• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sahlqvist Correspondence for Instantial Neighbourhood Logic*

    2021-09-29 06:54:24ZhiguangZhao
    邏輯學(xué)研究 2021年3期

    Zhiguang Zhao

    Abstract. In the present paper,we investigate the Sahlqvist-type correspondence theory for instantial neighbourhood logic (INL),which can talk about existential information about the neighbourhoods of a given world and is a mixture between relational semantics and neighbourhood semantics.The increased expressivity and its ability to talk about certain relational patterns of the neighbourhood function makes it possible to ask what kind of properties can this language define on the frame level,whether the“Sahlqvist”fragment of instantial neighbourhood logic could be larger than the rather small KW-fragment.(H.Hansen,2003)We have two proofs of the correspondence results,the first proof is obtained by using standard translation and minimal valuation techniques directly,the second proof follows M.Gehrke et al.(2005)and H.Hansen(2003),where we use bimodal translation method to reduce the correspondence problem in instantial neighbourhood logic to normal bimodal logics in classical Kripke semantics.We give some remarks and future directions at the end of the paper.

    1 Introduction

    Recently,a variant of neighbourhood semantics for modal logics was given,under the name of instantial neighbourhood logic(INL),where existential information about the neighbourhoods of a given world can be added.([5,13,2,3,4,14,15])This semantics is a mixture between relational semantics and neighbourhood semantics,and its expressive power is strictly stronger than neighbourhood semantics.

    In this semantics,the(n+1)-ary modality□(ψ1,...,ψn;φ)is true at a worldwif and only if there exists a neighbourhoodS ∈N(w)such thatφis true everywhere inS,and eachψiis true atwi ∈Sfor somewi.This language has a natural interpretation as a logic of computation in open systems:□(ψ1,...,ψn;φ)can be interpreted as“in the system,the agent has an action to enforce the conditionφwhile simultaneously allowing possible outcomes satisfying each of the conditionsψ1,...,ψn”;this language can describe not only what properties can be guaranteed by an agent’s action,but also exactly what possible outcomes may be achieved from this action(see[3]).

    Instantial neighbourhood logic is first introduced in [4],where the authors defines the notion of bisimulation for instantial neighbourhood logic,gives a complete axiomatic system,and determines its precise SAT complexity;in [13],the canonical rules are defined for instantial neighbourhood logic;in [2],the game-theoretic aspects of instantial neighbourhood logic is studied;in[3],a propositional dynamic logic IPDL is obtained by combining instantial neighbourhood logic with propositional dynamic logic (PDL),its sound and complete axiomatic system is given as well as its finite model property and decidability;in [5],the duality theory for instantial neighbourhood logic is developed via coalgebraic method;in[14],a tableau system for instantial neighbourhood logic is given which can be used for mechanical proof and countermodel search;in[15],a cut-free sequent calculus and a constructive proof of its Lyndon interpolation theorem is given.However,the Sahlqvist-type correspondence theory is still unexplored,which is the theme of this paper;in addition,the increased expressivity makes it possible to ask what kind of properties can this language define on the frame level,whether the“Sahlqvist”fragment of instantial neighbourhood logic could be larger than the rather small KW-fragment in [10] in monotone modal logic.

    In this paper,we define the Sahlqvist formulas in the instantial neighbourhood modal language,and give two different proofs of correspondence results.The first proof is given by standard translation and minimal valuation techniques as in[6,Section 3.6],while the second proof uses bimodal translation method in monotone modal logic and neighbourhood semantics([10,11,12,1])to show that every Sahlqvist formula in the instantial neighbourhood modal language can be translated into a bimodal Sahlqvist formula in Kripke semantics,and hence has a first-order correspondent.The first proof is standard and it reveals how the instantial neighbourhood semantics have the relational pattern,and the second proof is simpler and easier to understand.

    The structure of the paper is as follows:in Section 2,we give a brief sketch on the preliminaries of instantial neighbourhood logic,including its syntax and neighbourhood semantics.In Section 3,we define the standard translation of instantial neighbourhood logic into a two-sorted first-order language.In Section 4,we define Sahlqvist formulas in instantial neighbourhood logic,and prove the Sahlqvist correspondence theorem via standard translation and minimal valuation.In Section 5,we discuss the translation of instantial neighbourhood logic into normal bimodal logic,and prove Sahlqvist correspondence theorem via this bimodal translation.In Section 6,we give some examples.We give some remarks and further directions in Section 7.

    2 Preliminaries on Instantial Neighbourhood Logic

    In this section,we collect some preliminaries on instantial neighbourhood logic,which can be found in[4].

    Syntax.The formulas of instantial neighbourhood logic are defined as follows:

    wherep ∈Prop is a propositional variable,□nis an (n+1)-ary modality for eachn ∈N.→,?can be defined in the standard way.An occurence ofpis said to bepositive(resp.negative)inφifpis under the scope of an even(resp.odd)number of negations.A formulaφis positive(resp.negative)if all occurences of propositional variables inφare positive(resp.negative).

    Semantics.For the semantics of instantial neighbourhood logic,we use neighbourhood frames to interpret the instantial neighbourhood modality,one and the same neighbourhood function for all the(n+1)-ary modalities for alln ∈N.

    Definition 1(Neighbourhood frames and models) Aneighbourhood frameis a pair F(W,N) where?is the set of worlds,N:W →P(P(W)) is a map called aneighbourhood function(notice that there is no restriction on what additional propertiesNshould satisfy,e.g.w ∈Xfor allX ∈N(w),or upward-closedness:X ∈N(w) andX ?YimpliesY ∈N(w)),whereP(W) is the powerset ofW.AvaluationonWis a mapV:Prop→P(W).A triple M(W,N,V)is called aneighbourhood modelor a neighbourhood model based on(W,N)if(W,N)is a neighbourhood frame andVis a valuation on it.

    The semantic clauses for the Boolean part is standard.For the instantial neighbourhood modality□,the satisfaction relation is defined as follows:

    M,w?□n(φ1,...,φn;φ)iff there isS ∈N(w)such that for alls ∈Swe have

    Semantic properties of instantial neighbourhood modalities.It is easy to see the following lemma,which states that the(n+1)-ary instantial neighbourhood modality□nis monotone in every coordinate,and is completely additive(and hence monotone)in the firstncoordinates(even if the neighbourhood function is not upward-closed).This observation is useful in the algebraic correspondence analysis in instantial neighbourhood logic.

    Lemma 1

    Algebraically,if we view the (n+1)-ary modality□nas an (n+1)-ary function:An+1→A,then(a1,...,an;a) is completely additive (i.e.preserve arbitrary joins) in the firstncoordinate,and monotone in the last coordinate.This observation is useful in the algebraic correspondence analysis(see Section 7).

    Getting standard neighbourhood semantics and Kripke semantics from INL.

