• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2?

    2021-09-28 02:18:28LijunNi倪麗君ZhendongChen陳振東WeiLi李威XianyangLu陸顯揚(yáng)YuYan嚴(yán)羽LonglongZhang張龍龍ChunjieYan晏春杰YangChen陳陽(yáng)YaoyuGu顧耀玉YaoLi黎遙RongZhang張榮YaZhai翟亞RonghuaLiu劉榮華YiYang楊燚andYongbingXu徐永兵
    Chinese Physics B 2021年9期
    關(guān)鍵詞:李威陳陽(yáng)

    Lijun Ni(倪麗君),Zhendong Chen(陳振東),5,Wei Li(李威),Xianyang Lu(陸顯揚(yáng)),Yu Yan(嚴(yán)羽),Longlong Zhang(張龍龍),Chunjie Yan(晏春杰),Yang Chen(陳陽(yáng)),Yaoyu Gu(顧耀玉),Yao Li(黎遙),Rong Zhang(張榮),Ya Zhai(翟亞),Ronghua Liu(劉榮華),?,Yi Yang(楊燚),?,and Yongbing Xu(徐永兵),4,§

    1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials,School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    2Jiangsu Provincial Key Laboratory for Nanotechnology,School of Physics,Nanjing University,Nanjing 210093,China

    3Department of Physics,Southeast University,Nanjing 211189,China

    4York-Nanjing Joint Centre for Spintronics and NanoEngineering,Department of Electronic Engineering,University of York,York YO10 5DD,United Kingdom

    5Jiangsu Key Laboratory of Opto-Electronic Technology,Center for Quantum Transport and Thermal Energy Science,School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China

    Keywords:two-dimensional ferromagnet,ferromagnetic resonance,magnetic anisotropy,magnetic damping

    During the last two decades,two-dimensional(2D)materials such as graphene and transition-metal dichalcogenides,exhibiting many attractive properties,have been extensively studied.[1–4]The 2D intrinsic ferromagnetic vdW crystals were predicted to have promising spintronic applications[5–8]with high data storage density,faster response,and lowpower dissipation.[9,10]It is also of great interest as the building block for engineering spintronic vdW heterostructures.[11]Recent experiments have demonstrated that it is possible to obtain 2D ferromagnetic order in CrI3-and CrSiTe3-type compounds.[12–17]However,bulk CrI3,CrGeTe3,and CrSiTe3exhibit the FM orders below 68 K,61 K,and 33 K,respectively,which are much lower than room temperature(RT).Among the predicted and experimentally observed vdW ferromagnetic materials,as an itinerant ferromagnet,[18]the single crystalline FGT stands out with a relatively high TCin its bulk state,ranging from 150 K–220 K depending on Fe deficiencies.[19–24]Up to now,various experimental investigations such as anomalous Hall effect,[25]DC magnetization,[20,23]chemical substitution,[26,27]and magnetic microstructure[28]have been carried out on FGT.However,there still lacks the magnetic dynamics study of this 2D vdW itinerant ferromagnet until now.

    Three-dimensional(3D)microwave cavity-based electron-spin-resonance spectrometer as a high sensitivity technique has been widely used for the magnetic analysis of ferri-and para-magnetic components within environmental samples and characterization of dynamic properties of magnetic materials.[29,30]According to the resonance field(Hr)and linewidth(ΔHpp)of ferromagnetic resonance(FMR),[31–33]one can obtain magnetic anisotropy K1and the magnetic damping of magnetic materials.Since magnetic relaxation processes govern the efficiency and determine the performance of magnetic devices,including hard drives,magnetic random access memories,magnetic logic devices,and magnetic field sensors,therefore obtained damping experimentally,as well as dynamic magnetic properties of magnetic materials and heterostructures,is crucial for their application in potential spintronic devices.Generally,it is crucial to obtain the FMR spectra,as this is the first step for further investigating the dynamic properties of 2D vdW ferromagnets.Hence,it is necessary to obtain the FMR spectra and understand the essential magnetization dynamics of bulk FGT for future functional spintronic devices containing FGT metallic ferromagnet near room temperature.

    In this paper,we first established the static magnetic properties of the single crystal FGT bulk.The static magnetization properties were obtained by studying temperature-and magnetic field-dependent magnetic susceptibility using a superconducting quantum interference device(SQUID)magnetometer.And we determined magnetic anisotropy constant K1from the SQUID measurements.More importantly,we have conducted the dynamic studies with electron-spinresonance(ESR)spectrometer at cryogenic temperature,and observed the FMR spectra in the intrinsic 2D ferromagnet FGT.Temperature-dependent magnetic anisotropy constant K1and the effective magnetic dampingαeffhave been calculated from the isothermal angular dependent resonance field Hrand linewidth.The K1exhibited an expected decreasing behavior near TC.However,the effective magnetic damping αeffas large as 0.58 was obtained,showing little temperature dependence.Our results provide significant insight into the magnetization dynamics of 2D vdW itinerant ferromagnet FGT,going beyond the previously reported static observation.

