• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Foil Bearing Technology for High Speed Single Stage Air Compressors for Fuel Cell Applications

    2021-09-27 08:58:30DaejongKim
    風機技術(shù) 2021年4期

    Daejong Kim

    (Mechanical and Aerospace Engineering Department University of Texas at Arlington Arlington,TX,USA 76019)

    Abstract:The motivation to use air foil bearings in fuel cell compressors is driven by the demand for oil-free and high-power density system to reduce system volume and weight.The characteristics of air foil bearings that realize this demand are its independency on auxiliary system and no scheduled maintenance as well as their superb performance at high speeds.However,integration of the foil bearings to the compressor needs rigorous developmental tests for the bearing to withstand high g-load during vehicle maneuver and to remain stable in rotordynamics under external destabilizing forces.This paper presents multi-pads foil bearing technology applicable to single stage high speed fuel cell air compressors.Two different multi-pad air foil bearing designs(two-pad vs three-pad)were tested using a high-speed spin test rig to identify the differences in rotordynamics responses.The two-pad bearing is superior in rotordynamics without any sub-synchronous vibration while three-pad bearing provides more uniform load capacity in all directions with less rotordynamics stability.Frequency-domain modal analyses verify the experimental observations.Axial foil bearings with 38mm outer diameter was designed and tested up to 140krpm with load capacity of 90N(1.4bar specific load capacity).Finally,a platform design of single stage 15kW fuel cell compressor with rated speed of 130krpm is proposed using the multi-pad foil bearings and axial foil bearings developed through this paper.

    Keywords:Foil Bearings;Fuel Cell Compressor;Rotordynamics

    0 Introduction

    Operating a proton exchange membrane(PEM)fuel cell(FC) system at higher pressure allows to reduce the stack size while requires less water to achieve the same humidity as for low pressure operation [1].High air pressure increases the exchange current density which also reduces the activation loss.This ultimately results in higher power production per cell.The exiting air after a compression process would have higher temperature than the required stack temperature.Humidification and cooling of air at higher temperature is an easier task than adding water to a lower pressure air.Furthermore,the vapor pressure at 80°~90°is much higher which increases the humidity ratio.

    Several studies show that optimal pressure ratio for PEM FC is around 2.5 bar which could be delivered by turbine-driven or motor-driven centrifugal compressors or positive displacement compressors [2-4].While centrifugal compressors have a narrow operating region(mass flow and pressure) with high efficiency,they overall outperform other types of compressors on volumetric power density and noise.It is desirable for air compressors for fuel cells to be oil-free because FC prohibits oil contamination in the supplied air.Therefore,air foil bearings (AFB) are sought for these applications.

    Hydrodynamic AFBs do not require auxiliary component which could reduce the FC complexity and weight.AFB turbo systems with moderate DN numbers of 1.5~2 million(D is diameter of the shaft in mm and N is speed in revolution per minutes)have been demonstrated for PEM-FCs[5,6].It is noted the rotordynamics stability is the greatest challenge when the bearing shaft diameter and impeller size are reduced (with intention of increasing the speed and power density).From the well-known scaling law of rotor weight and bearing load capacity,AFB load capacity divided by shaft weight (will be called“relative load capacity”) becomes very large as the bearing size becomes smaller.As the relative load capacity becomes larger (i.e.,system size is reduced),the conventional single pad AFBs,shown in Fig 1(a),develop very high cross-coupled stiffness,which limits the maximum operating speed barely 100000rpm regardless of the shaft size (even if shaft size is reduced to below 20mm).

    All the existing oil-free air compressors for fuel cells are relatively low speed (≤100000rpm) single stage with large impeller or two stage systems due to unavailability of suitable AFB technology which can achieve speeds higher than 100krpm.

    Multi-pad preloaded AFB technology,of which conceptual design is shown in Fig.1(b),has been promoted at The University of Texas at Arlington (UTA) since firstly conceived by Kim [7].Recently,LaTray and Kim [8] demonstrate two-pad AFB technology applied to very small turbo expander,achieving DN over 3.2 million.Such multi-pad AFB technology enables development of single stage,very high-speed motor-driven centrifugal compressors with very small volume(weight)and high-power density.

    Fig.1 Conceptual image of single pad and multi-pad AFBs

    Two-pad AFBs in general have better rotordynamics performance than three-pad AFBs.However,three-pad AFBs have more isotropic load carrying capacity in both horizontal and vertical directions,which may be perceived to be better for mobile applications (such as automotive fuel cells compressors and UAVs) with maneuver/shock loading in any direction.

