• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Solution for Boundary Layer Height Detections with Coherent Doppler Wind Lidar

    2021-09-13 02:41:04LuWANGWeiQIANGHaiyunXIATianwenWEIJinlongYUANandPuJIANG
    Advances in Atmospheric Sciences 2021年11期

    Lu WANG ,Wei QIANG ,Haiyun XIA*,2,3 ,Tianwen WEI ,Jinlong YUAN ,and Pu JIANG

    1School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China

    2Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

    3CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China

    ABSTRACT Although coherent Doppler wind lidar (CDWL) is promising in detecting boundary layer height (BLH),differences between BLH results are observed when different CDWL measurements are used as tracers.Here,a robust solution for BLH detections with CDWL is proposed and demonstrated:mixed layer height (MLH) is retrieved best from turbulent kinetic energy dissipation rate (TKEDR),while stable boundary layer height (SBLH) and residual layer height (RLH) can be retrieved from carrier-to-noise ratio (CNR).To study the cause of the BLH differences,an intercomparison experiment is designed with two identical CDWLs,where only one is equipped with a stability control subsystem.During the experiment,it is found that the CNR could be distorted by instrument instability because the coupling efficiency from freespace to the polarization-maintaining fiber of the telescope is sensitive to the surrounding environment.In the ML,a bias up to 2.13 km of the MLH from CNR is found,which is caused by the CNR deviation.In contrast,the MLH from TKEDR is robust as long as the accuracy of wind is guaranteed.In the SBL (RL),the CNR is found capable to retrieve SBLH and RLH simultaneously and robustly.This solution is tested during an observation period over one month.Statistical analysis shows that the root-mean-square errors (RMSE) in the MLH,SBLH,and RLH are 0.28 km,0.23 km,and 0.24 km,respectively.

    Key words:boundary layer height,coherent Doppler wind lidar,carrier-to-noise ratio,turbulent kinetic energy dissipation rate

    1.Introduction

    The atmospheric boundary layer (ABL) is the lowest layer of the troposphere that is directly influenced by the earth’s surface (Stull,1988).In the case of fair-weather days,the ABL has a well-defined structure that evolves with a diurnal cycle,consisting of a mixed layer (ML) in the daytime,and a stable boundary layer (SBL) which is capped by a residual layer (RL) in the nighttime (Coen et al.,2014).The boundary layer height (BLH) is of prime importance to boundary layer parameterization (Li et al.,2017) in weather,climate,and air quality models (Seidel et al.,2010;Li et al.,2016).

    The BLH is difficult to be directly measured.However,at a well-mixed layer top,there are usually significant increases in potential temperature,depolarization ratio,and horizontal wind speed or decreases in relative humidity,aerosol concentration,and turbulence intensity (Li et al.,2017).Based on these characteristics,various BLH definitions and retrieval methods have been developed,such as ideal profile fitting (Steyn et al.,1999),maximum variance (Hooper and Eloranta,1986),first gradient (Flamant et al.,1997),threshold (Melfi et al.,1985),wavelet transform (Cohn and Angevine,2000),and the combination method of wavelet transform and image processing (Lewis et al.,2013).

    Numerous instruments have been applied in detecting the BLH,including in situ instruments such as radiosondes mounted on masts or balloons (Guo et al.,2016) and remote sensing instruments such as microwave radiometers (Coen et al.,2014),wind profilers (Cohn and Angevine,2000),sodars (Emeis et al.,2007),lidars (Yang et al.,2020),and satellites (Luo et al.,2016).The advantages and shortcomings of these instruments are summarized by Seibert et al.(2000).Among these,coherent Doppler wind lidar (CDWL)is widely applied in detecting wind and rain (Wei et al.,2019),turbulence (O’Connor et al.,2010;Banakh et al.,2017;Leung et al.,2018),and ABL classification (Manninen et al.,2018;Yuan et al.,2020).Its high spatial and temporal resolutions make the CDWL one of the most promising instruments in detecting BLH (Wang et al.,2018).