    High-quality FGT single crystals were synthsized by the chemical vapor transport method.First,the pure powders Fe(99.998%),Ge(99.999%),and Te(99.999%)were weighed out in a stoichiometric ratio of 3:1:5.The elements were blended and placed,along with solid iodine I2as a transport agent,into an evacuated quartz tube,which was evacuated of air before sealing.Then,the sealed tube was placed in a furnace with a temperature gradient between 700°C and 650°C for one week.The starting mixed constituents were placed at the hot end,and the single crystals precipitated on the cold end of the tube.Finally,the FGT single crystals were analyzed with x-ray diffraction(XRD).Temperature-and fieldmagnetization measurements were carried out using a SQUID magnetometer.The out-of-plane angular dependence of FMR was measured using an electron-spin-resonance spectrometer due to its high sensitivity at a microwave frequency of 9.48 GHz.Before the measurements began,an external field had been set along the easy magnetic axis(i.e.,c-axis)of FGT.And then,the measurements were implemented to vary the angle as the samples were rotated.

    FGT is a layered hexagonal structure(the P63/mmc space group).[23]In Fig.1(a),the crystal structure of FGT contains Fe3Ge slabs separated by a so-called vdW gap between adjacent Te layers.The Fe atoms in the unit cell occupy two inequivalent Wyckoff sites Fe1 and Fe2.Figure 1(b)presents a 2θXRD scan;only(00l)peaks are detected,indicating that our FGT samples exhibit the high single-crystalline quality,and the crystal surface is normal to the c-axis with the plateshaped surface parallel to the ab-plane.Figure 1(c)shows the temperature dependence of magnetization M(T)measured under H=100 Oe applied in parallel to the c-axis.An obvious paramagnetic(PM)to FM transition is observed.Besides,the ZFC and FC curves show significant splitting at low temperatures.TC≈204 K is roughly determined from the minima of the dM/dT curve with an external field of 2 T parallel to the c-axis,as indicated by the orange arrow in the inset of Fig.1(c).Figure 1(d)shows the field dependence of hysteresis loops at various temperatures for H‖c-axis.We observe that saturation magnetization Msgradually decreases with the temperature increasing.Moreover,Msof FGT at 185 K approximately drops significantly by two orders of magnitude as compared with that at 2 K,as plotted in Fig.1(f).To confirm the magnetic anisotropy of FGT,we further perform isothermal magnetization loops at 2 K for H‖ab-plane and H‖c-axis[Fig.1(e)].The magnetization saturation with H‖c-axis and H‖ab-plane at 2 K is reached for H≈4.9 kOe and 35 kOe,respectively.The saturation field for H‖c-axis is much smaller than that for H‖ab-plane,indicating that the magnetic behavior is highly anisotropic with its easy magnetic axis along the crystal’s c-axis.This conclusion is in good agreement with previous results.[25,28]

    In addition to H‖c-axis,we also measure the field dependence of hysteresis loops at various temperatures for H‖abplane,as shown in Fig.2(a).Figure 2(b)represents magnetization measured at T=185 K with the external field H‖c-axis and H‖ab-plane.Thus,we can determine K1using the following formula:

    where Hsis the saturation magnetic field with the external magnetic field H‖ab-plane during the measurement.Meand Mhare the magnetization obtained with the external fields H‖c-axis and H‖ab-plane,respectively.The obtained K1is in the range of(3.8–0.4)×106erg/cc in the 2–205 K range,as shown in Fig.2(c).And,the K1decreases monotonically with increasing temperature.

    Fig.1.(a)Crystal structure of FGT from side.(b)XRD spectrum of a bulk FGT crystal.(c)Temperature dependence of magnetization for bulk FGT with zero-field-cooling(ZFC)and field-cooling(FC)modes measured with the external magnetic field H=100 Oe along the c-axis.Insert shows the derivative magnetization dM/dT vs.T in the applied field along the c-axis.Arrow denotes the minima of the dM/dT curve,determining the TC of FGT.(d)Field dependence of magnetization for FGT measured at 2–300 K with the external magnetic field H along the c-axis.(e)Magnetization is measured at T=2 K with the external field H‖c-axis and H‖ab-plane,respectively.(f)Saturation magnetization as a function of temperature(2–300 K).

    Fig.2.(a)Field-dependent magnetization of FGT with the external magnetic field H‖ab-plane measured in the range of 2–205 K.(b)Magnetization measured at T=185 K with the external field H‖c-axis and H‖ab-plane,respectively.The shaded area,surrounded by the magnetization curves when H‖c-axis and H‖ab-plane.(c)Temperature-dependent uniaxial magnetic anisotropy constant K1,calculated by fitting the angular-dependent Hr(violet squares)at 195–205 K and using the M–H loops(orange stars)at 2–205 K,respectively.

    Fig.3.(a)The sketch of the coordinate system used to measure and analyze FMR.All FMR experiments are measured at a microwave frequency of 9.48 GHz.(b)FMR spectra of FGT with various temperatures(T=150,170,185,190,195,200,205,210 and 300 K)under the external magnetic field H‖c-axis(θH=0°;θM=0°).And the red arrow indicates the Hr of FMR spectrum.(c)–(d)Temperature dependences of Hr(c)andΔHpp(d),obtained from the FMR spectra in(b).The broken lines in(c)and(d)are the guide for the eyes.