    Numerous medium sized (shaft diameters between 40 and 100mm) three-pad AFBs were designed/built/tested in the authors’laboratory for many years[9-15],and recent focus is to extend the design envelop of such AFBs to less than 25mm and also more than 100mm for industrial applications.

    This paper presents recent developmental effort of multi-pad AFB technology with shaft diameter less 22mm at UTA applicable to high speed machines with speed 120~150krpm.The multi-pad AFBs were designed using non-linear rotordynamics analyses tool developed at UTA,and they found multiple industrial applications including the smallest commercial micro gas turbine generators with nominal operating speed over 134000rpm with bearing journal diameter of 21mm [16].Some materials presented in this paper were adopted from previous publications [8,17],and a new addition to this paper includes;1) comparison of experimentally measured rotordynamic performance of two-pad vs three-pad AFBs,2) frequency-domain modal analyses of two-pad and three-pad AFBs,3) recent test results of 38mm air foil thrust bearing (AFTB) achieving load capacity of 90N,and 4) single stage high-speed(over 120000rpm)fuel cell air compressor platform adopting multi-pad AFBs and novel AFTB.

    1 Rotordynamic Measurement of Twopad and Three-pad AFBs

    1.1 Test rotor configuration and theoretical bearing dynamics

    The two-pad and three-pad AFBs are tested on a spin test rig with inertia distribution of the rotor mimicking small motor-driven compressors,and the rotordynamics responses are compared.The tested rotor-AFB system,shown in Fig.2,resembles the motor-driven compressor with overhung mass at one end of the rotor.The rotor is supported by a pair of two-pad or three-pad offset-preloaded AFBs and a pair of the six-pad AFTBs.The radial bearing span is 79.5 mm,and shaft diameter for the bearing is 19mm.The thrust runner is located at the left side of the Fwd AFB.More details of specific two-pad AFBs tested in the current paper can be found in [8].The three-pad design shares the same nominal clearance and individual bump stiffness as the two-pad design,and only difference is just the number of top foil pads.

    Fig.2 Test rotor mimicking motor-driven compressor

    The weight of the overhung mass falls within the weight range of small radial impellers that operate at similar speeds.Calculation of static loading to the bearings indicates that the Fwd AFB takes 3.79N while the Aft AFB takes only 0.47N,practically no-load condition.Polar and transverse moments of inertia of entire rotor assembly are 0.0385g-mm2and 0.7361g-mm2.Locations of bearings and other details of the rotor components are shown in Fig 2.

    Overall objective of the high-speed test is to experimentally evaluate the rotor-AFB stability up to 150krpm with two different AFB designs.The test rig is shown in Fig 3.To monitor the rotor vibration,four proximity probes in the radial direction and one proximity probe the axial direction are mounted.The figure also indicates the location of the infrared high-speed tachometer.Temperatures around the bearing sleeves are monitored using four type K thermocouples.Cooling air is supplied to the Aft AFB by feeding compressed air from the turbine shroud to the Aft bearing compartment.Fig.4 shows the overall test bed and instrumentation setup which includes a computer where real time FFT signals can be monitored and a tachometer panel that displays the rotor speed.Further details of the test rig and radial AFBs can be found in[8].

    Fig.3 Test rig with sensors mounted on the housing

    Fig.4 Photo of entire test bed

    1.2 Experimental comparison between two-pad and three-pad AFBs

    Both sets of experiments share the same pair of thrust bearings.Fig.5 and Fig.6 show waterfall plots from the twopad and three-pad AFBs,respectively.Two-pad AFB does not show any subsynchronous vibration.The difference in response of this system compared to one in [8] is due to small shifting of the rotor center of mass toward the Aft AFB resulting in a more favorable rotordynamics than the previous layout.Three-pad AFB shows subsynchronous vibration locked to the system natural frequency excited by the aerodynamic disturbance from the impulse turbine.The natural frequency is determined to associate with the system forward conical mode as shown in Fig.8.The natural frequency is very low,which means the low frequency whirl does not exert any damage to the bearing and dynamic load to the bearing due to the whirl is also very low.Fig.7 shows waterfall plots of rotor axial motions,and there is not much difference in overall vibration characteristics.

    Fig.5 Waterfall plots of rotor vibration supported by two-pad bearing

    Fig.6 Waterfall plots of rotor vibration supported by three-pad bearing

    Fig.7 Waterfall plots of rotor axial vibration

    Fig.8 Natural frequency map of the forward conical mode as functions of excitation frequencies when rotor speed is 140000rpm

    Simulations were performed to calculate stiffness and damping coefficients of the two AFBs at 160000rpm as a function of excitation-frequency,and their characteristics are shown in Fig.9(a) and Fig.9(b),where X is vertical direction downward (direction of gravity) and Y is horizontal direction.As shown in Fig.9(c) and Fig.10(c),two-pad AFB shows all positive modal damping for entire excitation frequencies while three-pad AFB shows negative damping at excitation frequency ratio below 0.4.