    BLH can be detected by using one of the CDWL measurements as a tracer:for example,horizontal wind speed(Emeis et al.,2008),the aerosol-related parameter such as aerosol backscatter coefficient or carrier-to-noise ratio (CNR)(Pe?a et al.,2013),or the turbulence-related parameter such as vertical wind speed variance or turbulent kinetic energy dissipation rate (TKEDR) (Vakkari et al.,2015;Huang et al.,2017;Banakh et al.,2020).The aerosol-based BLH is found to be higher than the turbulence-based BLH with an overestimation of several hundred meters both in the morning and the late afternoon due to different BLH definitions(Schween et al.,2014).Besides,differences of up to one kilometer between the two kinds of BLHs are observed,which raises great concern.A reasonable assumption is that the CNR is distorted,leading to an incorrect BLH value.In theory,CNR is an indicator of aerosol concentration and thus can be used to retrieve BLH.In practice,CNR could be distorted by instrument instability.For a single CDWL,it is hard to prove whether the CNR change is a natural variation introduced by aerosol concentration variation or an abnormal deviation caused by instrument instability.Thus,an intercomparison experiment is designed with two identical CDWLs,where only one lidar is equipped with a stability control subsystem.The lidar with stability control can be used as a reference.Note that the instrument stability is difficult to be controlled in a harsh environment or for longterm observations.Even minor instrument instability will result in a BLH bias.Thus,a robust solution is expected to be found.

    In this work,an intercomparison experiment is carried out to analyze the effect of instrument instability on BLH bias.A robust solution for detecting BLH with CDWL is provided.The experimental site,instruments,and data are introduced in section 2.Section 3 describes the BLH retrieval methods.Section 4 presents the lidar observation results and BLH retrieval results.A statistical comparison of the BLHs derived from the two lidars is also performed.Finally,a conclusion is given in section 5.If not specified,LST (Local Standard Time,LST=UTC+8) is used.

    2.Site,instruments,and data

    The experiment is conducted in Xilingol,Inner Mongolia,China (43°54′N(xiāo),115°58′E) from 28 August to 1 October 2019.

    Two all-fiber micro-pulse CDWLs are located as shown in Fig.1.The lidars have full hemispheric scanning capability with a rotatable platform.As two D-shaped aspheric lenses are glued together with aligned optical axes,the overlap distance and the blind zone are 1 km and 30 m,respectively.Below 2.2 km,the vertical resolution is set to 26 m for studying the fine structure.Above 2.2 km,the aerosol concentration is usually low,and the vertical resolution is set to 52 m for improving the detection probability.The key parameters are listed in Table 1.The detailed specifications and the error analysis of radial velocity have been described by Wang et al.(2017).Only CDWL1is equipped with a temperature stabilizing module.It is composed of two thermoelectric coolers (TEC) and a bottle of cryogen which is connected with the heat-conducting pipes wrapping around the telescope.A proportional-integral-differential algorithm is developed to control the TEC and the valve of the cryogen.A package made of a heat-insulating material is used to guarantee the temperature of telescope.The telescope temperature is controlled at 25°C with a fluctuation of 0.5°C.

    Table 1.Key parameters of the CDWLs.

    Fig.1.The two CDWLs used in the experiment.