    To explore the magnetization dynamics of FGT,we further perform the FMR measurement of single-crystal FGT.Figure 3(a)represents a sketch of the FMR coordinate system,whereφMandφHare the azimuthal angles,andθMandθHare the polar angles of the magnetization M and the DC external field H,respectively.Figure 3(b)shows the field dependence of FMR spectra for various temperatures(T=150,170,185,190,195,200,205,210 and 300 K)with H‖c-axis(i.e.,in the perpendicular configuration,θH=0°;θM=0°).The purple curve in Fig.3(b)is the background signal because FGT enters into a paramagnetic state at 300 K and it is also the same as the signal of the empty cavity without a sample.Near TCfrom 185 K to 210 K,the typical FMR spectra are observed in the ferromagnetic phase of FGT.The observed FMR signals below 210 K illustrate a fundamental fact that the precession of magnetization of FGT single crystal can be driven by an external microwave signal,like most of the ferromagnetic materials.[30,31,33–36]Moreover,this observation is consistent with the TC≈204 K determined from the measurement of temperature-dependent magnetization.In addition,from Fig.3(b),we also find that Hrgradually shifts to zero external magnetic field with decreasing temperature,indicating that the natural resonance frequency of FGT due to its magnetic anisotropy is higher than the external excitation frequency 9.48 GHz for T<180 K.It is well known that Hrvalue corresponds to the intersection of the FMR spectrum with the base line.The extracted Hrfrom Fig.3(b)for the temperature of 185–205 K is displayed in Fig.3(c),which more intuitively presents a fall of Hrwith decreasing temperature.The FMR spectrum is broadened with increasing temperature while maintaining its derivative Lorentzian-like curve shape in the 185–205 K range.ΔHppis the width between the positive and negative peaks of the FMR spectrum.In Fig.3(d),the minimum value ofΔHppis larger than 1000 Oe,suggesting that this FGT system may have an unexpected high magnetic damping constant.In contrast with some other 2D ferromagnets,e.g.,Cr1/3NbS3and CrGeTe3,FGT has a weak FMR signal and very broad linewidth.[9,37]The FMR linewidth can generally be considered from three origins:(i)Gilbert damping,(ii)two magnon scattering,and(iii)sample magnetic inhomogeneities.The large Gilbert damping was reported previously in the Ni80Fe20film doped with heavy rare earth atoms.[38]In the doped Ni80Fe20film,the large linewidth(>1000 Oe at 22 GHz)corresponds to the damping value of 0.1–0.2.According to the modified Kambersk′y’s spin–orbital torque correlation theory,[39]for a ferromagnetic metal,two competing contributions give rise to intrinsic Gilbert damping:intraband electron–hole transitions and interband electron–hole transitions.The former contributes a conductivity-like term(decreasing with the electron scattering rateΓ),while the latter gives a resistivity-like term(increasing withΓ).For our FGT sample,the resistivity-like term may dominate the Gilbert damping.And,the existence of Fe vacancies also effectively enhances the scattering rate,thereby promoting interband electron–hole transitions.Meanwhile,due to more electron scatterings at the higher temperature,theΔHppincreases with temperature.Furthermore,theΔHpprising as the temperature increases is consistent with the behavior that the coherent FMR dynamics(where the wave vector k=0)continuously evolve into an incoherent process due to the strong thermal excitation of magnon,[40]resulting in the magnon scattering and the inconsistency of magnetic moments continually increasing and broadeningΔHpp.The temperature broadening linewidth or enhancing magnetic damping phenomena are generally observed in numerous magnetic materials.[41,42]Besides,the magnetization inhomogeneity is also expected to significantly influence the observed broad FMR linewidth due to the large magnetic anisotropy and nucleation of magnetic multidomain.

    To quantificationally estimate the magnetic damping of FGT,we further carry out measurements of the out-of-plane angular dependence(i.e.,φM=φH=π/2)of FMR at the fixed microwave frequency of 9.48 GHz.Figure 4(a)shows the representative FMR spectra for differentθHat 190 K.The value of Hris enhanced as the external magnetic field H varies from the out-of-plane(H‖c-axis)to the in-plane(H‖ab-plane)direction.Figure 4(b)shows the out-of-plane angular dependence of Hrfor the temperature from 185 K to 200 K,and open circles represent the experimental data.Moreover,the curve of Hrvs.θHexhibits only one peak.These measurement results further confirm that FGT has uniaxial magnetic anisotropy,and the easy axis is along the c-axis as mentioned above.Figure 4(c)displays the experimentalΔHppas a function ofθHfor different temperatures,indicated by blue globules.

    Fig.4.(a)The typical FMR spectra of FGT measured at T=190 K with different anglesθH=0°,45°,and 90°.(b)Angular dependence of resonance field Hr of FGT for various temperatures T=185 K,190 K,195 K,and 200 K.Open circles represent the experimental data and red lines show the fitting curve of Hr.(c)Angular dependence of peak-to-peak linewidthΔHpp with T=185 K,190 K,195 K,and 200 K.Blue globules indicate the experimental data and orange lines are the calculatedΔHpp.

