等人通過納米球光刻技術(shù)與反應(yīng)離子刻蝕技術(shù)相結(jié)合,成功地制備了有序石墨烯納米盤陣列[15]。Sukosin Thongrattanasiri等人研究了石墨烯納米圓盤在光學(xué)吸收中的應(yīng)用,展示了一種能夠?qū)崿F(xiàn)100%光學(xué)吸收的周期性石墨烯納米圓盤陣列[16]。Zheyu Fang等人提出了基于石墨烯納米圓盤的可調(diào)節(jié)光學(xué)吸收器,研究了其吸收特性與納米盤尺寸、間距以及化學(xué)勢的關(guān)系[17]。Hugen Yan等人研究了石墨烯納米圓盤的耦合效應(yīng),證明了不同的耦合方式會帶來不同的電磁響應(yīng)[18]。Jialong Peng等人報道了基于耦合石墨烯納米盤的可調(diào)太赫茲半波片,采用反射式結(jié)構(gòu)實現(xiàn)了半波片的功能[11]。Lauren Zundel等人利用石墨烯納米圓盤陣列的等離激元的電調(diào)諧特性,實現(xiàn)了亞波長空間分辨率的紅外分子傳感[19]。Vasilios D. Karanikolas等人研究了石墨烯納米盤在量子發(fā)射極之間的作用,研究表明石墨烯納米盤的強(qiáng)烈共振能夠使量子發(fā)射器之間的相互作用距離提高一個數(shù)量級[20]。

    然而,以上研究全部針對于理想的平面石墨烯。石墨烯作為一種柔性材料,在加工過程中會產(chǎn)生凸起、凹陷、褶皺等非平面的缺陷結(jié)構(gòu),同時,隨著現(xiàn)代微納加工技術(shù)的進(jìn)步,也可以通過人為拉伸、擠壓或者機(jī)械振動等方法,來制造具有表面褶皺的三維結(jié)構(gòu),并可控制它們的尺寸參數(shù)[21-23]。這些三維結(jié)構(gòu)對石墨烯的表面等離激元共振也會產(chǎn)生調(diào)制作用。Penghong Liu等人研究了楔槽形狀的石墨烯波導(dǎo)的SPPs模式,獲得了不同模式下的表面等離子體激元傳播常數(shù)以及局域場分布[8]。Slipchenko等人研究了帶波紋的石墨烯層的SPPs反射特性,定量描述了褶皺對反射強(qiáng)度的影響[24]。Shengxuan Xia等人通過正弦型石墨烯層證明了可調(diào)節(jié)的電磁誘導(dǎo)透明特性[25]。Li Wang等人研究了在軟基底上塑造的彎折石墨烯納米帶陣列的LSPR特性,并發(fā)現(xiàn)了新的解耦合機(jī)制[26]。然而,以上工作全部是二維結(jié)構(gòu),對于存在三維缺陷結(jié)構(gòu)的非平面石墨烯的研究還鮮有報道。

    This sounded like a reasonable idea to all of us kids, so we kept on going with the stories. My mom knew the true story, though. Bobby s mom was a single parent, and she suspected that they just couldn t afford the Easter Bunny.

    本論文采用三維邊界元算法(three dimensional Boundary Element Method,3D-BEM or BEM),研究了平坦及帶凸起石墨烯納米圓盤的表面等離子體共振特性。相對于其他常用仿真算法,3D-BEM能夠?qū)⑷S物體的計算簡化為物體表面場的求解,即將三維計算降低到了二維,能夠減小計算機(jī)資源的占用,從而提高計算速度。編寫了基于C++語言的三維邊界元數(shù)值計算程序,從計算結(jié)果可以看出,中紅外波段的入射光能夠激發(fā)石墨烯結(jié)構(gòu)的表面等離子體共振現(xiàn)象。通過調(diào)節(jié)石墨烯的電化學(xué)勢發(fā)現(xiàn),共振波長,散射強(qiáng)度,譜線的半高寬都會發(fā)生規(guī)律性變化。通過對石墨烯結(jié)構(gòu)加入凸起結(jié)構(gòu),也會使散射譜線發(fā)生移動。本文從電荷運動規(guī)律,以及借助彈簧振子模型,對文中的變化規(guī)律進(jìn)行了必要的解釋。本文研究將有助于理解石墨烯的LSPR特性,同時也推廣了BEM算法的應(yīng)用范圍。

    2 三維邊界元算法理論

    本文考慮的三維空間散射問題如圖1所示。在各向同性的自由空間中,存在一個三維的散射物體。無窮遠(yuǎn)的入射光照射到散射體上。散射體表面S將空間分成兩部分,散射體外部區(qū)域V2和內(nèi)部區(qū)域V1。散射體的表面外法向量為區(qū)域V1和區(qū)域V2的折射率、相對介電常數(shù)、磁導(dǎo)率分別為n1、ε1、μ1,n2、ε2、μ2。