    As we have already seen in[4],instantial neighbourhood logic can express standard monotone neighbourhood modalities by just takingn0,i.e.,

    Indeed,from the definition ofNwe can define some induced(n+1)-ary relations,and instantial neighbourhood logic can reason about these relational structures.Here we take binary relation and the binary modality□1as an example:

    We can define the following binary relationR1,?based on the neighbourhood functionN:

    Then it is easy to see that

    Therefore,instantial neighbourhood logic can talk about certain relational structures behind the neighbourhood function.Indeed,we will expand on this phenomenon later on(see Section 4.2)when we analyze when instantial neighbourhood logic become“normal”.

    3 Standard Translation of Instantial Neighbourhood Logic

    3.1 Two-sorted first-order language L1 and standard translation

    Given the INL language,we consider the corresponding two sorted first-order languageL1,which is going to be interpreted in a two-sorted domainWw×Ws.For a more detailed treatment,see[10,7].This language is used in the treatment of the standard translation for neighbourhood semantics.The major pattern of this language is that we treat worlds and subsets of worlds as two different sorts,which makes it different from standard first-order language.In addition,allowing quantification over subsets of worlds makes the language have some flavor of second-order logic,but here we treat those subsets of worlds as first-order objects in the second domainWs.

    This language has the following ingredients:

    1.world variablesx,y,z,...,to be interpreted as possible worlds in the world domainWw;

    2.subset variablesX,Y,Z,...,to be interpreted as objects in the subset domainWs{X |X ?Ww};1Notice that here the subset variables are treated as first-order variables in the subset domain Ws,rather than second-order variables in the world domain Ww.Indeed,when talking about standard translation in neighbourhood semantics,it is not possible to avoid talking about subsets of the domain,since the elements in N(w)are subsets of W.Therefore,we follow the tradition in monotone modal logic[10,p.34]to call this two-sorted language first-order.

    3.a binary relation symbolR?,to be interpreted as the reverse membership relationR??Ws×Wwsuch thatR?Xxiffx ∈X;

    4.a binary relation symbolRN,to be interpreted as the neighbourhood relationRN ?Ww×Wssuch thatRNxXiffX ∈N(x);

    5.unary predicate symbolsP1,P2,…,to be interpreted as subsets of the world domainWw.

    We also consider the following second-order languageL2which is obtained by adding second-order quantifiers?P1,?P2,…over the world domainWw.Existential second-order quantifiers?P1,?P2,...are interpreted in the standard way.Notice that here the second-order variablesP1,…are different from the subset variablesX,Y,Z,...,since the former are interpreted as subsets ofWw,and the latter are interpreted as objects inWs.

    Now we define the standard translationSTw(φ)as follows:

    Definition 2(Standard translation) For any INL formulaφand any world symbolx,the standard translationSTx(φ)ofφatxis defined as follows:

    ?STx(p):Px;

    ?STx(⊥):xx;

    ?STx(?):xx;

    ?STx(?φ):?STx(φ);

    ?STx(φ ∧ψ):STx(φ)∧STx(ψ);

    ?STx(φ ∨ψ):STx(φ)∨STx(ψ);

    ?STx(□n(φ1,...,φn;φ))?X(RNxX ∧?y(R?Xy →STy(φ))∧

    ?y1(R?Xy1∧STy1(φ1))∧...∧?yn(R?Xyn ∧STyn(φn))).

    For any neighbourhood frame F(W,N),it is natural to define the following corresponding two-sorted Kripke frame F2(W,P(W),R?,RN),where

    1.R??P(W)×Wsuch that for anyx ∈WandX ∈P(W),R?Xxiffx ∈X;

    2.RN ?W × P(W) such that for anyx ∈WandX ∈P(W),RNxXiffX ∈N(x).

    Given a two-sorted Kripke frame F2(W,P(W),R?,RN),a valuationVis defined as a mapV:Prop→P(W).Notice that here theP(W)in the definition ofVis understood as the powerset of the first domain,rather than the second domain itself.

    For this standard translation,it is easy to see the following correctness result:

    Theorem 3.For any neighbourhood frameF(W,N),any valuation V onF,any w ∈W,any INL formula φ,

    4 Sahlqvist Correspondence Theorem in Instantial Neighbourhood Logic via Standard Translation

    In this section,we will define the Sahlqvist formulas in instantial neighbourhood logic and prove the correspondence theorem via standard translation and minimal valuation method.First we recall the definition of Sahlqvist formulas in normal modal logic.Then we identify the special situations where the instantial neighourhood modalities“behave well”,i.e.have good quantifier patterns in the standard translation.Finally,we define INL-Sahlqvist formulas step by step in the style of[6,Section 3.6],and prove the correspondence theorem.The reason why we still have a proof by standard translation and minimal valuation method is that it helps to recognize the“relational”pattern in this neighbourhood-type semantics.

    4.1 Sahlqvist formulas in normal modal logic

    In this subsection we recall the syntactic definition of Sahlqvist formulas in normal modal logic(see[6,Section 3.6,Definition 3.51]).

    Definition 4(Sahlqvist formulas in normal modal logic) Aboxed atomis a formula of thep,whereare (not necessarily distinct) boxes.In the case wheren0,the boxed atom is justp.

    ASahlqvist antecedent φis a formula built up from⊥,?,boxed atoms,and negative formulas,using∧,∨and existential modal operators◇(unary diamond)and Δ(polyadic diamond).ASahlqvist implicationis an implicationφ →ψin whichψis positive andφis a Sahlqvist antecedent.

    A Sahlqvist formula is a formula that is built up from Sahlqvist implications by applying boxes and conjunctions,and by applying disjunctions only between formulas that do not share any proposition variables.

    As we can see from the definition above,the Sahlqvist antecedents are built up by⊥,?,p,pand negative formulas using∧,∨,◇,Δ.If we consider the standard translations of Sahlqvist antecedents,the inner part is translated into universal quantifiers,and the outer part are translated into existential quantifiers.