    Based on a single magnetic domain model for the FGT sample under FMR conditions,we analyze the data ofθHvariation of HrandΔHppquantitatively.First,we focus on the data θHvs.Hr.We describe the resonant peaks by the Smit–Beljers equation[43,44]

    whereω=2πf with a microwave frequency f=9.48 GHz.γis the gyromagnetic ratio.F is the free energy density given by the following expression for the FGT sample:[30,45]

    where K1is the perpendicular magnetic anisotropy constant.The first,second,and third terms represent the Zeemanenergy density describing the coupling between the magnetization vector M and the external magnetic field H,the shape anisotropy energy,and the uniaxial magnetocrystalline anisotropy energy,respectively.In our case,because the lateral dimensions in the ab-plane are much larger than the thickness of the FGT crystal along the c-axis,the shape of the measured platelet-like FGT crystal is described by the demagnetization factors(Nx=Ny=0,Nz=1)of an extended flat plate.Because ofφM=φH=π/2,we obtain the following equation by deducing from Eq.(3):[45]

    Here,4πMeffis the effective demagnetizing field,defined by

    where Hk=2K1/Msis the perpendicular magnetic anisotropy field.The experimental data of the angular dependence of Hrare fitted by using Eq.(4)with bothγand 4πMeffused as fitting parameters.The azimuthal angle of magnetizationθMis determined concurrently by solving the equation

    The solid red lines in Fig.4(b)show the fitting results of resonant field Hras a function of the external field orientation θH.The temperature dependence of K1in the range of 195–205 K is summarized in Fig.2(c).The K1is in the range of(1.6–0.8)×105erg/cc from 195 K to 205 K.Meanwhile,the K1obtained from magnetization SQUID-measurements mentioned above has values of(8.9–4.4)×105erg/cc from 195 K to 205 K.We observe that there is the same order of magnitude of K1near TCof FGT calculated using two different methods.Furthermore,the slight deviation of K1value may be due to the different methods(i.e.,the dynamically and the statically determined K1)and domain structures at the angleθHclose to in-plane for the FMR-method.We note that it is more thorough and reliable to obtain the anisotropic constant K1from the M–H loops measurements.

    Second,we turn to the linewidth of FMRΔHppanalysis in Fig.4(c).For out-of-plane measurements,ΔHppcan be expressed as[29,43]

    Figure 5 shows no apparent dependence ofαeffon temperature in the range of 185–205 K.The overallαeffvalues are large with an average damping value of about 0.58.The αeffof FGT is much larger than that of other 2D ferromagnets such as Cr1/3NbS3,CrGeTe3and magnetic metal films CoFeB[41]and Fe.[47]There have three possible sources accounting for the large dampingαeffvalue.One source is that the FGT as 2D vdW itinerant ferromagnet itself owns a huge intrinsic Gilbert damping.The second source may be related to the strong magnon scattering process as an additional magnetic relaxation channel near TCand causes the enhancement of linewidth and damping.The third source is the magnetization inhomogeneity of the FGT sample.

    Fig.5.Effective damping constantαeff as a function of temperature.The orange dash line represents the average value of 0.58.

    Note that our current FMR results with the relatively limited temperature range due to a low excitation frequency~9.48 GHz(or a low magnetic field range)prevent us from extracting the magnetic damping coefficient accurately and identifying the behind mechanism.The FMR spectra experiments with a large magnetic field range or high excitation frequency and first-principles calculations about damping or the theoretical models need to be performed to explore further the behind mechanism of such larger magnetic damping constant in this 2D vdW itinerant ferromagnet.

    In summary,we characterized the static magnetization of the bulk FGT single crystal with a TCaround 204 K and obtained the temperature-dependent uniaxial magnetic anisotropy constant K1.Furthermore,the FMR spectra were also obtained by ESR from 185 K to TCwith a fixed frequency of 9.48 GHz.The minimum linewidthΔHppis larger than 1000 Oe when H‖c-axis.We also estimated the damping constant quantificationally from the out-of-plane angular dependence of FMR spectra,and found that the effective magnetic dampingαeffis about 0.58 near TC.Our results not only provide insights into the magnetic dynamical properties of 2D vdW itinerant ferromagnet FGT,but also can significantly facilitate its future applications in spintronic devices.