    The two lidars operate simultaneously for 12 days and separately for the remaining days of the observation period.During the experiment,CNR,wind vector,and TKEDR are simultaneously measured with a velocity azimuth display scanning mode,which is defined as conical scanning by a laser beam around the vertical axis with a fixed zenith angle of 30° (Sathe and Mann,2013).The azimuth angle resolution is 5° and the period of one scan is about 144 s.For every radial measurement during one scan,the atmospheric backscatter signal received by the telescope is mixed with a local oscillator,resulting in a radio frequency beating signal.After Fourier transformation,the Doppler shift caused by the radial velocity can be retrieved.The ratio of the beating signal power to noise power over the entire spectral bandwidth is the radial CNR (Wang et al.,2017).The CNR is an average of radial CNRs over one scan.Then,the wind vector is determined from the sine dependence of radial velocity versus azimuth angle.After filtering out the invalid radial velocities,the vector is obtained by achieving the maximum of the filtered sine wave fitting function (Banakh et al.,2010).Finally,TKEDR can be estimated by fitting the azimuth structure function of radial velocity to a model prediction.The algorithm,including error analysis,is demonstrated by Smalikho and Banakh (2017).Note that the accuracy of wind and TKEDR mainly depends on CNR.

    3.BLH retrieval methods

    3.1.Retrieval of BLH from CNR

    The aerosol concentration in the ABL is much higher than that in the free atmosphere,resulting in a decrease in aerosol backscatter signal at the boundary layer top.CNR can be used as a measure of aerosol backscatter.One method for retrieving the BLH from CNR is the Haar wavelet covariance transform (HWCT) method.The Haar function is defined as (Brooks,2003):

    where z is height,b is the center position of the function,and a is the dilation of the function.The covariance transform of the function is defined as:

    where f(z) is the range-corrected CNR,and zband ztare the bottom and top heights of a selected range.For a given dilation,the local maximum in Wf(a,b) determines the BLH.Considering the spatial resolution and several tested values,a dilation of 250 m is used.

    Firstly,the CNR profile is range-corrected via multiplying by the square of distance.Secondly,a 7-min block average and a 250-m spatial smoothing are applied to mitigate the interferences from noise and small-scale events,respectively.Figure 2a shows a nighttime range-corrected CNR profile,which is normalized in the range of 0 to 4 km.Figure 2b shows the profile’s HWCT result,in which two local maximum positions (LMP) are found.Multiple LMPs demonstrate the complex aerosol structure,consisting of a lower SBL formed by radiative cooling from the ground and a higher RL containing former mixed layer air.There are usually decreases in aerosol backscatter at the tops of these layers.Based on the positions of the two LMPs,the SBL height (SBLH) of 1.82 km and the RL height (RLH) of 2.86 km are obtained.In the daytime,as shown in Fig.2f,there is usually a single LMP,by which the ML height(MLH) of 2.81 km is obtained.Thirdly,a Different Thermo-Dynamic Stabilities algorithm is applied to make the BLH results more uniform under the full range of atmospheric stability conditions,especially under SBL (RL) conditions.The physical basis of this algorithm is to check the temporal continuity and vertical coherence of the BLH (Su et al.,2020).

    Fig.2.The 7-min average profiles centered at 0853 LST 27 September 2019 of CDWL1:(a) Range-corrected CNR after normalization and its (b) HWCT result,(c) original CNR,(d) lg(TKEDR).Centered at 1311 LST 27 September:(e)–(h).The black dots denote the BLHs retrieved by the HWCT method.The blue dots are the BLHs retrieved by the CNR threshold method.The red squares are the BLHs retrieved by the TKEDR threshold method.

    The performance of the HWCT method could be affected by a poorly defined boundary layer top or multiple aerosol layers.For example,RLH could be misclassified as SBLH.Thus,the other CNR threshold method,which is fast and has low uncertainty,is adopted in this study.This method is applied to the original CNR.The values of the thresholds are determined by using the retrieval results of the HWCT method as references.It can be seen from Fig.3 that the optimal thresholds for SBLH/MLH and RLH are–25 dB and–32 dB,respectively.By testing,the values are also found to be suitable for the other days during this observation period.If not specified,the CNR method discussed in the following sections denotes the CNR threshold method.

    3.2.Retrieval of BLH from TKEDR

    At a well-mixed layer top,there is an entrainment zone between the ML and the free atmosphere.In this zone,materials are not fully mixed,resulting from a decrease in turbulence intensity,which can be characterized by TKEDR.Thus,for a given averaging time and an appropriate threshold,the TKEDR above the ML top is less than the threshold and vice versa.A threshold of 10?4m2s?3is applied here (Banakh et al.,2020).For example,Fig.2d gives a TKEDR profile after a 7-min block average,and the MLH result is 0.31 km.