    Fig.9 Stiffness and damping coefficients of two-pad AFB as a function of excitation frequency at 160krpm

    Fig.10 Stiffness and damping coefficients of three-pad AFB as a function of excitation frequency at 160krpm

    The bearing temperature is normal throughout the run time as shown in Fig.11 and Fig.12.The sudden jump at the end is during touch-down when turbine flow is turned off,showing the bearing sleeve temperature increases about 10 degrees when hydrodynamic film collapses.It is worth mentioning that the cooling air to the bearings is discontinued as the turbine drive air supply valve is closed.

    Fig.12 Temperature history of three-pad bearing

    2 Axial Load Capacity of Air Foil Thrust Bearing

    The test thrust bearing is a six-pad AFTB shown in Fig.13 taken before the tests.The AFTB features a three-layered structure including top foil,shim foil and back plate with bump foil welded on.The top foil material is Inconel 718 and coated with dry solid lubricant.Bump foil material is also Inconel 718.The shim and back plate are made of stainles

    Fig.13 Photo of axial foil bearing

    The bearing was tested up to 140krpm achieving maximum applied load of 90N (specific load capacity of 139kPa)after which frictional torque increases rapidly indicating partial contact between bearing and runner.Fig.14 shows temperature and load history of the test.The bearing temperature at the“l(fā)eft”and“top”location is 30°C higher than cooling air temperature.The bearing temperature at the“right”locations are about 18℃above cooling air temperature.This can be interpreted that the bearing film thickness is not uniform and is smallest at the“l(fā)eft”location making the bearing temperature at this location most sensitive to the applied thrust load.Despite small misalignment,the bearing was able to maintain the air film to counteract the applied thrust load.

    Tab.1 Thrust bearing parameters

    Fig.14 Test data history

    Fig.15 shows collection of power loss over a range of tested speed and thrust load.Measured power loss is a torque multiplied by angular velocity of the thrust runner disc,and the torque is calculated by multiplying the measured force on the load cell connected to torque rod and the distance of the load cell from the center of thrust bearing.The predicted power loss is calculated assuming the external load is equally distributed among all the pads,and the bump height distribution is also uniform for all the pads.However,measured total bump heights distribution is 372(+/-4)microns,indicating non-uniform load distribution among the pads(i.e.,originated from manufacturing error).The wear marks distribution shown in Fig.13 also indicates non-even bump height distribution among the pads.

    Fig.15 Power loss comparison between prediction and measurement at 140000rpm

    Another main reason of large deviation of measured power loss vs prediction at 140krpm is due to runner disc wobble caused by critical speed in conical mode of the thrust runner shaft as found in[17].The conical mode of the runner shaft causes wobble of the runner disc causing unequal film thickness distribution,especially much thinner film thickness toward the outer edge.Predicted power loss in Fig 15 is calculated as an integration of shear stress on the runner surface from both Poiseuille flow and Couette flow predicted from solution of Reynolds equation.But the following simple formula for the power loss of two parallel discs gives better insight why the measured power loss at high speeds are much larger than prediction.

    wherehis the gap between the two parallel discs and Ro and Ri are outer and inner radii of the discs.It is noted the power loss of parallel disc is proportional to Ro4/h.When wobble of the thrust runner disc is high,local film thickness toward outer radius is smaller,resulting in much larger power loss from the outer edge.Therefore,the scatter of measured power loss at low speed is mainly due to uneven bump heights among the pads (manufacturing error) and the scatter becomes larger in proportion to the applied load.The large deviation at high speeds is a combination of the manufacturing error and thrust runner wobble.

    3 Fuel Cell Compressor Platform

    Based on the foil bearing technology available for high speeds over 120000 rpm,a single stage high-speed air compressor with pressure ratio of 2.5 and motor power of 15kW is proposed as shown in Fig.16,where the multi-pad AFBs are directly integrated into the motor housing,allowing very compact and reduced cost.Total length of the compressor is below 200mm and outer diameter of motor housing is 100mm,and total weight is 6.9kg.Total weight of the rotating component is 644g,which allows very small gyroscopic loading to the radial AFBs.The motor cooling system is designed with liquid cooling for stator and a shaft-mounted cooling fan (environment temperature 45℃) for the bearings and motor air gap.Due to the proprietary design features of the compressor,detailed cross sections are not shown in this paper,but the compressor adopts multi-pad radial AFBs and novel AFTB.An advanced compressor seal is located between the compressor wheel and bearing compartment to reduce the axial load below 50N.