    猜你喜歡
    李威陳陽(yáng)
    Phase-matching quantum key distribution with light source monitoring
    晨讀
    夜讀(一)
    陳陽(yáng)美術(shù)作品欣賞
    陳陽(yáng):讓青春在筑夢(mèng)路上綻放榮光
    The influence of artificial intelligence on accounting industry
    絕對(duì)有償
    女漢子的春天
    喜劇世界(2016年11期)2016-11-26 07:08:30
    樓上的孩子怕吵架
    科長(zhǎng)的微博
    雜文選刊(2013年11期)2013-05-14 13:38:10
    精品午夜福利在线看| 亚洲成人一二三区av| 七月丁香在线播放| 九九久久精品国产亚洲av麻豆| 美女国产视频在线观看| 亚洲欧美成人综合另类久久久| 国产 亚洲一区二区三区 | 亚洲欧洲国产日韩| 日本wwww免费看| 我的女老师完整版在线观看| 一级片'在线观看视频| 国产精品女同一区二区软件| 成人午夜高清在线视频| 日本一二三区视频观看| 亚洲精品第二区| 51国产日韩欧美| 久久精品久久久久久久性| 一夜夜www| av专区在线播放| 伊人久久精品亚洲午夜| 日本黄大片高清| 亚洲av国产av综合av卡| 国产成人91sexporn| 嫩草影院精品99| 免费观看的影片在线观看| a级毛色黄片| 又爽又黄a免费视频| 欧美潮喷喷水| .国产精品久久| 中文字幕av成人在线电影| 久久久成人免费电影| 在线免费观看的www视频| av又黄又爽大尺度在线免费看| 亚洲av免费在线观看| 亚洲自偷自拍三级| 卡戴珊不雅视频在线播放| 一区二区三区乱码不卡18| 一区二区三区乱码不卡18| 51国产日韩欧美| 中文字幕免费在线视频6| 精品一区二区三卡| 尾随美女入室| 老司机影院毛片| 欧美精品一区二区大全| 亚洲成人精品中文字幕电影| 久久久久久久久大av| 亚洲国产欧美人成| 性插视频无遮挡在线免费观看| 在线免费十八禁| 国产v大片淫在线免费观看| 精品久久久久久成人av| 国产精品久久久久久久久免| 哪个播放器可以免费观看大片| 亚洲第一区二区三区不卡| 肉色欧美久久久久久久蜜桃 | 老司机影院成人| 精品久久久久久久末码| 亚洲国产色片| 嘟嘟电影网在线观看| 国产高清三级在线| kizo精华| 全区人妻精品视频| 男人舔奶头视频| 日韩伦理黄色片| 天堂√8在线中文| 一个人免费在线观看电影| 大香蕉97超碰在线| 又爽又黄无遮挡网站| 中文字幕久久专区| 看免费成人av毛片| 少妇丰满av| 成人午夜高清在线视频| 亚洲图色成人| 夫妻性生交免费视频一级片| 精品午夜福利在线看| 国产片特级美女逼逼视频| 欧美一级a爱片免费观看看| 1000部很黄的大片| or卡值多少钱| 麻豆精品久久久久久蜜桃| 欧美高清成人免费视频www| 男人舔奶头视频| 最近视频中文字幕2019在线8| 精品久久久久久久久av| 韩国av在线不卡| 国产成人午夜福利电影在线观看| 日本色播在线视频| 免费观看无遮挡的男女| 观看免费一级毛片| 精品人妻偷拍中文字幕| 国产高清有码在线观看视频| 日本一本二区三区精品| 久久精品人妻少妇| 丝袜美腿在线中文| 蜜桃久久精品国产亚洲av| 欧美日韩综合久久久久久| av免费在线看不卡| 一级黄片播放器| 久久亚洲国产成人精品v| 久久久久久九九精品二区国产| 夫妻午夜视频| 午夜精品国产一区二区电影 | 国产av码专区亚洲av| 色吧在线观看| 欧美xxxx性猛交bbbb| 欧美高清成人免费视频www| av播播在线观看一区| 日本爱情动作片www.在线观看| 女的被弄到高潮叫床怎么办| 亚洲欧美精品自产自拍| 最近视频中文字幕2019在线8| 国产精品伦人一区二区| 精品国产露脸久久av麻豆 | 欧美高清性xxxxhd video| 免费av不卡在线播放| 亚州av有码| 精品一区二区三区视频在线| 十八禁网站网址无遮挡 | a级一级毛片免费在线观看| 亚洲av中文av极速乱| 听说在线观看完整版免费高清| 如何舔出高潮| 波野结衣二区三区在线| 精品久久久久久久久av| 午夜精品国产一区二区电影 | 午夜福利在线在线| 在线观看免费高清a一片| 精品久久久久久久久久久久久| av.