    As shown in Fig.2h,the profile fluctuation from unexpected noise causes an outlier point,indicating that the retrieval suffers from occasional interference.To exclude the outlier point,a median algorithm is adopted.First,the median zmof all heights for which TKEDR is less than the threshold is found.Then,the MLH is determined by finding the maximum of all heights that are below zmand for which TKEDR achieves the threshold.As a result,the MLH of 2.78 km is obtained.The TKEDR method discussed in the following sections refers to the TKEDR threshold method.

    4.Results and discussion

    4.1.Lidar observation results

    The continuous observation results during 27–28 September are shown in Fig.4,including CNR,horizontal wind speed and direction,vertical wind speed,and TKEDR.The left and right columns are the results of CDWL1and CDWL2,respectively.The CNRs of the two lidars are quite different.To show the details,the radial profiles are plotted in Figs.5a–j.The radial CNR of CDWL2is much weaker than that of CDWL1in the afternoon,and the worst case is found in Fig.5e at 1400 LST.This phenomenon repeats each day,indicating association with diurnal atmospheric temperature variations.One reasonable explanation is that the optics of the telescope suffer aberrations due to the ambient temperature change,resulting in a loss in heterodyne efficiency (Chambers,1997).In the CDWL,the atmospheric backscatter signal is coupled from free space into a polarization-maintaining fiber with a core diameter of 9 micrometers.The temperature variation may also change the focusing point due to the thermal expansion of the mechanical structures in the telescope.

    The corresponding radial velocities and their standard deviation profiles are plotted in Figs.5k–t.Since the measurement moments of the two lidars are not the same (see Figs.5a–j),small radial velocity differences are observed.As the standard deviation mainly depends on the radial CNR,to guarantee the accuracy of wind,the radial velocities with radial CNRs below–35 dB are abandoned (Wang et al.,2017).The accuracy of the wind measurements of CDWL1has been validated by comparison with a radiosonde,and the mean differences in horizontal wind speed and direction are 0.3 m s?1and 1.1°,respectively (Wei et al.,2019).Although the radial CNR of CDWL2is weaker in the afternoon,most values are still valid for measuring the wind within the ABL.As shown in Fig.6,the mean differences between the two lidars in horizontal wind speed,horizontal wind direction,and vertical wind speed are 0.08 m s?1,–0.16°,and–0.02 m s?1,respectively,indicating the accuracy of the wind measured by CDWL2.

    Fig.3.The linear regression of the BLH retrieved by using different CNR thresholds as a function of that by the HWCT method:(a) Determination coefficient (R2) (black dashed line) and root-mean-square error (RMSE) (red line)for SBLHCNR/MLHCNR.(b) Similar to (a) but for RLHCNR.

    Fig.4.Lidar observation results during 27–28 September 2019:(a) CNR,(b) horizontal wind speed,(c) horizontal wind direction,(d) vertical wind speed,(e) lg(TKEDR) of CDWL1.(f)–(j) Results of CDWL2.The horizontal wind direction is defined as 0° for northerly wind,rotating clockwise.Negative vertical wind speed denotes rising motion.

    4.2.BLH retrieval results

    The BLH retrieval results during 27–28 September are shown in Fig.7.The results are smoothed by finding the median with a 21-min window.The ABL can be classified by the gap between the SBLH from CNR and the MLH from TKEDR.In the morning,the ABL changes from the SBL (RL) into the ML when the gap is less than a specified value.In the late afternoon,the MLH departs from the SBLH,and the ML turns into the SBL (RL) again when the gap is larger than the value (Wang et al.,2019).For example,a specified value of 500 m is used on 27 September as the ML top is about 3 km.