    Fig.16 Single stage high speed fuel cell compressor design platform,design speed over 120000rpm

    4 Conclusions

    The small foil bearings and small footprint of the fuel cell air compressor are crucial to reduce total system volume and weight for the automotive fuel cell compressor applications.Two different types of multi-pad AFB designs were compared in their rotordynamics performance using a turbine-driven high-speed rotordynamics test rig.Three-pad AFB shows subsynchronous vibration locked to the system natural frequency (rigid body critical speeds) but the natural frequency is very low,even lower than the lift off speeds which is about 15,000rpm.The low natural frequency allows the subsynchronous vibration to produce very negligible dynamic force the bearing,practically no harm to the bearings.

    Two-pad design provides more stable rotordynamics performance than three-pad design without showing any subsynchronous vibration.Modal impedance values calculated using perturbation method verifies the positive damping across entire excitation frequency range while three-pad AFB shows negative damping at low excitation frequencies.

    Thrust foil bearing designed for the intended application shows load capacity of 90N (specific load capacity of 139kPa) at 140,000rpm.Even with +/-4 microns of bump height distribution (caused by manufacturing error),the thrust foil bearing demonstrates specific load capacity of more than 130kPa.The non-uniform bump heights and thrust runner’s conical mode of vibration is the source of large deviation of measured power loss from the simulations.