    4.2 Special cases where the instantial neighbourhood modalities become“normal”

    As is mentioned in[4,Section 7]and as we can see in the definition of the standard translation,the quantifier pattern of□n(φ1,...,φn;φ)is similar to the case of monotone modal logic([10])which has an??pattern.As a result,even with two layers of INL modalities the complexity goes beyond the Sahlqvist fragment.However,we can still consider some special situations where we can reduce the modality to ann-ary normal diamond or a unary normal box.

    n-ary normal diamond.We first consider the case□n(φ1,...,φn;φ)whereφis apure formulawithout any propositional variables,i.e.,all propositional variables are substituted by⊥or?.In this caseSTx(φ)is a first-order formulaαφ(x)without any unary predicate symbolsP1,P2···.Therefore,in the shape of the standard translation of□n(φ1,...,φn;φ),the universal quantifier?yis not touched during the computation of minimal valuation,since there is no unary predicate symbol there.Indeed,we can consider the following equivalent form ofSTx(□n(φ1,...,φn;φ)):

    NowSTx(□n(φ1,...,φn;φ)) is essentially in a form similar toSTx(◇ψ) in the normal modal logic case;indeed,when we compute the minimal valuation here,RNxX ∧R?Xy1∧...∧R?Xyn ∧?y(R?Xy →αφ(y))can be recognized as an entirety and stay untouched during the process.Indeed,here we can use the formula?X(RNxX ∧R?Xy1∧...∧R?Xyn ∧?y(R?Xy →αφ(y)))to define an(n+1)-ary relation symbolRn,φxy1...yn,and we denote the semantic counterpart of this relation also byRn,φ,then it is easy to see that

    M,w?□n(φ1,...,φn;φ)iff there existv1,...,vnsuch thatRn,φwv1...vnand

    This is exactly how then-ary Δ modality is defined in standard modal logic settings.From now onwards we can denote□n(φ1,...,φn;φ)by Δn,φ(φ1,...,φn)whereφis pure.

    Unary Normal Box.As we can see from above,in□n(φ1,...,φn;φ),we can replace propositional variables inφby⊥and?to obtainn-ary normal diamond modalities.By using the composition with negations,we can get the unary normal box modality,i.e.we can have a modality

    Now we can consider the standard translation of?1,φ(φ1):

    where?y(R?Xy →αφ(y)) does not contain unary predicate symbolsP1,P2,···.Now we can see thatSTx(?1,φ(φ1)) has a form similar toSTx(□ψ) where□is a normal unary box,by takingRNxX ∧R?Xy1∧?y(R?Xy →αφ(y))as an entirety.

    4.3 The definition of INL-Sahlqvist formulas in instantial neighbourhood logic

    Now we can define the INL-Sahlqvist formulas in instantial neighbourhood logic step by step in the style of[6,Section 3.6].The basic proof structure is similar to the basic modal logic setting,namely we first rewrite the standard translation of the modal formula into a specific shape,and then read off the minimal valuation directly from the shape,while here the manipulation of quantifiers is more complicated and needs to take more care.

    4.3.1 Very simple INL-Sahlqvist implications

    Definition 5(Very simple INL-Sahlqvist implications) Avery simple INL-Sahlqvist antecedent φis defined as follows:

    wherep ∈Prop is a propositional variable,θis a pure formula without propositional variables.Avery simple INL-Sahlqvist implicationis an implicationφ →ψwhereψis positive,andφis a very simple INL-Sahlqvist antecedent.

    For very simple INL-Sahlqvist implications,we allown-ary normal diamonds Δn,θin the construction ofφ,while for the(n+1)-ary modality□n,we only allow propositional variables to occur in the(n+1)-th coordinate.

    We can show that very simple INL-Sahlqvist implications have first-order correspondents:

    Theorem 6.For any given very simple INL-Sahlqvist implication φ →ψ,there is a two-sorted first-order local correspondent α(x)such that for any neighbourhood frameF(W,N),any w ∈W,

    ProofThe proof strategy is similar to[6,Theorem 3.42,Theorem 3.49],with some differences in treating□n(φ1,...,φn;p).

    We first start with the two-sorted second-order translation ofφ →ψ,namely?P1...?Pn?x(STx(φ)→STx(ψ)),whereSTx(φ),STx(ψ) are the two-sorted first-order standard translations ofφ,ψ.

    For any very simple INL-Sahlqvist antecedentφ,we consider the shape ofβSTx(φ)defined inductively,

    Now we can denoteRNxX ∧R?Xy1∧...∧R?XynasRnXxy1...ynandR?1,θXfor?y(R?Xy →αθ(y)),and thus get

    By using the equivalences

    Itiseasy tosee thatthetwo-sorted first-orderformulaβSTx(φ)is equivalent to a f ormula ofthe form∧ATProp),where:

    ? ATProp is a conjunction of formulas of the form?y(R?Xy →Py)orPworwworww.

    Therefore,by using the equivalences

    and

    it is immediate that?P1...?Pn?x(STx(φ)→STx(ψ))is equivalent to

    2Notice that the quantifiers ?P1...?Pnare second-order quantifiers over the world domain,andare first-order quantifiers over the subset domain.

    Now we can use similar strategy as in[6,Theorem 3.42,Theorem 3.49].To make it easier for later parts in the paper,we still mention how the minimal valuation and the resulting first-order correspondent formula look like.Without loss of generality we suppose that for any unary predicatePthat occurs in the POS also occurs in AT;otherwise we can substitutePbyλu.uuforPto eliminateP(see[6,Theorem 3.42]).

    Now consider a unary predicate symbolPoccuring in ATProp,andPx1,...,Pxn,?y(R?X1y →Py),…,?y(R?Xmy →Py)are all occurences ofPin ATProp.By takingσ(P)to be

    we get the minimal valuation.The resulting first-order correspondent formula is

    From the proof above,we can see that the part corresponding to Δn,θ(φ1,...,φn)is essentially treated in the same way as ann-ary diamond in the normal modal logic setting,and□n(φ1,...,φn;p)is treated as Δ(◇φ1∧...∧◇φn ∧□p)where Δ is an(n+1)-ary normal diamond,◇is a unary normal diamond and□is a unary normal box,therefore we can guarantee the compositional structure of quantifiers in the antecedent to be??as a whole.

    4.3.2 Simple INL-Sahlqvist implications

    Similar to simple Sahlqvist implications in basic modal logic,here we can define simple INL-Sahlqvist implications:

    Definition 7(Simple INL-Sahlqvist implications) Apseudo-boxed atom ζis defined as follows:

    whereθis a pure formula without propositional variables.Based on this,asimple INL-Sahlqvist antecedent φis defined as follows:

    whereθis a pure formula without propositional variables andζis a pseudo-boxed atom.Asimple INL-Sahlqvist implicationis an implicationφ →ψwhereψis positive,andφis a simple INL-Sahlqvist antecedent.