    The results of CDWL1are plotted in Fig.7a.The ABL experiences two obvious diurnal cycles,which evolve as illustrated in Coen et al.(2014).The sunrise and sunset times are marked by upward and downward arrows,respectively.Before sunrise on 27 September,the SBL is found to be capped by the RL.The SBLH and the RLH retrieved from CNR are around 1.5 km and 2.5 km,respectively.After sunrise,the ML develops gradually due to solar radiation and is well-mixed by turbulence.The SBL (RL) is finally merged into the developing ML at about 1200 LST.The MLH can be retrieved from both CNR and TKEDR.In principle,the MLH will keep steady if the temporal gradient of surface temperature is around zero in the afternoon.The fluctuation of the MLH from TKEDR is a result of the turbulence intensity variation related to the cloud-top radiative cooling.The ML departs from the SBL (RL) rapidly before sunset.After sunset,the SBL (RL) develops again.On 28 September,the BLH evolves as it did on 27 September,but the ML top is a little higher than on 27 September.This sequence of BLH evolution is typical for land surfaces in the midlatitudes(Kaimal and Finnigan,1994).Note that at about 0200 LST 28 September,the sudden rise of the RLH from CNR is caused by an injection of aerosols,and a coinciding wind direction shear from the south to the northwest is observed(see Fig.4c).This indicates that the retrieval of the BLH based on the vertical distribution of aerosols could be affected by multiple aerosol layers.

    The accuracy of BLH detections of CDWL1has been validated by comparison with a direct detection lidar (Wang et al.,2019).Thus,the results of CDWL1are used as references in this study.Figure 7b plots the results of CDWL2.In the daytime on 27–28 September,the MLH from CNR of CDWL2is much lower than that of CDWL1.This suggests that the performance of the CNR method is affected by the CNR deviation of CDWL2,resulting in the MLH bias.In contrast,since the wind measured by CDWL2is accurate,as discussed in section 4.1,the accuracy of TKEDR estimated from wind is guaranteed.As a result,robust MLH from TKEDR of CDWL2is observed.

    Fig.5.(a)–(j) Radial CNR profiles at different measurement moments on 27 September.(k)–(t) The corresponding radial velocities and their standard deviation profiles.The △t values denote the moment difference between CDWL1 (blue line)and CDWL2 (red dashed line).

    Fig.6.Statistical analysis of the wind differences between the two lidars on 27 September:Histogram distributions of (a)horizontal wind speed difference,(b) horizontal wind direction difference,and (c) vertical wind speed difference.The dashed lines denote Gaussian fits.

    4.3.Comparison of the BLHs derived from the two lidars

    For quantitative analysis,a 12-day statistical comparison of the BLHs derived from the two lidars is performed.

    Fig.7.BLH retrieval results during 27–28 September:(a) Results of CDWL1.(b) Results of CDWL2.SBLH/MLHCNR (blue dots) and RLHCNR (black open circles) are retrieved by the CNR method.MLHTKEDR(red squares) are retrieved by the TKEDR method.

    Fig.8.Scatter diagrams of the BLHs derived from the two lidars:(a) MLHCNR and (b) MLHTKEDR in the ML,(c)SBLHCNR and (d) RLHCNR in the SBL (RL).The color-shaded dots denote normalized density.The dashed lines denote 1:1 lines.The y–x is inserted in the bottom right corner of each panel.

    The scatter diagrams of the MLHs retrieved from CNR and TKEDR are shown in Figs.8a–b.The results of CDWL2are plotted versus those of CDWL1.The histogram distributions of the MLH bias are inserted in the bottom right corner of each panel.The negative bias means that the result of CDWL2is lower than that of CDWL1.For the MLH from CNR,there are two gathering regions where normalized densities are larger than 0.5.The low gathering region that lies on the 1:1 line is a result of the calm days during this observation period,because weak convection leads to low ML tops;the high gathering region that deviates from the line results from the turbulent days.Table 2 presents the linear regression.The fit of these points to the 1:1 line shows the worst performance with the smallest determination coefficient (R2) of–2.50 and the largest rootmean-square error (RMSE) of 1.08 km.For the MLH from TKEDR,most points lie on the 1:1 line.Good performance with an R2of 0.90 and an RMSE of 0.28 km is obtained,indicating the robustness of TKEDR in retrieving MLH.