    從經(jīng)典麥克斯韋方程組出發(fā),結(jié)合矢量格林定理,可以推導(dǎo)出以下方程,用以表示整個空間的電場磁場分布情況[27]:

    獲得了散射體表面上的電場磁場分布之后,再進(jìn)一步離散化方程(1)和(2),便可以獲得空間中任意一點的磁場。然后利用麥克斯韋方程可以計算得到該點的電場,進(jìn)而獲得整個空間的電場磁場分布。之后,可以計算其他物理量,比如散射截面(Scattering Cross Section,SCS)、吸收截面(Absorption Cross Section,ACS)等。

    散射截面和吸收截面可以由式(5)和式(6)獲得[30]:

    其中Ws與Wa為散射功率和吸收功率,其可以選擇一個包圍散射體的閉合表面Г,借助能流密度(坡印廷矢量)來計算獲得:

    3 石墨烯納米圓盤的建模

    首先考慮石墨烯納米圓盤形的結(jié)構(gòu),其直徑為d=60 nm,位于x-y平面內(nèi),如圖2(a)所示。針對有缺陷的石墨烯結(jié)構(gòu),考慮石墨烯納米圓盤中心處有一個凸起,這種凸起型結(jié)構(gòu)可以通過諧振器的機(jī)械振動來實現(xiàn)[23],凸起高度為h,如圖2(b)所示。定義凸起寬度為高度變?yōu)閔/exp(1)時的長度,標(biāo)記為w,則該褶皺石墨烯納米圓盤在z方向上的坐標(biāo)可以描述為:

    側(cè)面分為兩層,每一層分別為116個面元。因此所有網(wǎng)格面元合計共1224個。面元中心點位置及外法向向量如圖2(d)(彩圖見期刊電子版)所示。針對凸起結(jié)構(gòu)的網(wǎng)格劃分是在平整圓盤結(jié)構(gòu)的基礎(chǔ)上,沿z軸往凸起結(jié)構(gòu)做投影產(chǎn)生的。

    石墨烯的光學(xué)參數(shù)計算采用文獻(xiàn)[32]中的方法。其介電常數(shù)可以由下式獲得:

    其中ε0為真空介電常數(shù),ω為入射光的角頻率,σ為石墨烯的電導(dǎo)率,i為虛數(shù)單位,t為石墨烯厚度。石墨烯電導(dǎo)率在遠(yuǎn)紅外及太赫茲波段可以表示為[7, 33]:其中e為單位電荷電量,EF為石墨烯化學(xué)勢,τ為載流子弛豫時間。數(shù)值計算程序采用C++語言編寫,在上文所述的分面元條件下,程序占用內(nèi)存大約為1.6 G,普通的個人電腦(配置:i7-8550U,4.0 GHz,8G RAM)計算一個波長點大約需要5 min。整個算法的計算流程如圖3所示。

    4 仿真結(jié)果與分析

    4.1 邊界元算法與有限時域差分算法的結(jié)果對比

    為了驗證編寫的三維邊界元程序的正確性,首先計算了石墨烯納米圓盤在5~11 μm波長范圍內(nèi)的SCS譜線和共振峰位置處的電磁場分布,并將邊界元算法獲得的結(jié)果與基于有限時域差分算法(Finite-Difference Time Domain,F(xiàn)DTD)的商業(yè)軟 件Lumerical FDTD Solutions的 結(jié) 果 做 了 對比。所計算的石墨烯圓盤直徑為d=60 nm,化學(xué)勢為EF=0.25 eV。入射光垂直于圓盤沿?z軸方向正入射,為線偏光,電場偏振方向沿y軸方向。兩種算法的歸一化SCS譜線分別如圖4(a)和4(d)所示。可以看出,在所計算波段內(nèi),兩種算法都只得到了一個散射共振峰。邊界元算法的共振峰位置在7.04 μm,而有限時域差分算法的共振峰位置在7.3 μm,相對誤差為3.6%。

    圖4 (b)~4(c)、4(e)~4(f)分別給出了在共振峰波長下,邊界元算法和有限時域差分算法計算出的電場和磁場分布。通過對比可以看到,兩種方法獲的電場和磁場分布十分相似。對電場而言,光場主要聚集在沿入射光偏振方向(y方向)的兩個區(qū)域。而磁場分布則與電場垂直。這主要是由于入射光的電場分量使得石墨烯內(nèi)部的自由電子在電場方向產(chǎn)生集體振蕩,形成等離子體共振。因此,圖4(a)、4(d)中的共振峰是由于石墨烯的表面等離子體共振造成的散射增強(qiáng)。