在线天堂| 国产av不卡久久| 97精品久久久久久久久久精品| 中文字幕av在线有码专区| 国产三级在线视频| 日韩欧美精品免费久久| 午夜免费男女啪啪视频观看| 又大又黄又爽视频免费| 国产淫片久久久久久久久| 国产在线男女| 亚洲欧美成人综合另类久久久| 久久国内精品自在自线图片| 99久久人妻综合| 亚洲无线观看免费| 不卡视频在线观看欧美| 伦理电影大哥的女人| 日韩欧美 国产精品| 国产一区二区在线观看日韩| 精品一区在线观看国产| 久久久久九九精品影院| 亚洲成人一二三区av| 免费看不卡的av| 精品熟女少妇av免费看| 婷婷六月久久综合丁香| 亚洲欧美日韩卡通动漫| 久久99热6这里只有精品| 日韩视频在线欧美| 波野结衣二区三区在线| 婷婷色综合大香蕉| 69人妻影院| 国产乱来视频区| 欧美潮喷喷水| 大香蕉久久网| 激情五月婷婷亚洲| 伊人久久精品亚洲午夜| 成人毛片60女人毛片免费| 一边亲一边摸免费视频| 好男人视频免费观看在线| 91精品国产九色| 成人欧美大片| ponron亚洲| 国产亚洲午夜精品一区二区久久 | 国产精品一区二区三区四区久久| 天天躁日日操中文字幕| 亚洲av不卡在线观看| 中国美白少妇内射xxxbb| 国产一区二区三区av在线| 有码 亚洲区| 亚洲高清免费不卡视频| 99热6这里只有精品| 亚洲av成人精品一区久久| 少妇熟女aⅴ在线视频| av播播在线观看一区| 国产亚洲午夜精品一区二区久久 | 精品久久久久久久末码| 欧美成人精品欧美一级黄| 国产午夜精品论理片| 精品人妻偷拍中文字幕| 一级片'在线观看视频| 99久国产av精品国产电影| 尤物成人国产欧美一区二区三区| 国产伦一二天堂av在线观看| 亚洲精品亚洲一区二区| 777米奇影视久久| 激情五月婷婷亚洲| 亚洲av免费高清在线观看| 国产高清三级在线| 成年女人看的毛片在线观看| 嫩草影院新地址| 乱码一卡2卡4卡精品| 日日啪夜夜撸| 在线 av 中文字幕| 国产白丝娇喘喷水9色精品| 精品久久久久久久久av| 老师上课跳d突然被开到最大视频| 九九在线视频观看精品| 五月伊人婷婷丁香| 观看美女的网站| 99热全是精品| 日韩在线高清观看一区二区三区| 寂寞人妻少妇视频99o| xxx大片免费视频| 大香蕉97超碰在线| 国产白丝娇喘喷水9色精品| 国产黄a三级三级三级人| 18禁动态无遮挡网站| 午夜福利在线观看免费完整高清在| 久久久精品欧美日韩精品| 国产91av在线免费观看| 亚洲精品久久久久久婷婷小说| 日韩欧美精品免费久久| 伊人久久精品亚洲午夜| 久久久精品欧美日韩精品| 尤物成人国产欧美一区二区三区| 婷婷色综合大香蕉| 国产精品一区www在线观看| 欧美不卡视频在线免费观看| 色哟哟·www| 内地一区二区视频在线| av播播在线观看一区| 亚洲四区av| www.av在线官网国产| 又粗又硬又长又爽又黄的视频| 久久草成人影院| 永久免费av网站大全| 两个人视频免费观看高清| 欧美潮喷喷水| 高清日韩中文字幕在线| 韩国高清视频一区二区三区| 国内少妇人妻偷人精品xxx网站| 男女视频在线观看网站免费| 国产又色又爽无遮挡免| 国产成人福利小说| 在线观看人妻少妇| 又大又黄又爽视频免费| 免费看日本二区| 日本免费在线观看一区| 色播亚洲综合网| 国产在线男女| 日韩不卡一区二区三区视频在线| 国产成人aa在线观看| 成人亚洲精品一区在线观看 | 精品人妻偷拍中文字幕| 大香蕉97超碰在线| 成人亚洲欧美一区二区av| a级毛片免费高清观看在线播放| 内地一区二区视频在线| 国产成人精品久久久久久| 国国产精品蜜臀av免费| 亚洲三级黄色毛片| 日本与韩国留学比较| 少妇裸体淫交视频免费看高清| 干丝袜人妻中文字幕| 伦精品一区二区三区| www.色视频.com| 国产精品国产三级国产专区5o| 欧美日韩综合久久久久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美中文字幕日韩二区| 天堂av国产一区二区熟女人妻| 成人亚洲精品一区在线观看 | 国产爱豆传媒在线观看| 亚洲精品成人久久久久久| 搡老妇女老女人老熟妇| 久久久久久久大尺度免费视频| 黄色日韩在线| 日韩不卡一区二区三区视频在线| av国产久精品久网站免费入址| 国产一区有黄有色的免费视频 | 免费高清在线观看视频在线观看| 欧美性猛交╳xxx乱大交人| 亚洲久久久久久中文字幕| 亚洲经典国产精华液单| 久久精品国产自在天天线| av在线播放精品| 美女xxoo啪啪120秒动态图| 国产在视频线在精品| 国产女主播在线喷水免费视频网站 | 亚洲精品久久久久久婷婷小说| 大片免费播放器 马上看| 成人一区二区视频在线观看| av国产免费在线观看| 在现免费观看毛片| 18+在线观看网站| 