    搡老熟女国产l中国老女人| 亚洲一卡2卡3卡4卡5卡精品中文| 国产真实乱freesex| 性欧美人与动物交配| 法律面前人人平等表现在哪些方面| 国产在线精品亚洲第一网站| 午夜日韩欧美国产| 亚洲欧美精品综合一区二区三区| 日韩欧美 国产精品| 亚洲成人精品中文字幕电影| 香蕉av资源在线| 久久久久久久午夜电影| 国产精品自产拍在线观看55亚洲| 国产高清激情床上av| 久久性视频一级片| 中文字幕熟女人妻在线| 啦啦啦免费观看视频1| 久久精品人妻少妇| 久久精品人妻少妇| av福利片在线观看| 日韩精品中文字幕看吧| 亚洲一区二区三区不卡视频| 亚洲欧洲精品一区二区精品久久久| 国产69精品久久久久777片 | 中国美女看黄片| 亚洲一码二码三码区别大吗| 香蕉丝袜av| xxx96com| 精品国产乱子伦一区二区三区| 亚洲av电影不卡..在线观看| 桃色一区二区三区在线观看| 美女扒开内裤让男人捅视频| 99热这里只有精品一区 | 亚洲国产精品999在线| 身体一侧抽搐| 此物有八面人人有两片| 亚洲中文字幕一区二区三区有码在线看 | 午夜免费激情av| 中亚洲国语对白在线视频| 欧美性猛交╳xxx乱大交人| 久久婷婷人人爽人人干人人爱| 亚洲欧美日韩无卡精品| 亚洲全国av大片| 亚洲一区二区三区色噜噜| 一区二区三区激情视频| 成人特级黄色片久久久久久久| 日本成人三级电影网站| 三级男女做爰猛烈吃奶摸视频| 又黄又爽又免费观看的视频| 国产乱人伦免费视频| 亚洲 国产 在线| 深夜精品福利| 男女视频在线观看网站免费 | 国产不卡一卡二| 九九热线精品视视频播放| 日本精品一区二区三区蜜桃| 午夜免费激情av| 国产成人啪精品午夜网站| 麻豆一二三区av精品| 国产精品亚洲一级av第二区| 亚洲激情在线av| 亚洲一码二码三码区别大吗| 亚洲人与动物交配视频| 国产av麻豆久久久久久久| 国产精品亚洲一级av第二区| 一进一出好大好爽视频| 久久精品91无色码中文字幕| 欧美国产日韩亚洲一区| 又黄又爽又免费观看的视频| 欧美+亚洲+日韩+国产| 亚洲精品美女久久久久99蜜臀| 在线观看美女被高潮喷水网站 | 久久香蕉精品热| 在线视频色国产色| 搡老妇女老女人老熟妇| 国产真实乱freesex| 黑人欧美特级aaaaaa片| 欧美成人午夜精品| 国产精品香港三级国产av潘金莲| 免费看美女性在线毛片视频| 午夜老司机福利片| 真人做人爱边吃奶动态| 欧美一区二区精品小视频在线| 在线永久观看黄色视频| 国产精品精品国产色婷婷| 精品熟女少妇八av免费久了| 免费一级毛片在线播放高清视频| 身体一侧抽搐| 99在线人妻在线中文字幕| 18禁裸乳无遮挡免费网站照片| e午夜精品久久久久久久| 一级毛片精品| 嫩草影视91久久| 十八禁网站免费在线| 久久久久国内视频| 最近最新中文字幕大全电影3| 成年版毛片免费区| 久久精品aⅴ一区二区三区四区| 久久久久久大精品| 欧美日韩一级在线毛片| 成人欧美大片| 欧美又色又爽又黄视频| 精品国产乱码久久久久久男人| 91国产中文字幕| 色尼玛亚洲综合影院| 欧美不卡视频在线免费观看 | www.熟女人妻精品国产| 超碰成人久久| 欧美+亚洲+日韩+国产| 亚洲av美国av| 在线观看午夜福利视频| 伦理电影免费视频| 搞女人的毛片| 美女免费视频网站| 国产精品精品国产色婷婷| 女警被强在线播放| 一级毛片女人18水好多| 欧美激情久久久久久爽电影| 欧美三级亚洲精品| 国产主播在线观看一区二区| 国产伦人伦偷精品视频| 国产成人一区二区三区免费视频网站| 男女那种视频在线观看| 老司机在亚洲福利影院| 神马国产精品三级电影在线观看 | 亚洲 欧美一区二区三区| 国产黄片美女视频| 巨乳人妻的诱惑在线观看| 淫秽高清视频在线观看| 18美女黄网站色大片免费观看| 国产熟女午夜一区二区三区| 高潮久久久久久久久久久不卡| 成人国产综合亚洲| 亚洲国产精品sss在线观看| 国产av不卡久久| 毛片女人毛片| www国产在线视频色| 老司机午夜福利在线观看视频| 欧美性猛交╳xxx乱大交人| 国产爱豆传媒在线观看 | 国产三级黄色录像| 九九热线精品视视频播放| 精品久久久久久久末码| 国产精品 国内视频| 免费搜索国产男女视频| 色精品久久人妻99蜜桃| 制服诱惑二区| 一进一出抽搐动态| 国产区一区二久久| 人妻久久中文字幕网| 精品久久久久久久久久久久久| 亚洲国产欧美网| 在线十欧美十亚洲十日本专区| 欧美精品亚洲一区二区| 久久99热这里只有精品18| avwww免费| 变态另类成人亚洲欧美熟女| 一进一出抽搐gif免费好疼| 999久久久精品免费观看国产| 午夜福利高清视频| 天堂动漫精品| 久久久久久久精品吃奶| 国产69精品久久久久777片 | 制服诱惑二区| xxxwww97欧美| 中文字幕精品亚洲无线码一区| 成熟少妇高潮喷水视频| 男插女下体视频免费在线播放| 最近最新免费中文字幕在线| 欧美丝袜亚洲另类 | 99国产精品一区二区蜜桃av| 国产欧美日韩一区二区精品| 亚洲人与动物交配视频| 国产97色在线日韩免费| 51午夜福利影视在线观看| 国产成人精品无人区| 日本撒尿小便嘘嘘汇集6| 中文字幕最新亚洲高清| 亚洲av成人一区二区三| 亚洲电影在线观看av| 国产一区二区在线观看日韩 | 国产日本99.