    4.2 散射譜對石墨烯化學(xué)勢的依賴關(guān)系

    石墨烯材料相對于其他材料的一個優(yōu)勢在于,其化學(xué)勢可以由外加電場等加以動態(tài)調(diào)節(jié)。因此本文計算了化學(xué)勢的改變對于石墨烯圓盤散射特性的影響,其他參數(shù)設(shè)置與圖4保持一致?;瘜W(xué)勢EF分別選取0.1、0.15、0.2、0.25 eV,其結(jié)果如圖5(a)所示。由結(jié)果可以看出,隨著化學(xué)勢的增加,共振波長發(fā)生藍(lán)移,散射強(qiáng)度逐漸增強(qiáng),且共振峰的寬度逐漸減小。

    通過文獻(xiàn)[17]可知,因為石墨烯的等離子體共振頻率和電化學(xué)勢滿足以下關(guān)系:ωp~(EF/D)1/2。所以,當(dāng)石墨烯的化學(xué)勢增加時,共振角頻率增加,共振波長發(fā)生了藍(lán)移。當(dāng)石墨烯化學(xué)勢增加時,載流子的數(shù)量增多,聚集在圓片兩端的自由電荷密度增加,由此產(chǎn)生的散射場強(qiáng)度會更大,進(jìn)而增強(qiáng)了散射強(qiáng)度。文獻(xiàn)[32, 34]所展示的彈簧振子模型,可以解釋很多表面等離子體共振的現(xiàn)象。其中散射譜線與吸收譜線滿足以下線型規(guī)律:

    其中r為與結(jié)構(gòu)、材料等有關(guān)的參量,Γa與Γs別為吸收系數(shù)與散射系數(shù)。

    由于計算得到的SCS譜線與ACS譜線相似,故本文只采用SCS譜線來研究石墨烯結(jié)構(gòu)性質(zhì),通過ACS譜線與SCS譜線來擬合式(12)和(13),可以得到散射系數(shù)Γs與 吸收系數(shù)Γa。值得注意的是,由于僅使用式(13)擬合散射譜線可獲得3個相關(guān)參數(shù),需要注意擬合的方式并且結(jié)合式(12),才能獲得精確的結(jié)果。當(dāng)ω=ω0時,散射、吸收截面均為峰值,結(jié)果如下:

    圖5 (b)展示了散射系數(shù)Гs與化學(xué)勢的關(guān)系,可以看出Гs隨著化學(xué)勢的提高而提高,這也進(jìn)一步解釋了散射強(qiáng)度的變化規(guī)律。同時文獻(xiàn)[32]也表明,對于石墨烯這種窄帶模型結(jié)構(gòu),散射系數(shù)同時正比于參與共振的電荷量的平方而反比于共振波長的平方,由此也可以解釋散射系數(shù)的變化規(guī)律。在文獻(xiàn)[32]中,散射譜線的半峰寬度Δλ~?!う?,半峰寬度正比于消光系數(shù)Г與波長λ的平方,其中消光系數(shù)Г是散射系數(shù)Гs與吸收系數(shù)Гa之和,圖5(c)中給出了物理量 Γ ·λ2與化學(xué)勢的關(guān)系,化學(xué)勢的提高會引起此物理量的降低,這也解釋了半峰寬度的變化規(guī)律。

    4.3 散射譜線隨凸起形狀的變化

    在石墨烯材料的實際使用過程中,由于上文所述的原因,石墨烯會產(chǎn)生結(jié)構(gòu)上的形變,因此本文也考慮了非平面的凸起結(jié)構(gòu)對石墨烯局域等離子體共振的影響。在圖4圓盤型平面結(jié)構(gòu)的基礎(chǔ)上,計算了中心帶有凸起的石墨烯結(jié)構(gòu),其化學(xué)勢為EF=0.2 eV。首先設(shè)置凸起的總寬度為20 nm,其高度分別為10、20、30、40 nm,其SCS譜線結(jié)果如圖6(a)所示。可以發(fā)現(xiàn),隨著凸起高度的增加,共振峰的位置往長波方向移動,產(chǎn)生紅移。同時共振峰的強(qiáng)度隨之提高。共振波長紅移主要是由兩個原因?qū)е碌模湟皇请S著凸起高度的增加,電荷從石墨烯結(jié)構(gòu)的一端運動到另一端的路徑變長[32];第二,當(dāng)電荷經(jīng)過凸起的時候,入射光的電場只有在路徑方向上的分力才會對電荷產(chǎn)生驅(qū)動作用。因此當(dāng)凸起結(jié)構(gòu)的高度增加時,導(dǎo)致電荷驅(qū)動力降低,使得電荷對入射光場的響應(yīng)減緩[26]。也就是說,凸起對電荷運動起到了阻礙作用,這兩者同時導(dǎo)致自由電荷作周期性運動的周期變長,共振頻率降低,共振波長紅移。至于散射強(qiáng)度的增加,分析認(rèn)為是所設(shè)置的凸起變高之后,可能使石墨烯內(nèi)部的載流子數(shù)量增加,聚集在石墨烯結(jié)構(gòu)兩端的電荷會更多,散射場會更強(qiáng),這就導(dǎo)致散射強(qiáng)度的增加。由此也可以預(yù)想,如果固定石墨烯凸起的高度不變,而改變石墨烯凸起的寬度,也會產(chǎn)生相似的變化規(guī)律,共振紅移,散射增強(qiáng)。相關(guān)計算結(jié)果如圖6(b)所示。固定高度h=30 nm,寬度從10 nm變化到20.5 nm,結(jié)果與預(yù)期相似,不同的是,寬度在18 nm以下時,SCS譜線變化緩慢,而超過18 nm之后,SCS譜線才有明顯變化。