    Theorem 8.For any given simple INL-Sahlqvist implication φ →ψ,there is a twosorted first-order local correspondent α(x)such that for any neighbourhood frameF(W,N),any w ∈W,

    ProofWe use similar proof strategy as [6,Theorem 3.49].The part that we need to take care of is the way to compute the minimal valuation.Now without loss of generality (by renaming quantified variables) we have the following shape ofβSTx(ζ)defined inductively for any pseudo-boxed atomζ:

    The shape ofβSTx(φ) is defined inductively for any simple Sahlqvist antecedentφ:

    Now we use the abbreviationRnXxy1...ynforRNxX∧R?Xy1∧...∧R?XynandR?1,θXfor?y(R?Xy →αθ(y)) (note that the only possible free variable inαθ(y) isy),then by the equivalence (?Xα →β)??X(α →β),the shape ofβSTx(ζ)can be given as follows:

    The shape ofβSTx(φ)can be given as follows:

    Now we denote?X(R1Xxy1∧R?1,θX)asR?2,θxy1,and we get the shape of pseudo-boxed atomβSTx(ζ)as follows:

    Now using the following equivalences:

    ? (φ →?z(ψ(z)→γ))??z(φ ∧ψ(z)→γ)(wherezdoes not occur inφ);

    ? (φ →(ψ →γ))?(φ ∧ψ →γ);

    ? (φ →(ψ ∧γ))?((φ →ψ)∧(φ →γ));

    ??z(ψ(z)∧γ(z))?(?zψ(z)∧?zγ(z));

    4.3.3 INL-Sahlqvist implications

    In the present section,we add negated formulas and disjunctions in the antecedent part,which is analogous to the first half of[6,Definition 3.51].

    Definition 9(INL-Sahlqvist implications) AnINL-Sahlqvist antecedent φis defined as follows:

    whereθis a pure formula without propositional variables,ζis a pseudo-boxed atom andγis a negative formula.AnINL-Sahlqvist implicationis an implicationφ →ψwhereψis positive,andφis an INL-Sahlqvist antecedent.

    Theorem 10.For any given INL-Sahlqvist implication φ →ψ,there is a two-sorted first-order local correspondent α(x)such that for any neighbourhood frameF(W,N),any w ∈W,

    ProofWe use similar proof strategy as[6,Theorem 3.54].The part that we need to take care of is the way to compute the minimal valuation.Now for each INL-Sahlqvist antecedentφ,we consider the shape ofβSTx(φ):

    whereθis a pure formula without propositional variables,ζis a pseudo-boxed atom andγis a negative formula.

    We use the abbreviationRnXxy1,...ynforRNxX ∧R?Xy1∧...∧R?XynandR?1,θXfor?y(R?Xy →αθ(y)),we can rewrite the shape ofβSTx(φ)as follows:

    whereθis a pure formula without propositional variables,ζis a pseudo-boxed atom andγis a negative formula.

    ? NEGiis a conjunction of formulas of the formSTy(γ)and?y(R?Xy →STy(γ))whereγis a negative formula.

    Now let us consider the standard translation of INL-Sahlqvist implicationφ →ψwhereφis an INL-Sahlqvist antecedent andψis a positive formula.ForβSTEx(φ →ψ),we have the following equivalence:

    Now it is easy to see that?NEGi ∨STx(ψ) is equivalent to a first-order formula which is positive in all unary predicates.We can now use essentially the same proof strategy as Theorem 8. □

    As we can see from the proofs above,the key point is the quantifier pattern of the two-sorted standard translation of the modalities,i.e.the outer part of the structure of an INL-Sahlqvist antecedent are translated into existential quantifiers,and the inner part is translated into universal quantifiers.

    4.3.4 INL-Sahlqvist formulas

    In the present section,we build Sahlqvist formulas from Sahlqvist implications by applying?1,θ(·)(whereθis pure),∧and∨,which is analogous to the second half of[6,Definition 3.51].

    Definition 11(INL-Sahlqvist formulas) AnINL-Sahlqvist formula φis defined as follows:

    whereφ0is an INL-Sahlqvist implication,θis a pure formula without propositional variables,is a disjunction such that the twoφs share no propositional variable.

    Theorem 12.For any given INL-Sahlqvist formula φ,there is a two-sorted first-order local correspondent α(x)such that for any neighbourhood frameF(W,N),any w ∈W,

    ProofSimilar to[6,Lemma 3.53]. □

    5 Bimodal Translation of Instantial Neighbourhood Logic

    In the present section we give the second proof of Sahlqvist correspondence theorem,by using a bimodal translation into a normal bimodal language.The methodology is similar to[10,7],but with slight differences.

    5.1 Normal bimodal language and two-sorted Kripke frame

    In this subsection,we introduce the normal bimodal language and two-sorted Kripke frame.For a more detailed treatment,see[10,7].

    As we can see in Section 3,for any given neighbourhood frame F(W,N),there is an associated two-sorted Kripke frame F2(W,P(W),R?,RN),where

    1.R??P(W)×Wsuch that for anyx ∈WandX ∈P(W),R?Xxiffx ∈X;

    2.RN ?W × P(W) such that for anyx ∈WandX ∈P(W),RNxXiffX ∈N(x).

    In this kind of semantic structures,we can define the following two-sorted normal bimodal language:

    whereφis a formula of theworld typeand will be interpreted in the first domain,andθis a formula of thesubset typeand will be interpreted in the second domain.We can also define□?and□Nin the standard way.

    Given a two-sorted Kripke frame F2(W,P(W),R?,RN),a valuationVis defined as a mapV:Prop→P(W),where propositional variables are interpreted as subsets of the first domain.The satisfaction relation ?is defined as follows,for anyw ∈Wand anyXinP(W)(here we omit the Boolean connectives):

    ? F2,V,w?piffw ∈V(p);

    ? F2,V,w?◇Nθiff there is anX ∈P(W)such thatRNwXand F2,V,X?θ;

    ? F2,V,X?◇?φiff there is aw ∈Wsuch thatR?Xwand F2,V,w?φ.

    5.2 Bimodal translation

    Now we are ready to define the translationτfrom the INL language to the twosorted normal bimodal language:

    Definition 13(Bimodal translation) Given any INL formulaφ,the bimodal translationτ(φ)is defined as follows:

    ?τ(p)p;

    ?τ(⊥)⊥;

    ?τ(?)?;

    ?τ(?φ)?τ(φ);

    ?τ(φ1∧φ2)τ(φ1)∧τ(φ2);

    ?τ(φ1∨φ2)τ(φ1)∨τ(φ2);

    ?τ(φ1→φ2)τ(φ1)→τ(φ2);

    ?τ(□n(φ1,...,φn;φ))◇N(◇?τ(φ1)∧...∧◇?τ(φn)∧□?τ(φ)).

    It is easy to see the following correctness result:

    Theorem 14.For any neighbourhood frameF(W,N),any valuation V onF,any w ∈W,any INL formula φ,

    5.3 Sahlqvist correspondence theorem via bimodal translation

    To discuss the Sahlqvist correspondence theorem via bimodal translation,we first discuss how the Sahlqvist fragment in normal bimodal logic looks like.