国内揄拍国产精品人妻在线| 亚洲国产色片| 久久鲁丝午夜福利片| 国产男人的电影天堂91| 国产老妇伦熟女老妇高清| 中文字幕av在线有码专区| 26uuu在线亚洲综合色| 99久国产av精品国产电影| 欧美+日韩+精品| 亚洲国产av新网站| 成人av在线播放网站| 免费看不卡的av| 久久这里只有精品中国| 免费在线观看成人毛片| 国产探花极品一区二区| 五月玫瑰六月丁香| 免费在线观看成人毛片| 三级男女做爰猛烈吃奶摸视频| 又粗又硬又长又爽又黄的视频| 男人狂女人下面高潮的视频| 亚洲欧美日韩东京热| 精品一区二区免费观看| 午夜激情欧美在线| 亚洲最大成人中文| 美女国产视频在线观看| 男人爽女人下面视频在线观看| 午夜免费观看性视频| 国产精品国产三级专区第一集| 国产黄色小视频在线观看| 黄色欧美视频在线观看| 亚洲av免费在线观看| 亚洲美女搞黄在线观看| 久久精品国产自在天天线| 亚洲成人一二三区av| 国产av在哪里看| 97精品久久久久久久久久精品| 两个人的视频大全免费| 在线 av 中文字幕| 成人毛片a级毛片在线播放| 国语对白做爰xxxⅹ性视频网站| 黄色配什么色好看| 天美传媒精品一区二区| 搞女人的毛片| 啦啦啦中文免费视频观看日本| 国产伦一二天堂av在线观看| 午夜亚洲福利在线播放| 少妇熟女aⅴ在线视频| 在线观看美女被高潮喷水网站| 日韩在线高清观看一区二区三区| 99九九线精品视频在线观看视频| 伦精品一区二区三区| 我要看日韩黄色一级片| 国产伦在线观看视频一区| 久久久精品94久久精品| 免费av观看视频| 亚洲内射少妇av| 大又大粗又爽又黄少妇毛片口| 国产成年人精品一区二区| 国产亚洲av片在线观看秒播厂 | 国产精品美女特级片免费视频播放器| 亚洲激情五月婷婷啪啪| 建设人人有责人人尽责人人享有的 | 成年免费大片在线观看| 免费看a级黄色片| 三级国产精品片| 男女啪啪激烈高潮av片| 亚洲精品第二区| 男人舔奶头视频| 97精品久久久久久久久久精品| 日韩一本色道免费dvd| 水蜜桃什么品种好| 蜜臀久久99精品久久宅男| 亚洲精品成人av观看孕妇| 国内少妇人妻偷人精品xxx网站| av女优亚洲男人天堂| 纵有疾风起免费观看全集完整版 | 人人妻人人澡人人爽人人夜夜 | 一个人看视频在线观看www免费| 中国国产av一级| 中国美白少妇内射xxxbb| 听说在线观看完整版免费高清| 欧美潮喷喷水| 高清日韩中文字幕在线| 建设人人有责人人尽责人人享有的 | 18禁在线播放成人免费| 亚洲人成网站在线观看播放| 99热网站在线观看| 亚洲国产成人一精品久久久| 精品久久久久久电影网| 亚洲国产成人一精品久久久| 午夜福利在线在线| 久久久久性生活片| av国产免费在线观看| 中文字幕亚洲精品专区| 亚洲欧洲国产日韩| 观看免费一级毛片| 有码 亚洲区| 成人午夜精彩视频在线观看| 美女xxoo啪啪120秒动态图| 欧美人与善性xxx| 国产黄片视频在线免费观看| 少妇高潮的动态图| 亚洲va在线va天堂va国产| 人体艺术视频欧美日本| 大香蕉97超碰在线| 国产乱人视频| 久久久久性生活片| 3wmmmm亚洲av在线观看| 国产在视频线在精品| 丰满人妻一区二区三区视频av| 国产综合懂色| 精品久久国产蜜桃| 国产午夜精品论理片| 亚洲精品久久午夜乱码| 亚洲色图av天堂| 国产成人a∨麻豆精品| 在线a可以看的网站| 99久久精品国产国产毛片| 天堂中文最新版在线下载 | 干丝袜人妻中文字幕| 精华霜和精华液先用哪个| 99热这里只有精品一区| 久久久久久久久久黄片| 国产成年人精品一区二区| 国产91av在线免费观看| 日本wwww免费看| 观看免费一级毛片| 成人亚洲精品av一区二区| 91在线精品国自产拍蜜月| 国产在线一区二区三区精| 在线观看av片永久免费下载| 婷婷色综合www| 亚洲国产日韩欧美精品在线观看| 国产一区二区三区av在线| 国产乱来视频区| 国产乱人视频| 久99久视频精品免费| 欧美xxⅹ黑人| 视频中文字幕在线观看| 美女被艹到高潮喷水动态| 97超视频在线观看视频| 午夜福利成人在线免费观看| av播播在线观看一区| 一级黄片播放器| 身体一侧抽搐| 色播亚洲综合网| 中文字幕免费在线视频6| 久久热精品热| 国产在视频线精品| 一个人看视频在线观看www免费| 日韩三级伦理在线观看| 别揉我奶头 嗯啊视频| 日本wwww免费看| 亚洲av在线观看美女高潮| 少妇丰满av| 国产精品伦人一区二区| 91精品一卡2卡3卡4卡| 看非洲黑人一级黄片| 秋霞在线观看毛片| 中文字幕av在线有码专区| 男的添女的下面高潮视频| 99久久精品国产国产毛片| 精品熟女少妇av免费看| 精品午夜福利在线看| 国产一区有黄有色的免费视频 | 国产精品.