    5 結(jié) 論

    本文采用邊界元算法研究了石墨烯納米圓盤的表面等離子體共振特性。針對石墨烯納米圓盤的幾何結(jié)構(gòu)進(jìn)行數(shù)值建模,編寫了基于C++語言的三維邊界元算法,并計算了納米圓盤的散射譜和共振波長下的電磁場分布。首先將邊界元與基于有限時域差分算法的商業(yè)軟件做了結(jié)果對比,驗證程序的正確性。然后計算了石墨烯圓盤在不同化學(xué)勢下的散射譜線。發(fā)現(xiàn)隨著化學(xué)勢的增加,共振波長產(chǎn)生藍(lán)移,散射強(qiáng)度增強(qiáng),并且共振峰的寬度在逐漸減小。最后,在原石墨烯納米圓盤模型的基礎(chǔ)上,加入了凸起結(jié)構(gòu),研究了凸起對石墨烯散射性質(zhì)的影響。本文研究將有助于理解石墨烯表面等離子體局域現(xiàn)象的物理規(guī)律以及表面褶皺對該局域現(xiàn)象的影響。

    附錄:

    標(biāo)量化后的方程如(16)?(21)所示:

    其中P1,P2,Q1,Q2分別為:

    離散化后的方程分別如(22)?(27)所示:

    猜你喜歡
    化學(xué)勢譜線圓盤
    基于HITRAN光譜數(shù)據(jù)庫的合并譜線測溫仿真研究
    以化學(xué)勢為中心的多組分系統(tǒng)熱力學(xué)的集中教學(xué)*
    廣州化工(2020年21期)2020-11-15 01:06:10
    圓盤鋸刀頭的一種改進(jìn)工藝
    石材(2020年6期)2020-08-24 08:27:00
    μ-T圖解析及其對依數(shù)性和二元相圖的分析
    鐵合金光譜譜線分離實驗研究
    電子測試(2018年11期)2018-06-26 05:56:00
    單位圓盤上全純映照模的精細(xì)Schwarz引理
    奇怪的大圓盤
    鍶原子光鐘鐘躍遷譜線探測中的程序控制
    熱物理學(xué)中的化學(xué)勢
    基于Profibus-DP的圓盤澆鑄控制系統(tǒng)的應(yīng)用
    少妇高潮的动态图| 女生性感内裤真人,穿戴方法视频| 成人特级av手机在线观看| 午夜福利在线观看免费完整高清在 | 伊人久久精品亚洲午夜| 他把我摸到了高潮在线观看| 99国产精品一区二区三区| 亚洲av不卡在线观看| 51午夜福利影视在线观看| 香蕉av资源在线| 亚洲成人精品中文字幕电影| 国产毛片a区久久久久| 一进一出抽搐gif免费好疼| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩高清综合在线| 久久久久久国产a免费观看| 嫩草影视91久久| 伊人久久精品亚洲午夜| 亚洲在线观看片| 久久精品国产99精品国产亚洲性色| 久久久久久久精品吃奶| 亚洲熟妇中文字幕五十中出| 成人av一区二区三区在线看| 国产探花极品一区二区| 国产成+人综合+亚洲专区| 成人亚洲精品av一区二区| 99在线视频只有这里精品首页| 亚洲欧美日韩高清专用| 国产成人影院久久av| 高清毛片免费观看视频网站| 久久久久久久精品吃奶| 在线观看美女被高潮喷水网站 | 欧美一区二区国产精品久久精品| 男女下面进入的视频免费午夜| 中文字幕av成人在线电影| 国产精品一区二区三区四区免费观看 | 黄色一级大片看看| 高潮久久久久久久久久久不卡| 亚洲欧美精品综合久久99| 久久久国产成人免费| 精品久久久久久久末码| 久久6这里有精品| 欧美一区二区亚洲| 亚洲激情在线av| 97碰自拍视频| av天堂在线播放| 老熟妇仑乱视频hdxx| 99久久久亚洲精品蜜臀av| 成年女人看的毛片在线观看| 女同久久另类99精品国产91| 欧美日韩瑟瑟在线播放| 在线观看舔阴道视频| 国产欧美日韩精品一区二区| 内地一区二区视频在线| 亚洲第一欧美日韩一区二区三区| 亚洲人与动物交配视频| 中国美女看黄片| 在现免费观看毛片| 搡老妇女老女人老熟妇| 欧美性猛交黑人性爽| 久久久久久久精品吃奶| a在线观看视频网站| 国内精品久久久久久久电影| 蜜桃久久精品国产亚洲av| 可以在线观看毛片的网站| 国语自产精品视频在线第100页| 国产老妇女一区| 欧美又色又爽又黄视频| 国内揄拍国产精品人妻在线| 国产麻豆成人av免费视频| 一个人免费在线观看的高清视频| 欧美成人性av电影在线观看| 精品熟女少妇八av免费久了| 国产成人啪精品午夜网站| 亚洲在线观看片| 一个人看的www免费观看视频| 悠悠久久av| 嫩草影视91久久| 久久婷婷人人爽人人干人人爱| 丰满乱子伦码专区| www.www免费av| 亚洲av电影在线进入| 日本一二三区视频观看| a在线观看视频网站| 一边摸一边抽搐一进一小说| 亚洲最大成人av| 国产精品三级大全| 九九热线精品视视频播放| 少妇裸体淫交视频免费看高清| 久久精品综合一区二区三区| 淫秽高清视频在线观看| 久久精品影院6| 久久精品国产亚洲av香蕉五月| 在线国产一区二区在线| 在线观看舔阴道视频| 亚洲成人久久性| 亚洲不卡免费看| 色av中文字幕| 欧美高清成人免费视频www| 成人特级黄色片久久久久久久| 国产男靠女视频免费网站| 亚洲精品成人久久久久久| 精品乱码久久久久久99久播| 90打野战视频偷拍视频| 亚洲精品久久国产高清桃花| 性欧美人与动物交配| av专区在线播放| 免费看光身美女| 欧美又色又爽又黄视频| 欧美性猛交黑人性爽| 国产精华一区二区三区| 最新在线观看一区二区三区| 国产av麻豆久久久久久久| 国产白丝娇喘喷水9色精品| 午夜影院日韩av| 少妇的逼好多水| 久久亚洲真实| 国产麻豆成人av免费视频| 久久人妻av系列| 99久久九九国产精品国产免费| 国产精品综合久久久久久久免费| www日本黄色视频网| 亚洲精品日韩av片在线观看| 极品教师在线免费播放| 亚洲五月天丁香| 午夜精品久久久久久毛片777| 蜜桃久久精品国产亚洲av| 