    First of all,we have the following observation that for?1,θ(ζ)whereθis pure,its bimodal translation is□N(□?τ(ζ)∨?□?τ(θ)),i.e.□N(□?τ(θ)→□?τ(ζ)).This formula is not a box itself applied toτ(ζ),but its standard translation into first-order logic is

    which means that we can treatRNxX ∧R?Xy1∧?y(R?Xy →αθ(y))as an entirety and therefore we can treat□N(□?τ(θ)→□?τ(ζ))like a boxed formula.From here onwards we will also call formulas of the shape□N(□?τ(θ)→□?τ(ζ)) boxed atoms ifτ(ζ)is a boxed atom.

    Now,similar to the normal modal logic case,we can define the bimodal Sahlqvist antecedents in the normal bimodal logic built up by boxed atoms and negative formulas in the inner part generated by∧,∨,◇?,◇N,where the formulas are of the right type,and therefore bimodal Sahlqvist implications are defined in the standard way.A bimodal Sahlqvist formula is built up from bimodal Sahlqvist implications by applying boxes,□N(□?τ(θ)→□?(·)),∧and∨whereθis pure and∨is only applied to formulas which share no propositional variable.

    Theorem 15.For any bimodal Sahlqvist formula φ,there is a two-sorted first-order local correspondent α(x)such that for any neighbourhood frameF(W,N),any w ∈W,

    ProofBy adaptation of the proofs of Theorem 3.42,3.49,3.54 and Lemma 3.53 in[6]to the bimodal setting. □

    Now we can prove Sahlqvist correspondence theorem by using bimodal translation:

    Theorem 16.For any INL-Sahlqvist implication φ →ψ,τ(φ →ψ)is a Sahlqvist implication in the normal bimodal language.

    ProofAs we know,the shape of an INL-Sahlqvist antecedent is given as follows:

    whereθis a pure INL formula without propositional variables,ζis a pseudo-boxed atom,andγis a negative formula.Therefore,the bimodal translations ofτ(ζ) andτ(φ)have the following shape:

    Now we analyze the shape above.For the bimodal translation of a pseudo-boxed atomζin the INL language,?◇N(◇??τ(ζ)∧□?τ(θ))is equivalent to□N(□?τ(ζ)∨?□?τ(θ)).sinceθis a pure formula without propositional variables,τ(ζ) can be treated as a conjunction of boxed atoms in the bimodal language.

    Now we examineτ(φ).It is built up byτ(ζ) (a conjunction of boxed atoms)andτ(γ) (a negative formula),generated by∧,∨and the three special shapes ofτ(□n(φ1,...,φn;φ))whereφare pure formulas without propositional variables(theθcase),pseudo-boxed atoms(theζcase)or negative formulas(theγcase).It is easy to see thatτ(φ) is built up by pure formulas3Indeed,pure formulas are both negative and positive formulas in every propositional variable p,since their values are constants and p does not occur in them.,boxed atoms and negative formulas in the bimodal language,generated by◇?,◇N,∧,∨,thus of the shape of Sahlqvist antecedent in the bimodal language.Therefore,τ(φ →ψ)is a Sahlqvist implication in the normal bimodal language. □

    Theorem 17.For any INL-Sahlqvist formula φ,its bimodal translation τ(φ)is a bimodal Sahlqvist formula.

    ProofWe prove by induction.For the basic case and the∧and∨case,it is easy.For the?1,θ(ζ)case whereθis pure andζis an INL-Sahlqvist formula,by induction hypothesis,τ(ζ)is a bimodal Sahlqvist formula.By our definition,□N(□?τ(θ)→□?τ(ζ))is also a bimodal Sahlqvist formula. □

    Theorem 18.For any INL-Sahlqvist formula φ,there is a two-sorted first-order local correspondent α(x)such that for any neighbourhood frameF(W,N),any w ∈W,

    ProofBy Theorem 15 and Theorem 17. □

    6 Examples

    In this section,we give some examples of INL-Sahlqvist implications.Example 19Consider the formula□1(p;?)→?□1(?p;?),its standard translation is

    the minimal valuation forPisλz.zy1,therefore the local first-order correspondent of□1(p;?)→?□1(?p;?)is

    Example 20Consider the formula□1(□1(p;?);?)→□1(p;?),its standard translation is

    the minimal valuation isλz.zy2,therefore the local first-order correspondent of□1(□1(p;?);?)→□1(p;?)is

    As we can see from the examples,instantial neighbourhood logic can talk about the“relational part”of the neighbourhood function,this is one of the reason to investigate the correspondence theory of instantial neighbourhood logic.

    7 Discussions and Further Directions

    In this paper,we give two different proofs of the Sahlqvist correspondence theorem for instantial neighbourhood logic,the first one by standard translation and minimal valuation,and the second one by reduction using the bimodal translation into a normal bimodal language.We give some remarks and further directions here.

    Algebraic correspondence method using the algorithm ALBA.In[8],Sahlqvist and inductive formulas(an extension of Sahlqvist formulas,see[9]for further details)are defined based on duality-theoretic and order-algebraic insights.The Ackermann lemma based algorithm ALBA is given,which effectively computes first-order correspondents of input formulas/inequalities,and succeed on the Sahlqvist and inductive formulas/inequalities.In this approach,Sahlqvist and inductive formulas are defined in terms of the order-theoretic properties of the algebraic interpretations of the logical connectives.Indeed,in the dual complex algebra A of Kripke frame,the good properties of the connectives are the following:

    ? Unary◇is interpreted as a map◇A:A→A,which preserves arbitrary joins,i.e.◇A(∨a)∨◇Aaand◇A⊥⊥.Similarly,n-ary diamonds are interpreted as maps which preserve arbitrary joins in every coordinate.

    ? Unary□is interpreted as a map□A:A→A,which preserves arbitrary meets,i.e.□A(∧a)∧□Aaand□A??.Preserving arbitrary meets guarantees the map□A:A→A to have a left adjoint ?A:A→A such that ?Aa ≤biffa ≤□Ab.

    As we have seen from Section 2,the algebraic interpretation of□n(φ1,...,φn;φ)preserves arbitrary joins in the firstncoordinates,and is monotone in the last coordinate.Therefore,we can adapt the ALBA method to the instantial neighbourhood logic case.In addition to this,we can also define INL-inductive formulas based on the algebraic properties of the instantial neighbourhood connectives,to extend INLSahlqvist formulas to INL-inductive formulas as well as to the language of instantial neighbourhood logic with fixpoint operators.

    Completeness and canonicity.Other issues that we do not study in the present paper include completeness of logics axiomatized by INL-Sahlqvist formulas and canonicity.For the proof of completeness,we need to establish the validity of INLSahlqvist formulas on their corresponding canonical frames,where canonicity and persistence might play a role(see[6,Chapter 5]).