    In the SBL (RL),since the CNR deviation of CDWL2shows a diurnal cycle related to the atmospheric temperature variation,the performance of the CNR method should be less affected in the nighttime.Figures 8c–d show the scatter diagrams of the SBLH and RLH retrieved from CNR.A linear regression is also performed as presented in Table 2.As expected,the fit of SBLH to the 1:1 line shows good performance with an R2of 0.87,while the value for RLH is 0.95.The corresponding RMSEs are 0.23 km and 0.24 km,which are both in the acceptable range.

    Table 2.Linear regression of the BLH derived from CDWL2 as a function of that from CDWL1.

    5.Conclusion

    An intercomparison experiment was conducted to analyze the effect of instrument instability on the retrieval of BLH.A robust solution for BLH detections with CDWL was found to overcome the instability:MLH was retrieved from TKEDR,while SBLH and RLH were retrieved from CNR.In the experiment,a diurnal CNR deviation caused by instrument instability was found,which results in a diurnal bias of the MLH from CNR.Although the CNR deviation exists,TKEDR is accurate as long as the accuracy of wind is guaranteed,and thus the MLH from TKEDR is robust.Such an improvement in MLH detections is expected to improve the accuracy of weather and air quality forecast systems.Furthermore,the principal BLH features,includingMLH,SBLH,and RLH,can be detected by CDWL robustly,which is significant for model validation and parameterization development.