99精品在免费线老司机午夜| 国产精品亚洲美女久久久| 激情在线观看视频在线高清| 欧美最新免费一区二区三区 | 亚洲一区二区三区不卡视频| 国产成+人综合+亚洲专区| 搞女人的毛片| 看十八女毛片水多多多| 国产一区二区三区视频了| 小说图片视频综合网站| 亚洲精品一卡2卡三卡4卡5卡| 黄色日韩在线| 日本黄色视频三级网站网址| 日韩欧美国产一区二区入口| 美女免费视频网站| 午夜a级毛片| 男人舔女人下体高潮全视频| 一进一出好大好爽视频| 变态另类丝袜制服| 床上黄色一级片| 丰满乱子伦码专区| 舔av片在线| 99国产综合亚洲精品| 18禁在线播放成人免费| 最近视频中文字幕2019在线8| 国产欧美日韩一区二区三| 日韩欧美一区二区三区在线观看| 国产主播在线观看一区二区| 欧美黄色片欧美黄色片| 国产91精品成人一区二区三区| 久久精品影院6| 综合色av麻豆| 在线观看美女被高潮喷水网站 | 国产欧美日韩一区二区精品| 精品一区二区三区视频在线| 99热6这里只有精品| 首页视频小说图片口味搜索| 老司机午夜福利在线观看视频| 一级av片app| 蜜桃亚洲精品一区二区三区| 成熟少妇高潮喷水视频| 九色国产91popny在线| 国产久久久一区二区三区| 又爽又黄a免费视频| 亚洲一区二区三区色噜噜| 中出人妻视频一区二区| 亚洲av成人精品一区久久| 国产精品久久电影中文字幕| 特大巨黑吊av在线直播| 亚洲一区高清亚洲精品| 色av中文字幕| 免费黄网站久久成人精品 | ponron亚洲| 精品一区二区三区视频在线观看免费| 日本黄大片高清| 三级国产精品欧美在线观看| 91久久精品电影网| 麻豆成人av在线观看| 国产乱人伦免费视频| 黄色日韩在线| 亚洲精品在线美女| 亚洲av成人不卡在线观看播放网| 亚洲精品一区av在线观看| 成人国产一区最新在线观看| 人人妻,人人澡人人爽秒播| 免费电影在线观看免费观看| 国产亚洲欧美在线一区二区| 嫩草影院新地址| 欧美成人性av电影在线观看| 亚洲黑人精品在线| 丝袜美腿在线中文| 成人无遮挡网站| 午夜精品久久久久久毛片777| 日韩欧美精品免费久久 | 欧美绝顶高潮抽搐喷水| 国产熟女xx| 白带黄色成豆腐渣| 精品一区二区三区视频在线观看免费| 久久婷婷人人爽人人干人人爱| 精品免费久久久久久久清纯| 国产69精品久久久久777片| 免费在线观看日本一区| 在线观看66精品国产| 亚洲欧美日韩无卡精品| 国产亚洲欧美在线一区二区| 99精品久久久久人妻精品| 免费一级毛片在线播放高清视频| 欧美最新免费一区二区三区 | 色精品久久人妻99蜜桃| 亚洲精品456在线播放app | 一进一出抽搐动态| 性欧美人与动物交配| 国产亚洲精品综合一区在线观看| 日韩精品青青久久久久久| 麻豆国产97在线/欧美| 欧美zozozo另类| 99久久精品国产亚洲精品| 亚洲无线观看免费| 全区人妻精品视频| 天堂动漫精品| 91久久精品国产一区二区成人| 一个人免费在线观看电影| 制服丝袜大香蕉在线| 久久99热这里只有精品18| 五月玫瑰六月丁香| 国产精品一及| 一个人免费在线观看的高清视频| 99国产综合亚洲精品| 久久午夜亚洲精品久久| 国产精品久久久久久久久免 | 免费在线观看亚洲国产| 久久久国产成人免费| 男女视频在线观看网站免费| 久久久久性生活片| 亚洲va日本ⅴa欧美va伊人久久| 97人妻精品一区二区三区麻豆| 亚洲真实伦在线观看| 欧美性猛交黑人性爽| 俄罗斯特黄特色一大片| 桃色一区二区三区在线观看| 免费av观看视频| 99国产极品粉嫩在线观看| 亚洲美女黄片视频| 色综合亚洲欧美另类图片| 性色av乱码一区二区三区2| av女优亚洲男人天堂| 99久久精品国产亚洲精品| 日本一本二区三区精品| 在线观看免费视频日本深夜| 国产精品免费一区二区三区在线| 欧美成人一区二区免费高清观看| 亚洲一区高清亚洲精品| 亚洲,欧美,日韩| 亚洲精品成人久久久久久| 亚洲精品影视一区二区三区av| 国产av一区在线观看免费| 动漫黄色视频在线观看| 免费高清视频大片| 一级作爱视频免费观看| 99热这里只有是精品50| 在线观看免费视频日本深夜| 神马国产精品三级电影在线观看| 国产成年人精品一区二区| 欧美成人性av电影在线观看| 非洲黑人性xxxx精品又粗又长| 国产久久久一区二区三区| 久久久久免费精品人妻一区二区| 麻豆成人av在线观看| 97人妻精品一区二区三区麻豆| 丰满乱子伦码专区| 欧美一区二区亚洲| 美女xxoo啪啪120秒动态图 | 久久久久性生活片| 久久久久久久亚洲中文字幕 | 亚洲av一区综合| 国产美女午夜福利| 亚洲在线自拍视频| 一级黄色大片毛片| 国产男靠女视频免费网站| 麻豆国产97在线/欧美| 99在线视频只有这里精品首页| 欧洲精品卡2卡3卡4卡5卡区| 熟妇人妻久久中文字幕3abv| 