    欧美+亚洲+日韩+国产| 久久人妻av系列| 欧美一级a爱片免费观看看| 夜夜躁狠狠躁天天躁| 日韩欧美在线乱码| 国产免费男女视频| 亚洲欧美日韩东京热| 老熟妇乱子伦视频在线观看| av福利片在线观看| 人妻夜夜爽99麻豆av| 欧美又色又爽又黄视频| av国产免费在线观看| 国产蜜桃级精品一区二区三区| АⅤ资源中文在线天堂| or卡值多少钱| 夜夜爽天天搞| 久久久色成人| 久久亚洲真实| 日韩av在线大香蕉| 国产精品久久视频播放| 国模一区二区三区四区视频| 国产成人av教育| 国产真实乱freesex| 国内精品久久久久久久电影| 精品久久久久久成人av| 日本一本二区三区精品| 可以在线观看的亚洲视频| 一个人观看的视频www高清免费观看| 岛国在线免费视频观看| 久久亚洲真实| 久9热在线精品视频| 中文字幕精品亚洲无线码一区| 亚洲第一欧美日韩一区二区三区| 久久精品国产亚洲av天美| 怎么达到女性高潮| 国产精品99久久久久久久久| 婷婷精品国产亚洲av| 免费在线观看影片大全网站| 久久国产乱子伦精品免费另类| 免费av毛片视频| 亚洲内射少妇av| 欧美成人一区二区免费高清观看| 99热这里只有是精品在线观看 | 中文字幕久久专区| 色综合婷婷激情| 国产精品亚洲美女久久久| 国产精品国产高清国产av| 午夜两性在线视频| 免费在线观看影片大全网站| 午夜影院日韩av| 黄色女人牲交| 亚洲国产欧洲综合997久久,| a级毛片a级免费在线| 一夜夜www| 亚洲七黄色美女视频| 欧美黑人巨大hd| 色精品久久人妻99蜜桃| 欧美zozozo另类| 免费人成视频x8x8入口观看| 十八禁人妻一区二区| 免费看日本二区| 免费在线观看日本一区| 日韩欧美在线乱码| 国产伦在线观看视频一区| 最新在线观看一区二区三区| 亚洲国产精品成人综合色| 亚洲性夜色夜夜综合| 99久久无色码亚洲精品果冻| 在线看三级毛片| 国产大屁股一区二区在线视频| 一本综合久久免费| 国产精品98久久久久久宅男小说| 欧美区成人在线视频| 日韩免费av在线播放| 精品久久久久久,| 91麻豆精品激情在线观看国产| 中文字幕熟女人妻在线| 嫩草影院入口| bbb黄色大片| 日本撒尿小便嘘嘘汇集6| 在线看三级毛片| 老司机午夜福利在线观看视频| 蜜桃亚洲精品一区二区三区| 午夜激情欧美在线| 国产美女午夜福利| 能在线免费观看的黄片| 别揉我奶头~嗯~啊~动态视频| 麻豆成人午夜福利视频| 一进一出抽搐动态| 欧美黄色淫秽网站| 久久精品国产亚洲av天美| 日本黄色片子视频| 日韩欧美在线二视频| 99久久精品一区二区三区| 99国产精品一区二区三区| 黄色日韩在线| 人人妻人人澡欧美一区二区| 久久精品国产亚洲av香蕉五月| 亚洲精品粉嫩美女一区| 在线观看美女被高潮喷水网站 | 国产真实乱freesex| 亚洲欧美激情综合另类| 三级毛片av免费| 亚洲avbb在线观看| 级片在线观看| 欧美高清成人免费视频www| 又黄又爽又免费观看的视频| 国产视频一区二区在线看| 日韩人妻高清精品专区| 日韩中字成人| 国产精品一区二区三区四区久久| 我要搜黄色片| 国产成人影院久久av| 可以在线观看的亚洲视频| 欧洲精品卡2卡3卡4卡5卡区| 99久久99久久久精品蜜桃| 熟女电影av网| 亚洲精品一区av在线观看| 久久99热这里只有精品18| 国产精品精品国产色婷婷| 欧美xxxx黑人xx丫x性爽| 18禁黄网站禁片午夜丰满| 又爽又黄a免费视频| 看免费av毛片| 国产 一区 欧美 日韩| 天堂影院成人在线观看| 国产精品人妻久久久久久| 亚洲色图av天堂| 亚洲电影在线观看av| 搡老岳熟女国产| 色吧在线观看| 在线观看美女被高潮喷水网站 | 国产精品伦人一区二区| 久久久久久久亚洲中文字幕 | 色播亚洲综合网| 在线看三级毛片| av专区在线播放| 人妻制服诱惑在线中文字幕| 国产一级毛片七仙女欲春2| 日韩中字成人| 99在线人妻在线中文字幕| 天天躁日日操中文字幕| 老司机午夜十八禁免费视频| 国产精品电影一区二区三区| 国产免费男女视频| 97碰自拍视频| 精品乱码久久久久久99久播| 欧美zozozo另类| 色视频www国产| 少妇的逼水好多| 不卡一级毛片| 高清日韩中文字幕在线| 国产一区二区三区在线臀色熟女| 日韩亚洲欧美综合| 国产色爽女视频免费观看| 成人国产综合亚洲| 人人妻人人澡欧美一区二区| 淫秽高清视频在线观看| 午夜精品在线福利| 欧美国产日韩亚洲一区| 国产白丝娇喘喷水9色精品| 极品教师在线免费播放| 国产淫片久久久久久久久 | 18+在线观看网站| 成人特级黄色片久久久久久久| 中文字幕人成人乱码亚洲影| or卡值多少钱| 欧美日韩福利视频一区二区| 精品久久久久久久久久免费视频| 国产毛片a区久久久久| 久久人人精品亚洲av| 色哟哟·www| 在现免费观看毛片| 中文字幕人妻熟人妻熟丝袜美| 成人高潮视频无遮挡免费网站| 神马国产精品三级电影在线观看| 十八禁网站免费在线| а√天堂www在线а√下载| 精品无人区乱码1区二区| 精品国内亚洲2022精品成人| 久久精品91蜜桃| 亚洲激情在线av| 欧美zozozo另类| 免费看日本二区| 国产伦一二天堂av在线观看| 好男人电影高清在线观看| 天堂动漫精品| 十八禁人妻一区二区| 国产精品永久免费网站| 欧美不卡视频在线免费观看| 少妇人妻一区二区三区视频| 国产精品爽爽va在线观看网站| 麻豆国产av国片精品| 又黄又爽又刺激的免费视频.| 亚洲经典国产精华液单 | 久久久国产成人精品二区| 中文字幕高清在线视频| 人妻夜夜爽99麻豆av| 亚洲精品色激情综合| 精品久久久久久久末码| 精品99又大又爽又粗少妇毛片 | 小说图片视频综合网站| av欧美777| 91久久精品国产一区二区成人| 久久久国产成人精品二区| 欧美高清成人免费视频www| 亚洲专区中文字幕在线| 99在线人妻在线中文字幕| 国产成人影院久久av| 国产淫片久久久久久久久 | 熟女电影av网| www.