久久久| 久久久久精品久久久久真实原创| 美女内射精品一级片tv| 亚洲精品乱久久久久久| 一级av片app| 国产av在哪里看| 国产麻豆成人av免费视频| 亚洲精品自拍成人| 亚洲成人久久爱视频| 日本-黄色视频高清免费观看| 观看美女的网站| 中国美白少妇内射xxxbb| 一边亲一边摸免费视频| 亚洲不卡免费看| 亚洲熟女精品中文字幕| 非洲黑人性xxxx精品又粗又长| 身体一侧抽搐| 亚洲国产精品成人久久小说| 日本免费在线观看一区| 丝袜美腿在线中文| 国产精品.久久久| 91午夜精品亚洲一区二区三区| av在线天堂中文字幕| 日韩欧美一区视频在线观看 | 欧美一区二区亚洲| 人人妻人人看人人澡| 夫妻午夜视频| 中文字幕久久专区| 亚州av有码| 亚洲三级黄色毛片| 一级片'在线观看视频| 欧美一级a爱片免费观看看| 免费电影在线观看免费观看| 特大巨黑吊av在线直播| 美女主播在线视频| 人妻系列 视频| 国内少妇人妻偷人精品xxx网站| 五月天丁香电影| 波野结衣二区三区在线| 久久韩国三级中文字幕| 人妻制服诱惑在线中文字幕| 久久综合国产亚洲精品| 欧美+日韩+精品| 观看美女的网站| 内射极品少妇av片p| 听说在线观看完整版免费高清| 国产在线男女| 国产精品三级大全| 国产伦精品一区二区三区四那| 精品久久久久久久久亚洲| 久久午夜福利片| 久久久久久久久久人人人人人人| 欧美一区二区亚洲| 欧美一级a爱片免费观看看| 久久久久久伊人网av| 老师上课跳d突然被开到最大视频| 在线免费观看的www视频| 最近最新中文字幕大全电影3| 精品一区在线观看国产| .国产精品久久| 欧美xxxx性猛交bbbb| 精品国产三级普通话版| 亚洲丝袜综合中文字幕| 免费观看性生交大片5| 全区人妻精品视频| 啦啦啦啦在线视频资源| 黑人高潮一二区| 特级一级黄色大片| 男插女下体视频免费在线播放| 只有这里有精品99| 尤物成人国产欧美一区二区三区| 91久久精品国产一区二区三区| 伊人久久精品亚洲午夜| 国产淫片久久久久久久久| 亚洲欧美日韩无卡精品| 黄色欧美视频在线观看| 一夜夜www| 日本黄大片高清| 亚洲一区高清亚洲精品| 亚洲一级一片aⅴ在线观看| 尾随美女入室| 18禁裸乳无遮挡免费网站照片| 免费看a级黄色片| 免费黄频网站在线观看国产| 听说在线观看完整版免费高清| 精品国产露脸久久av麻豆 | 国产女主播在线喷水免费视频网站 | 一个人看的www免费观看视频| 国产精品美女特级片免费视频播放器| 久久这里只有精品中国| 免费av观看视频| 插阴视频在线观看视频| 2021天堂中文幕一二区在线观| 国产在视频线在精品| 青春草亚洲视频在线观看| 全区人妻精品视频| 亚洲精品456在线播放app| 日韩三级伦理在线观看| 色5月婷婷丁香| 毛片一级片免费看久久久久| 99视频精品全部免费 在线| 一二三四中文在线观看免费高清| 亚洲欧美一区二区三区国产| 日韩av在线免费看完整版不卡| 久久久久网色| av在线蜜桃| 国产淫片久久久久久久久| 一区二区三区高清视频在线| 在现免费观看毛片| 自拍偷自拍亚洲精品老妇| 啦啦啦啦在线视频资源| 26uuu在线亚洲综合色| 精品亚洲乱码少妇综合久久| 国产一区亚洲一区在线观看| 80岁老熟妇乱子伦牲交| 18禁在线播放成人免费| 国产成人精品福利久久| 好男人视频免费观看在线| 欧美区成人在线视频| 在线 av 中文字幕| 免费看a级黄色片| 中文字幕制服av| av免费在线看不卡| 国产乱人偷精品视频| 亚州av有码| 看黄色毛片网站| 最近中文字幕高清免费大全6| av天堂中文字幕网| 国产精品久久久久久精品电影小说 | 日本猛色少妇xxxxx猛交久久| 国产午夜精品一二区理论片| 久久99热这里只频精品6学生| 国产高清不卡午夜福利| 国产人妻一区二区三区在| av在线蜜桃| 国产69精品久久久久777片| 亚洲自拍偷在线| 国产乱人偷精品视频| 国产成人福利小说| 十八禁网站网址无遮挡 | 日本三级黄在线观看| 日韩中字成人| 国产激情偷乱视频一区二区| 欧美成人一区二区免费高清观看| 日韩欧美精品v在线| 国产探花在线观看一区二区| 久久午夜福利片| 国产 一区精品| 国产欧美日韩精品一区二区| 18禁裸乳无遮挡免费网站照片| 美女主播在线视频| 欧美高清成人免费视频www| av在线播放精品| 久久久亚洲精品成人影院| 亚洲国产精品国产精品| 一夜夜www| 亚洲精品日韩在线中文字幕| 天堂网av新在线|