免费观看| 国产精品永久免费网站| 亚洲av成人一区二区三| 日本黄大片高清| 精品久久久久久,| 免费av毛片视频| 视频区欧美日本亚洲| 亚洲五月天丁香| 97超级碰碰碰精品色视频在线观看| 欧美中文综合在线视频| 日日摸夜夜添夜夜添小说| 免费在线观看视频国产中文字幕亚洲| 精品国产超薄肉色丝袜足j| 1024香蕉在线观看| 国产成年人精品一区二区| 久久中文字幕一级| 丝袜人妻中文字幕| 国产欧美日韩一区二区精品| 日韩高清综合在线| 可以在线观看的亚洲视频| 国内精品久久久久久久电影| 国产伦在线观看视频一区| 国产精品影院久久| 日本免费a在线| 91老司机精品| 两个人的视频大全免费| 少妇裸体淫交视频免费看高清 | www.自偷自拍.com| 亚洲aⅴ乱码一区二区在线播放 | 性色av乱码一区二区三区2| 女人被狂操c到高潮| 超碰成人久久| 亚洲一区二区三区色噜噜| 免费看a级黄色片| 啦啦啦免费观看视频1| 色综合亚洲欧美另类图片| 亚洲国产欧洲综合997久久,| 亚洲精品久久国产高清桃花| 欧美久久黑人一区二区| 国产精品久久久久久亚洲av鲁大| 亚洲精华国产精华精| 夜夜躁狠狠躁天天躁| 12—13女人毛片做爰片一| 叶爱在线成人免费视频播放| 亚洲天堂国产精品一区在线| 最好的美女福利视频网| 欧美在线一区亚洲| 国产激情欧美一区二区| 久久久国产欧美日韩av| 亚洲精品久久国产高清桃花| 99久久99久久久精品蜜桃| 99re在线观看精品视频| 国产成人影院久久av| 脱女人内裤的视频| 午夜免费成人在线视频| 久久久久国内视频| 在线国产一区二区在线| 久久天堂一区二区三区四区| 1024手机看黄色片| 波多野结衣巨乳人妻| 国产一区二区在线观看日韩 | 在线免费观看的www视频| 亚洲色图 男人天堂 中文字幕| 国产v大片淫在线免费观看| 别揉我奶头~嗯~啊~动态视频| 真人一进一出gif抽搐免费| 成人精品一区二区免费| 欧美在线黄色| 黄片大片在线免费观看| 人妻丰满熟妇av一区二区三区| 精品国产超薄肉色丝袜足j| 最好的美女福利视频网| 国产成人av激情在线播放| 99久久99久久久精品蜜桃| 国产亚洲精品一区二区www| 在线观看免费视频日本深夜| 在线免费观看的www视频| 欧美日韩乱码在线| 高清毛片免费观看视频网站| 可以免费在线观看a视频的电影网站| 蜜桃久久精品国产亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 国产主播在线观看一区二区| 久久久久久久精品吃奶| 在线播放国产精品三级| 精品不卡国产一区二区三区| 免费电影在线观看免费观看| 国产熟女午夜一区二区三区| 在线观看舔阴道视频| av中文乱码字幕在线| 他把我摸到了高潮在线观看| 国产精品自产拍在线观看55亚洲| 十八禁人妻一区二区| 精品国产乱子伦一区二区三区| 色在线成人网| 99久久无色码亚洲精品果冻| 啦啦啦观看免费观看视频高清| 欧美日本亚洲视频在线播放| 亚洲成av人片免费观看| 不卡av一区二区三区| 日韩欧美三级三区| 女人被狂操c到高潮| 精品不卡国产一区二区三区| 黄色视频不卡| 成人18禁在线播放| 亚洲精品一区av在线观看| 最近最新免费中文字幕在线| 国产亚洲精品一区二区www| 美女午夜性视频免费| 桃红色精品国产亚洲av| 国产精品野战在线观看| 日本 av在线| 一级作爱视频免费观看| 国产熟女xx| 18禁国产床啪视频网站| 最新在线观看一区二区三区| 日本黄色视频三级网站网址| 男女视频在线观看网站免费 | 美女午夜性视频免费| 欧美人与性动交α欧美精品济南到| 老汉色∧v一级毛片| 欧美日韩乱码在线| 看片在线看免费视频| 男女做爰动态图高潮gif福利片| 国内精品久久久久久久电影| 少妇粗大呻吟视频| a在线观看视频网站| 国产精品亚洲美女久久久| 午夜免费观看网址| 18禁裸乳无遮挡免费网站照片| 成熟少妇高潮喷水视频| 成人高潮视频无遮挡免费网站| 免费看a级黄色片| 波多野结衣高清作品| 99久久无色码亚洲精品果冻| 久久伊人香网站| 757午夜福利合集在线观看| 婷婷六月久久综合丁香| 人成视频在线观看免费观看| 法律面前人人平等表现在哪些方面| 国产精品1区2区在线观看.