色视频.com| 在线观看午夜福利视频| 蜜桃久久精品国产亚洲av| 又黄又爽又免费观看的视频| 少妇被粗大猛烈的视频| 天美传媒精品一区二区| 又爽又黄无遮挡网站| 国产av麻豆久久久久久久| 亚洲激情在线av| 亚洲第一电影网av| 国产人妻一区二区三区在| 在线观看午夜福利视频| 18禁黄网站禁片午夜丰满| avwww免费| 久久香蕉精品热| 激情在线观看视频在线高清| 99热精品在线国产| bbb黄色大片| 一边摸一边抽搐一进一小说| 丰满人妻一区二区三区视频av| www日本黄色视频网| 免费av毛片视频| 日本精品一区二区三区蜜桃| 亚洲激情在线av| 亚洲片人在线观看| 午夜福利18| www.色视频.com| 国产野战对白在线观看| 神马国产精品三级电影在线观看| 午夜福利在线在线| 美女大奶头视频| 美女黄网站色视频| 欧美zozozo另类| 一本久久中文字幕| 禁无遮挡网站| 美女高潮的动态| aaaaa片日本免费| 久久人妻av系列| 中文资源天堂在线| 成人高潮视频无遮挡免费网站| 99国产精品一区二区三区| 91久久精品电影网| 久久国产精品影院| 亚洲av成人不卡在线观看播放网| 两个人的视频大全免费| 免费无遮挡裸体视频| 亚洲电影在线观看av| 亚洲电影在线观看av| 村上凉子中文字幕在线| 亚洲专区中文字幕在线| 亚洲精品在线美女| 色哟哟哟哟哟哟| 亚洲美女黄片视频| 亚洲国产精品999在线| 一a级毛片在线观看| 少妇的逼好多水| 一个人免费在线观看电影| 国产成人影院久久av| 一区二区三区四区激情视频 | av女优亚洲男人天堂| 很黄的视频免费| 99久久精品一区二区三区| 窝窝影院91人妻| 亚洲最大成人手机在线| 淫妇啪啪啪对白视频| 亚洲人成网站在线播| 免费av观看视频| 三级国产精品欧美在线观看| 精品国产三级普通话版| 他把我摸到了高潮在线观看| 亚洲av美国av| 免费大片18禁| 我的女老师完整版在线观看| 丁香欧美五月| 九色成人免费人妻av| 亚洲成av人片免费观看| 非洲黑人性xxxx精品又粗又长| 99热这里只有精品一区| 欧美激情国产日韩精品一区| 亚洲 欧美 日韩 在线 免费| 午夜免费成人在线视频| 国产真实伦视频高清在线观看 | 国产精品一区二区三区四区久久| 久久久久久久精品吃奶| 国产精品美女特级片免费视频播放器| 又爽又黄a免费视频| 丁香六月欧美| 怎么达到女性高潮| 老司机深夜福利视频在线观看| 亚洲专区中文字幕在线| 免费电影在线观看免费观看| 亚洲无线在线观看| 久9热在线精品视频| 欧美中文日本在线观看视频| 国产成人欧美在线观看| 国产精品久久视频播放| 1024手机看黄色片| 性插视频无遮挡在线免费观看| 久久伊人香网站| 亚洲中文日韩欧美视频| 动漫黄色视频在线观看| 欧美又色又爽又黄视频| 又粗又爽又猛毛片免费看| 久久久久久大精品| 老司机午夜十八禁免费视频| 午夜视频国产福利| 欧美最新免费一区二区三区 | 狂野欧美白嫩少妇大欣赏| 偷拍熟女少妇极品色| av中文乱码字幕在线| 婷婷精品国产亚洲av在线| 少妇丰满av| 亚洲综合色惰| 国产高清有码在线观看视频| 午夜久久久久精精品| 在线观看66精品国产| 欧美午夜高清在线| 国产高清有码在线观看视频| 一个人免费在线观看的高清视频| a级毛片a级免费在线| 国产精华一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 久久久久久久久中文| 精品一区二区三区人妻视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 性插视频无遮挡在线免费观看| 美女 人体艺术 gogo| 亚洲,欧美,日韩| 波野结衣二区三区在线| 色哟哟哟哟哟哟| 国产高清视频在线观看网站| 亚洲人与动物交配视频| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看 | 高清毛片免费观看视频网站| 脱女人内裤的视频| 午夜福利18| 日本 欧美在线| 亚洲在线观看片| 白带黄色成豆腐渣| 久久久久久久久大av| 桃红色精品国产亚洲av| 色尼玛亚洲综合影院| 小蜜桃在线观看免费完整版高清| 成人特级av手机在线观看| 国产激情偷乱视频一区二区| 国产精品综合久久久久久久免费| 国产一区二区激情短视频| 老司机午夜十八禁免费视频| 欧美日韩瑟瑟在线播放| 黄片小视频在线播放| av女优亚洲男人天堂| 久久久久久久久久成人| av在线观看视频网站免费| 国产精品三级大全| 成人午夜高清在线视频| 成人一区二区视频在线观看| 最好的美女福利视频网| 搡老妇女老女人老熟妇| 免费看日本二区| 国产老妇女一区| 男人舔女人下体高潮全视频| 99国产精品一区二区蜜桃av| 久久九九热精品免费| 国产精品美女特级片免费视频播放器| 在线看三级毛片| 亚洲美女搞黄在线观看 | 老司机午夜十八禁免费视频| 十八禁网站免费在线| 久久九九热精品免费| 成熟少妇高潮喷水视频| 18+在线观看网站| 97人妻精品一区二区三区麻豆| 毛片一级片免费看久久久久 | 亚洲欧美清纯卡通| 亚洲欧美日韩高清在线视频| 每晚都被弄得嗷嗷叫到高潮| 精品久久国产蜜桃| 国产亚洲av嫩草精品影院| 午夜福利视频1000在线观看| 老鸭窝网址在线观看| 成人无遮挡网站| 乱码一卡2卡4卡精品| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 免费在线观看成人毛片| 久久精品国产亚洲av涩爱 | 免费电影在线观看免费观看| 国产免费av片在线观看野外av| 欧美xxxx黑人xx丫x性爽| 成人美女网站在线观看视频| 1000部很黄的大片| 九色成人免费人妻av| 日韩欧美在线二视频| 变态另类成人亚洲欧美熟女| 男人舔女人下体高潮全视频| 欧美乱妇无乱码| 国产成人欧美在线观看| 国产欧美日韩精品一区二区| h日本视频在线播放| 国产精品久久久久久亚洲av鲁大| 男女下面进入的视频免费午夜| 