日本免费一区二区三区高清不卡| 国产精品一及| 97热精品久久久久久| 老司机午夜福利在线观看视频| 国产亚洲精品av在线| 大型黄色视频在线免费观看| 丰满人妻一区二区三区视频av| 噜噜噜噜噜久久久久久91| 久久久久九九精品影院| 亚洲一区高清亚洲精品| 99精品在免费线老司机午夜| 又紧又爽又黄一区二区| 久久久成人免费电影| 长腿黑丝高跟| 久久久精品欧美日韩精品| 夜夜爽天天搞| 夜夜夜夜夜久久久久| 欧美一级a爱片免费观看看| 黄色配什么色好看| 此物有八面人人有两片| 香蕉av资源在线| 女人十人毛片免费观看3o分钟| 热99re8久久精品国产| 国产av一区在线观看免费| 9191精品国产免费久久| 麻豆久久精品国产亚洲av| 色综合亚洲欧美另类图片| 性色av乱码一区二区三区2| 一级作爱视频免费观看| 尤物成人国产欧美一区二区三区| 日日摸夜夜添夜夜添av毛片 | 乱码一卡2卡4卡精品| 亚洲专区国产一区二区| 一进一出好大好爽视频| 99国产精品一区二区蜜桃av| 如何舔出高潮| 久久久久久久久久成人| 一进一出好大好爽视频| 日韩欧美精品免费久久 | 国产爱豆传媒在线观看| 国产高清视频在线观看网站| 一个人观看的视频www高清免费观看| 美女高潮的动态| 日日摸夜夜添夜夜添av毛片 | 免费av观看视频| 1000部很黄的大片| 久久久久久久午夜电影| 嫁个100分男人电影在线观看| 精品99又大又爽又粗少妇毛片 | 怎么达到女性高潮| 亚洲第一欧美日韩一区二区三区| 欧美乱色亚洲激情| 一级a爱片免费观看的视频| 亚洲av一区综合| 中文字幕精品亚洲无线码一区| 人妻丰满熟妇av一区二区三区| 国内精品美女久久久久久| 国产精品一区二区三区四区久久| 毛片一级片免费看久久久久 | 少妇丰满av| 天堂√8在线中文| 俺也久久电影网| 国产色爽女视频免费观看| 在线天堂最新版资源| 国产精品久久久久久精品电影| 欧美性感艳星| 午夜激情欧美在线| 乱码一卡2卡4卡精品| 一级黄色大片毛片| 日韩中字成人| 毛片一级片免费看久久久久 | 免费av毛片视频| 日本免费a在线| 欧美色欧美亚洲另类二区| av黄色大香蕉| h日本视频在线播放| 无遮挡黄片免费观看| 男人舔女人下体高潮全视频| 变态另类丝袜制服| 观看美女的网站| 一个人免费在线观看电影| 欧美xxxx黑人xx丫x性爽| 欧美成人一区二区免费高清观看| 国产精品美女特级片免费视频播放器| 99riav亚洲国产免费| 男女视频在线观看网站免费| 午夜福利视频1000在线观看| x7x7x7水蜜桃| 国产精品永久免费网站| 真人做人爱边吃奶动态| 婷婷亚洲欧美| 波野结衣二区三区在线| 久久精品人妻少妇| 欧美午夜高清在线| 国产精品女同一区二区软件 | 三级毛片av免费| 又爽又黄a免费视频| 嫩草影视91久久| 美女cb高潮喷水在线观看| 国产亚洲精品av在线| 美女黄网站色视频| 亚洲av免费高清在线观看| 亚洲成a人片在线一区二区| 国产伦在线观看视频一区| 亚洲精品成人久久久久久| 一进一出抽搐动态| 99国产精品一区二区三区| 久久精品影院6| 中文字幕精品亚洲无线码一区| 亚洲av五月六月丁香网| www日本黄色视频网| 色精品久久人妻99蜜桃| 免费人成在线观看视频色| 男人舔奶头视频| 欧美日韩乱码在线| 亚洲美女搞黄在线观看 | 国产精品三级大全| 亚洲欧美激情综合另类| 亚洲经典国产精华液单 | 欧美日韩亚洲国产一区二区在线观看| 国产高潮美女av| 国产一区二区三区在线臀色熟女| 特大巨黑吊av在线直播| 国产探花极品一区二区| 天堂动漫精品| 国产成人欧美在线观看| 欧美不卡视频在线免费观看| 高清日韩中文字幕在线| 亚洲成av人片免费观看| 国产伦精品一区二区三区四那| 日韩精品青青久久久久久| 欧美性感艳星| 人妻久久中文字幕网| 欧美最新免费一区二区三区 | 欧美性感艳星| 亚洲欧美精品综合久久99| h日本视频在线播放| 精品乱码久久久久久99久播| 日韩亚洲欧美综合| 欧美高清成人免费视频www| 亚洲国产精品999在线| 毛片一级片免费看久久久久 | 最近中文字幕高清免费大全6 | 俄罗斯特黄特色一大片| 特大巨黑吊av在线直播| 欧美最新免费一区二区三区 | 免费搜索国产男女视频| 乱码一卡2卡4卡精品| 日韩欧美 国产精品| 欧美在线黄色| 成人一区二区视频在线观看| 一个人看的www免费观看视频| 成年女人看的毛片在线观看| 久久精品久久久久久噜噜老黄 | 91av网一区二区| 国产精品三级大全| 日韩高清综合在线| 国产av一区在线观看免费| 亚洲一区二区三区不卡视频| 日韩人妻高清精品专区| 久久久久久久久久黄片| 日本 欧美在线| 男人狂女人下面高潮的视频| 精品不卡国产一区二区三区| 久久精品影院6| 中文字幕免费在线视频6| 日韩人妻高清精品专区| 