| 欧美午夜高清在线| 禁无遮挡网站| 可以在线观看毛片的网站| 欧美又色又爽又黄视频| 精品国产乱码久久久久久男人| 欧美一级毛片孕妇| 白带黄色成豆腐渣| 久久天堂一区二区三区四区| 国产亚洲av嫩草精品影院| 脱女人内裤的视频| 神马国产精品三级电影在线观看 | 久久久国产成人精品二区| 日本免费a在线| 麻豆成人午夜福利视频| 免费在线观看日本一区| 999精品在线视频| 亚洲国产欧美人成| 欧美色欧美亚洲另类二区| 搞女人的毛片| 久久精品aⅴ一区二区三区四区| 亚洲欧美一区二区三区黑人| svipshipincom国产片| 精品国产亚洲在线| 琪琪午夜伦伦电影理论片6080| 很黄的视频免费| 国产伦一二天堂av在线观看| 一级a爱片免费观看的视频| 听说在线观看完整版免费高清| 国产69精品久久久久777片 | 久久久久九九精品影院| 操出白浆在线播放| 黄色毛片三级朝国网站| 99久久精品热视频| 国产亚洲av嫩草精品影院| 黄色a级毛片大全视频| 麻豆一二三区av精品| 亚洲av成人一区二区三| 久久精品91蜜桃| av欧美777| 久久久久久国产a免费观看| 国产av又大| 精品久久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看 | 黑人操中国人逼视频| 亚洲成人免费电影在线观看| 欧美黑人精品巨大| 亚洲精品中文字幕一二三四区| 99久久综合精品五月天人人| 亚洲午夜理论影院| 亚洲精品中文字幕在线视频| 亚洲美女视频黄频| 久久午夜亚洲精品久久| 精品久久久久久久久久久久久| 亚洲成人免费电影在线观看| 亚洲av电影在线进入| 亚洲人与动物交配视频| 国产精品国产高清国产av| 日本免费a在线| 欧洲精品卡2卡3卡4卡5卡区| 男女午夜视频在线观看| 在线观看午夜福利视频| 成人一区二区视频在线观看| 十八禁网站免费在线| 99久久国产精品久久久| 97碰自拍视频| 国产高清有码在线观看视频 | 国产精品综合久久久久久久免费| 亚洲一码二码三码区别大吗| 色尼玛亚洲综合影院| 神马国产精品三级电影在线观看 | 777久久人妻少妇嫩草av网站| 老汉色av国产亚洲站长工具| 久久久国产成人精品二区| 午夜福利高清视频| 久久精品91无色码中文字幕| 亚洲中文日韩欧美视频| 国产三级黄色录像| 丰满人妻熟妇乱又伦精品不卡| 国产精品香港三级国产av潘金莲| 真人一进一出gif抽搐免费| 香蕉久久夜色| 深夜精品福利| 久久国产精品人妻蜜桃| 国产三级中文精品| 久久精品成人免费网站| 一级黄色大片毛片| 色综合站精品国产| 欧洲精品卡2卡3卡4卡5卡区| 麻豆久久精品国产亚洲av| 中亚洲国语对白在线视频| 欧美极品一区二区三区四区| 亚洲精品色激情综合| 国产欧美日韩精品亚洲av| 亚洲专区中文字幕在线| 女人高潮潮喷娇喘18禁视频| 麻豆国产97在线/欧美 | 国产亚洲欧美在线一区二区| 日本 欧美在线| 久久久久久亚洲精品国产蜜桃av| 怎么达到女性高潮| 日韩中文字幕欧美一区二区| 欧美av亚洲av综合av国产av| 99国产综合亚洲精品| 久久九九热精品免费| 精品日产1卡2卡| 女人爽到高潮嗷嗷叫在线视频| 精品国产美女av久久久久小说| 很黄的视频免费| 精品免费久久久久久久清纯| 国产成+人综合+亚洲专区| 午夜免费成人在线视频| 又大又爽又粗| 国产激情偷乱视频一区二区| 嫩草影视91久久| 51午夜福利影视在线观看| 怎么达到女性高潮| 精品人妻1区二区| 精品免费久久久久久久清纯| √禁漫天堂资源中文www| 此物有八面人人有两片| 亚洲性夜色夜夜综合| 中文字幕精品亚洲无线码一区| 国产成人精品久久二区二区91| 亚洲欧美日韩高清专用| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区mp4| 他把我摸到了高潮在线观看| 在线观看免费日韩欧美大片| 国产精品永久免费网站| 国产精品国产高清国产av| 中文字幕人成人乱码亚洲影| 一夜夜www| 狠狠狠狠99中文字幕| 男人的好看免费观看在线视频 | cao死你这个sao货| 黄色成人免费大全| 搡老岳熟女国产| 欧美日韩中文字幕国产精品一区二区三区| 麻豆成人午夜福利视频| 日韩欧美国产在线观看| 亚洲午夜精品一区,二区,三区| 中文字幕人成人乱码亚洲影| 免费看美女性在线毛片视频| 国产欧美日韩一区二区精品| 