    久久青草综合色| 精品福利观看| 久久人人爽av亚洲精品天堂| 亚洲免费av在线视频| 亚洲五月婷婷丁香| 亚洲av第一区精品v没综合| 国产免费av片在线观看野外av| 侵犯人妻中文字幕一二三四区| 国产精品 欧美亚洲| 最好的美女福利视频网| 一本大道久久a久久精品| 日韩一卡2卡3卡4卡2021年| 国产av精品麻豆| 少妇 在线观看| 国产亚洲欧美在线一区二区| 亚洲天堂国产精品一区在线| 亚洲七黄色美女视频| 1024香蕉在线观看| 一二三四在线观看免费中文在| 看免费av毛片| 久久草成人影院| 一级片免费观看大全| 国产欧美日韩精品亚洲av| 日本免费一区二区三区高清不卡 | 欧美中文日本在线观看视频| 亚洲无线在线观看| 国产精品久久久久久亚洲av鲁大| 岛国在线观看网站| 国产成人影院久久av| 两个人免费观看高清视频| 老司机靠b影院| 亚洲专区字幕在线| 免费久久久久久久精品成人欧美视频| 丝袜人妻中文字幕| 国产成人精品在线电影| 纯流量卡能插随身wifi吗| 欧美精品亚洲一区二区| 免费一级毛片在线播放高清视频 | 亚洲第一电影网av| 母亲3免费完整高清在线观看| 免费av毛片视频| 国产精品国产高清国产av| 久久人人爽av亚洲精品天堂| 美女 人体艺术 gogo| 国产精华一区二区三区| 18禁裸乳无遮挡免费网站照片 | 满18在线观看网站| 巨乳人妻的诱惑在线观看| 少妇熟女aⅴ在线视频| 国产精品 欧美亚洲| 一级作爱视频免费观看| 狠狠狠狠99中文字幕| 亚洲,欧美精品.| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩黄片免| 少妇 在线观看| 国产亚洲精品综合一区在线观看 | 韩国av一区二区三区四区| 国产麻豆成人av免费视频| 99久久国产精品久久久| 男人的好看免费观看在线视频 | 啦啦啦 在线观看视频| 免费看a级黄色片| 欧美亚洲日本最大视频资源| 50天的宝宝边吃奶边哭怎么回事| 日韩大尺度精品在线看网址 | 国产99久久九九免费精品| 十分钟在线观看高清视频www| 一区在线观看完整版| 欧美成人性av电影在线观看| 欧美黑人欧美精品刺激| 日韩欧美一区视频在线观看| 亚洲自拍偷在线| 亚洲 欧美一区二区三区| 免费人成视频x8x8入口观看| 国产一区二区三区在线臀色熟女| 精品久久久久久久毛片微露脸| 天天添夜夜摸| 岛国视频午夜一区免费看| 日韩欧美一区二区三区在线观看| 国产野战对白在线观看| 亚洲国产高清在线一区二区三 | 99久久99久久久精品蜜桃| 天堂影院成人在线观看| 色综合欧美亚洲国产小说| 久久精品国产99精品国产亚洲性色 | 亚洲伊人色综图| 日日爽夜夜爽网站| 国产成人啪精品午夜网站| 操美女的视频在线观看| 1024视频免费在线观看| 亚洲五月婷婷丁香| 99在线视频只有这里精品首页| 久久精品国产亚洲av高清一级| 成人免费观看视频高清| 美女高潮喷水抽搐中文字幕| 日本欧美视频一区| 国产一区二区三区视频了| 又黄又粗又硬又大视频| 国产单亲对白刺激| 给我免费播放毛片高清在线观看| 日韩欧美免费精品| 欧美老熟妇乱子伦牲交| 国产高清视频在线播放一区| 岛国在线观看网站| 中文字幕最新亚洲高清| 可以免费在线观看a视频的电影网站| 免费搜索国产男女视频| 精品电影一区二区在线| 欧美日韩精品网址| 黄色毛片三级朝国网站| 色尼玛亚洲综合影院| 日韩大码丰满熟妇| 亚洲av日韩精品久久久久久密| 精品国产亚洲在线| 午夜久久久久精精品| 国产精品亚洲av一区麻豆| 一进一出抽搐动态| av视频在线观看入口| av在线天堂中文字幕| 美女午夜性视频免费| 精品久久久精品久久久| 亚洲av电影不卡..在线观看| 一进一出抽搐动态| 一a级毛片在线观看| 夜夜躁狠狠躁天天躁| 亚洲一区高清亚洲精品| 国产成人一区二区三区免费视频网站| 成在线人永久免费视频| 欧美黑人欧美精品刺激| 国产一卡二卡三卡精品| 精品久久久久久,| 成熟少妇高潮喷水视频| 日韩高清综合在线| 啦啦啦 在线观看视频| 国产成年人精品一区二区| АⅤ资源中文在线天堂| 色哟哟哟哟哟哟| 在线观看舔阴道视频| 一级毛片精品| 高清在线国产一区| 亚洲欧美精品综合久久99| 成熟少妇高潮喷水视频| 亚洲av电影不卡..