欧美成人a在线观看| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看| 国产欧美日韩一区二区精品| 欧美激情国产日韩精品一区| 国产免费av片在线观看野外av| 可以在线观看的亚洲视频| 欧美激情久久久久久爽电影| 国产蜜桃级精品一区二区三区| 特大巨黑吊av在线直播| 国产午夜福利久久久久久| 美女xxoo啪啪120秒动态图 | 在线观看一区二区三区| 男人和女人高潮做爰伦理| 搞女人的毛片| 欧美黄色片欧美黄色片| 国产成人av教育| 欧美日韩瑟瑟在线播放| 床上黄色一级片| 国产精品一区二区免费欧美| 午夜福利成人在线免费观看| 国内少妇人妻偷人精品xxx网站| 久久九九热精品免费| 韩国av一区二区三区四区| 亚洲av免费在线观看| 久久婷婷人人爽人人干人人爱| 欧美黑人巨大hd| 日韩精品中文字幕看吧| 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添小说| 亚洲,欧美精品.| 国产又黄又爽又无遮挡在线| 久久久久久久久大av| 99热这里只有精品一区| 亚洲国产精品999在线| 国产成人欧美在线观看| 亚洲av成人不卡在线观看播放网| 亚洲av免费高清在线观看| 九九在线视频观看精品| 欧美zozozo另类| 人人妻人人看人人澡| 长腿黑丝高跟| 国产高清三级在线| 宅男免费午夜| 又爽又黄a免费视频| 久久99热这里只有精品18| 日本三级黄在线观看| 国内揄拍国产精品人妻在线| 国产精品久久久久久久久免 | 亚洲国产欧洲综合997久久,| 高清在线国产一区| 国产不卡一卡二| 亚洲人成伊人成综合网2020| av天堂中文字幕网| 99国产综合亚洲精品| 精品久久久久久成人av| 成人国产一区最新在线观看| av女优亚洲男人天堂| 日本黄色视频三级网站网址| 国产黄色小视频在线观看| 国产成人a区在线观看| 2021天堂中文幕一二区在线观| 久久午夜福利片| 国产白丝娇喘喷水9色精品| 性色av乱码一区二区三区2| 国产激情偷乱视频一区二区| 国产午夜福利久久久久久| 青草久久国产| 欧美激情国产日韩精品一区| 听说在线观看完整版免费高清| 真实男女啪啪啪动态图| 亚洲av美国av| 久久久精品大字幕| 亚洲国产欧洲综合997久久,| 丁香六月欧美| 哪里可以看免费的av片| 国产精品野战在线观看| 色综合站精品国产| 看黄色毛片网站| 黄色视频,在线免费观看| 波多野结衣巨乳人妻| 亚洲av日韩精品久久久久久密| 怎么达到女性高潮| www.999成人在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲成人免费电影在线观看| 在线观看午夜福利视频| 女同久久另类99精品国产91| 嫩草影院入口| 欧洲精品卡2卡3卡4卡5卡区| 美女大奶头视频| 最新在线观看一区二区三区| 3wmmmm亚洲av在线观看| 特大巨黑吊av在线直播| 国产高清激情床上av| 真实男女啪啪啪动态图| 床上黄色一级片| netflix在线观看网站| 一级毛片久久久久久久久女| 人妻制服诱惑在线中文字幕| 亚洲国产精品成人综合色| 亚洲欧美清纯卡通| 看免费av毛片| av在线天堂中文字幕| 黄色日韩在线| 在现免费观看毛片| 久久久久亚洲av毛片大全| 色综合欧美亚洲国产小说| 美女高潮喷水抽搐中文字幕| 在线国产一区二区在线| 亚洲国产精品成人综合色| 午夜福利在线观看免费完整高清在 | 日本黄色视频三级网站网址| 精品无人区乱码1区二区| 在线观看一区二区三区| 亚洲在线观看片| 18禁在线播放成人免费| 欧美不卡视频在线免费观看| 日本一二三区视频观看| 12—13女人毛片做爰片一| 麻豆av噜噜一区二区三区| 色综合亚洲欧美另类图片| 日日摸夜夜添夜夜添小说| 国产黄色小视频在线观看| 国产精品亚洲一级av第二区| 久久久国产成人免费| 亚洲欧美日韩无卡精品| 欧美另类亚洲清纯唯美| 一进一出好大好爽视频| 精品久久久久久久久久免费视频| 国产一区二区激情短视频| 内射极品少妇av片p| 日韩av在线大香蕉| 国语自产精品视频在线第100页| 午夜精品在线福利| 99国产极品粉嫩在线观看| 午夜福利成人在线免费观看| 男女床上黄色一级片免费看| 国产激情偷乱视频一区二区| 日本a在线网址| 国产视频一区二区在线看| 18禁黄网站禁片午夜丰满| 日本与韩国留学比较| 99热这里只有精品一区| 十八禁网站免费在线| 亚洲,欧美,日韩| 桃红色精品国产亚洲av| 亚洲精品一区av在线观看| 国产成人啪精品午夜网站| 亚洲熟妇熟女久久| 久久久久久久久久成人| 日本一二三区视频观看| 国产野战对白在线观看| 日韩欧美国产在线观看| 国产精品爽爽va在线观看网站| 亚洲国产精品合色在线| 男人和女人高潮做爰伦理| 亚洲国产精品sss在线观看|