看片在线看免费视频| 欧美黄色片欧美黄色片| 又爽又黄无遮挡网站| 精品国产亚洲在线| 麻豆成人午夜福利视频| 在线观看免费视频日本深夜| 久久人妻福利社区极品人妻图片| 国产在线精品亚洲第一网站| 成年版毛片免费区| 可以免费在线观看a视频的电影网站| 精品日产1卡2卡| 在线十欧美十亚洲十日本专区| 亚洲片人在线观看| 69av精品久久久久久| 特大巨黑吊av在线直播| 久久精品国产99精品国产亚洲性色| 国产伦人伦偷精品视频| 麻豆av在线久日| 亚洲人成网站高清观看| 神马国产精品三级电影在线观看 | 国产精品免费一区二区三区在线| 久久午夜亚洲精品久久| 脱女人内裤的视频| 好男人电影高清在线观看| 久久人妻福利社区极品人妻图片| 婷婷丁香在线五月| av免费在线观看网站| 91成年电影在线观看| 夜夜躁狠狠躁天天躁| 伊人久久大香线蕉亚洲五| 久久中文字幕一级| 久久伊人香网站| 国产精品综合久久久久久久免费| 叶爱在线成人免费视频播放| 人妻久久中文字幕网| 午夜激情av网站| 男女做爰动态图高潮gif福利片| 精品欧美国产一区二区三| 免费观看精品视频网站| 亚洲国产高清在线一区二区三| 五月玫瑰六月丁香| aaaaa片日本免费| 99国产精品一区二区三区| 1024香蕉在线观看| 可以在线观看的亚洲视频| 久久久久国产精品人妻aⅴ院| 国产真人三级小视频在线观看| 男女视频在线观看网站免费 | 老司机在亚洲福利影院| 国产精品av视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲中文字幕一区二区三区有码在线看 | 日韩成人在线观看一区二区三区| 后天国语完整版免费观看| 天天躁夜夜躁狠狠躁躁| 免费看十八禁软件| 日韩免费av在线播放| av视频在线观看入口| 欧美成人午夜精品| 少妇裸体淫交视频免费看高清 | 97人妻精品一区二区三区麻豆| 女人被狂操c到高潮| 日本黄大片高清| 国产麻豆成人av免费视频| 两个人的视频大全免费| 国产区一区二久久| 欧美一区二区精品小视频在线| 亚洲成人久久爱视频| 国产午夜福利久久久久久| 精品欧美国产一区二区三| 一级黄色大片毛片| 99久久无色码亚洲精品果冻| 久久久久国产精品人妻aⅴ院| 草草在线视频免费看| 久久伊人香网站| 女人高潮潮喷娇喘18禁视频| 国产区一区二久久| 欧美又色又爽又黄视频| 亚洲欧美激情综合另类| 老熟妇仑乱视频hdxx| 麻豆av在线久日| 欧美一区二区精品小视频在线| 丝袜人妻中文字幕| 特级一级黄色大片| 久久久久国内视频| 国产亚洲精品一区二区www| 国产免费av片在线观看野外av| 操出白浆在线播放| 一二三四社区在线视频社区8| 免费在线观看亚洲国产| 国产黄片美女视频| 久久久久久国产a免费观看| 国产精品一区二区免费欧美| 熟女电影av网| 国产高清视频在线观看网站| 久久久精品国产亚洲av高清涩受| 无限看片的www在线观看| 99re在线观看精品视频| 1024视频免费在线观看| 看片在线看免费视频| 美女午夜性视频免费| 操出白浆在线播放| 麻豆久久精品国产亚洲av| 久久人妻福利社区极品人妻图片| 欧美日本视频| 黄色视频不卡| 国内精品一区二区在线观看| 欧美日韩亚洲综合一区二区三区_| 一区二区三区国产精品乱码| 69av精品久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久大精品| 老司机在亚洲福利影院| 久久久久久久精品吃奶| 亚洲 欧美 日韩 在线 免费| 日韩大码丰满熟妇| 国产精品99久久99久久久不卡| 精品国产乱码久久久久久男人| 国产亚洲精品av在线| 在线观看午夜福利视频| 手机成人av网站| 毛片女人毛片| 又黄又爽又免费观看的视频| 久久精品国产亚洲av高清一级| 国产精品亚洲一级av第二区| 狠狠狠狠99中文字幕| 757午夜福利合集在线观看| 两性夫妻黄色片| 成人特级黄色片久久久久久久| 午夜老司机福利片| 国产精品久久久久久亚洲av鲁大| 97超级碰碰碰精品色视频在线观看| 欧美午夜高清在线| 黑人欧美特级aaaaaa片| 欧美性猛交╳xxx乱大交人| 免费在线观看视频国产中文字幕亚洲| 黄色女人牲交| 日日摸夜夜添夜夜添小说| 亚洲18禁久久av| svipshipincom国产片| 人妻夜夜爽99麻豆av| 国产精品久久久久久亚洲av鲁大| 在线观看一区二区三区| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 日韩 欧美 亚洲 中文字幕| 国产高清激情床上av| 18美女黄网站色大片免费观看| 国产亚洲精品av在线|