亚洲性夜色夜夜综合| 蜜桃久久精品国产亚洲av| 日日摸夜夜添夜夜添av毛片 | 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩高清专用| 脱女人内裤的视频| 精品不卡国产一区二区三区| 热99在线观看视频| 久久久国产成人免费| 又黄又爽又免费观看的视频| 女生性感内裤真人,穿戴方法视频| 成人亚洲精品av一区二区| 中文字幕av成人在线电影| 在线观看午夜福利视频| 国产精品国产高清国产av| av欧美777| 狂野欧美白嫩少妇大欣赏| 夜夜看夜夜爽夜夜摸| 一个人免费在线观看电影| 90打野战视频偷拍视频| 久久久久性生活片| 久久香蕉精品热| 我要看日韩黄色一级片| 国产精品伦人一区二区| 日韩人妻高清精品专区| 精品久久久久久久末码| 国产激情偷乱视频一区二区| 国产成年人精品一区二区| 99久国产av精品| 日韩人妻高清精品专区| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av成人av| 久久久久性生活片| 无遮挡黄片免费观看| 欧美中文日本在线观看视频| 久久这里只有精品中国| 国产在线精品亚洲第一网站| 日本精品一区二区三区蜜桃| 人人妻人人看人人澡| 日韩欧美免费精品| 亚洲av五月六月丁香网| a在线观看视频网站| 国产精品一区二区性色av| 亚洲美女视频黄频| 最好的美女福利视频网| 99热这里只有是精品在线观看 | 狂野欧美白嫩少妇大欣赏| av中文乱码字幕在线| 亚洲精品456在线播放app | 中亚洲国语对白在线视频| 国产亚洲精品久久久久久毛片| 国产淫片久久久久久久久 | 成年人黄色毛片网站| 亚洲人成网站在线播放欧美日韩| 亚洲五月天丁香| 伊人久久精品亚洲午夜| 亚洲精品色激情综合| 欧美日韩乱码在线| 午夜精品在线福利| 欧美三级亚洲精品| 国产精华一区二区三区| 两个人的视频大全免费| 精品一区二区三区视频在线| 国产视频一区二区在线看| 欧美黑人巨大hd| 黄色一级大片看看| 国模一区二区三区四区视频| 成人国产综合亚洲| 狠狠狠狠99中文字幕| 国产探花极品一区二区| 国产黄a三级三级三级人| 午夜久久久久精精品| www.色视频.com| 亚洲国产精品久久男人天堂| 国产高潮美女av| 亚洲精品亚洲一区二区| 最近最新免费中文字幕在线| 少妇高潮的动态图| 午夜福利免费观看在线| 老女人水多毛片| 久久这里只有精品中国| 一卡2卡三卡四卡精品乱码亚洲| 麻豆久久精品国产亚洲av| www.www免费av| 亚洲va日本ⅴa欧美va伊人久久| 俄罗斯特黄特色一大片| 看黄色毛片网站| 国产欧美日韩精品亚洲av| 亚洲在线观看片| 哪里可以看免费的av片| 国内精品久久久久精免费| 免费av毛片视频| 天堂影院成人在线观看| 亚洲成人精品中文字幕电影| 非洲黑人性xxxx精品又粗又长| 在线观看av片永久免费下载| 国产淫片久久久久久久久 | 欧美一区二区精品小视频在线| 亚洲五月婷婷丁香| 亚洲专区国产一区二区| 天天躁日日操中文字幕| 国产免费男女视频| 两性午夜刺激爽爽歪歪视频在线观看| 热99在线观看视频| 老司机午夜十八禁免费视频| 91午夜精品亚洲一区二区三区 | 一本久久中文字幕| 欧美不卡视频在线免费观看| 国产亚洲欧美在线一区二区| 国产精品电影一区二区三区| 国产视频一区二区在线看| 国产一区二区三区在线臀色熟女| 脱女人内裤的视频| 长腿黑丝高跟| 男女那种视频在线观看| 国产高清视频在线播放一区| 我要搜黄色片| 人妻丰满熟妇av一区二区三区| 日日摸夜夜添夜夜添小说| 一区二区三区激情视频| 久久亚洲真实| 国产精品99久久久久久久久| www日本黄色视频网| 欧美三级亚洲精品| 黄色视频,在线免费观看| 在线播放无遮挡| av天堂中文字幕网| 欧美激情久久久久久爽电影| 国产伦精品一区二区三区视频9| 别揉我奶头~嗯~啊~动态视频| 亚洲成人久久性| 女生性感内裤真人,穿戴方法视频| 中亚洲国语对白在线视频| 看十八女毛片水多多多| 岛国在线免费视频观看| 欧美绝顶高潮抽搐喷水| 免费人成视频x8x8入口观看| 人妻制服诱惑在线中文字幕| 欧美激情在线99| 欧美最新免费一区二区三区 | 亚洲成av人片免费观看| 国产一区二区三区视频了| 日韩欧美精品免费久久 | 最近最新免费中文字幕在线| 亚洲经典国产精华液单 | 日本成人三级电影网站| 久久久色成人| 大型黄色视频在线免费观看| 国产美女午夜福利| 亚洲国产精品999在线| 精品午夜福利视频在线观看一区| 神马国产精品三级电影在线观看| 成人亚洲精品av一区二区| 少妇人妻一区二区三区视频| 免费看日本二区| 亚洲精品日韩av片在线观看| 免费看日本二区| 18禁黄网站禁片免费观看直播| 美女 人体艺术 gogo| 国产精品久久久久久亚洲av鲁大| 久久99热6这里只有精品| 日韩欧美精品v在线| 久久国产精品人妻蜜桃| 听说在线观看完整版免费高清| 国产老妇女一区| 桃色一区二区三区在线观看| 国产私拍福利视频在线观看| 看黄色毛片网站| 嫁个100分男人电影在线观看| 午夜影院日韩av| 怎么达到女性高潮| 久久亚洲真实| 人人妻,人人澡人人爽秒播| av在线老鸭窝| 国产精品女同一区二区软件 | 精品人妻偷拍中文字幕| 色尼玛亚洲综合影院| 黄色视频,在线免费观看| 夜夜看夜夜爽夜夜摸| 婷婷丁香在线五月| 麻豆国产97在线/欧美| 免费无遮挡裸体视频| 非洲黑人性xxxx精品又粗又长| 免费av毛片视频| 日韩国内少妇激情av| 国产真实乱freesex| 免费av毛片视频| 国产伦一二天堂av在线观看| 在现免费观看毛片| 免费av毛片视频| 欧美成狂野欧美在线观看| 国产高潮美女av| 午夜精品久久久久久毛片777| 亚洲成人久久性| 免费观看的影片在线观看| 日本黄色视频三级网站网址| 欧美成狂野欧美在线观看| 两个人的视频大全免费| 一进一出抽搐动态| 国产精品综合久久久久久久免费| 国产精品久久电影中文字幕|