在线观看| 欧美成人免费av一区二区三区| 亚洲成国产人片在线观看| 少妇裸体淫交视频免费看高清 | 精品一区二区三区视频在线观看免费| 久久青草综合色| 久久这里只有精品19| 欧美色视频一区免费| 可以在线观看的亚洲视频| 久9热在线精品视频| 91国产中文字幕| 亚洲国产欧美一区二区综合| 极品教师在线免费播放| 日韩欧美三级三区| 免费高清视频大片| 变态另类丝袜制服| 久久亚洲精品不卡| 欧美黑人精品巨大| 久久天堂一区二区三区四区| 国产亚洲精品第一综合不卡| 99国产精品一区二区三区| 男男h啪啪无遮挡| 中文字幕高清在线视频| 女性被躁到高潮视频| 一边摸一边抽搐一进一出视频| 在线十欧美十亚洲十日本专区| av福利片在线| 制服诱惑二区| 一本久久中文字幕| 一区福利在线观看| 午夜福利18| 麻豆成人av在线观看| 国产精品一区二区精品视频观看| 国语自产精品视频在线第100页| 无限看片的www在线观看| 亚洲avbb在线观看| 女警被强在线播放| www.999成人在线观看| 巨乳人妻的诱惑在线观看| 91成人精品电影| 成人精品一区二区免费| 99久久99久久久精品蜜桃| 精品国产乱子伦一区二区三区| 国产人伦9x9x在线观看| 亚洲情色 制服丝袜| 国产精品一区二区在线不卡| 日本三级黄在线观看| 级片在线观看| 久久久久精品国产欧美久久久| 成熟少妇高潮喷水视频| 18禁黄网站禁片午夜丰满| 免费搜索国产男女视频| 日韩欧美免费精品| 国产高清激情床上av| 国产又色又爽无遮挡免费看| 久久香蕉精品热| 日韩国内少妇激情av| www日本在线高清视频| 日日摸夜夜添夜夜添小说| 欧美日韩亚洲国产一区二区在线观看| 给我免费播放毛片高清在线观看| 19禁男女啪啪无遮挡网站| 天堂√8在线中文| 深夜精品福利| 久久久水蜜桃国产精品网| 变态另类丝袜制服| 亚洲av电影在线进入| ponron亚洲| 久久婷婷成人综合色麻豆| 一进一出抽搐gif免费好疼| 热99re8久久精品国产| 夜夜夜夜夜久久久久| 夜夜夜夜夜久久久久| 亚洲成国产人片在线观看| 很黄的视频免费| 午夜老司机福利片| 免费在线观看亚洲国产| 成年女人毛片免费观看观看9| 亚洲一区高清亚洲精品| 黄色丝袜av网址大全| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文日韩欧美视频| 久久精品国产综合久久久| 在线观看舔阴道视频| www日本在线高清视频| 国产视频一区二区在线看| 亚洲精品中文字幕在线视频| 亚洲av片天天在线观看| 美女国产高潮福利片在线看| 亚洲精品一卡2卡三卡4卡5卡| 麻豆成人av在线观看| 国产99白浆流出| 亚洲全国av大片| 少妇熟女aⅴ在线视频| 精品无人区乱码1区二区| 97超级碰碰碰精品色视频在线观看| 免费不卡黄色视频| 亚洲欧洲精品一区二区精品久久久| 国产精品永久免费网站| 亚洲在线自拍视频| 香蕉久久夜色| 老熟妇乱子伦视频在线观看| 久久精品国产综合久久久| 亚洲av成人一区二区三| 欧美国产精品va在线观看不卡| 亚洲欧美精品综合一区二区三区| 老司机靠b影院| 欧美在线黄色| 国产精品98久久久久久宅男小说| 一级毛片精品| 一级毛片女人18水好多| 中文字幕av电影在线播放| 一边摸一边抽搐一进一出视频| 亚洲av片天天在线观看| 美国免费a级毛片| 无人区码免费观看不卡| 又大又爽又粗| 在线av久久热| 黄色视频,在线免费观看| 午夜亚洲福利在线播放| 亚洲人成电影观看| 可以免费在线观看a视频的电影网站| 成人国语在线视频| 视频在线观看一区二区三区| 这个男人来自地球电影免费观看| av超薄肉色丝袜交足视频| 两个人视频免费观看高清| 亚洲激情在线av| 免费搜索国产男女视频| 日韩大码丰满熟妇| 亚洲九九香蕉| 亚洲性夜色夜夜综合| 日韩av在线大香蕉| 国产精品久久久久久精品电影 | 欧美黑人欧美精品刺激| 国产成人av激情在线播放| 18禁国产床啪视频网站| 老司机深夜福利视频在线观看| 看黄色毛片网站| 中文字幕精品免费在线观看视频| 精品国内亚洲2022精品成人| 老司机在亚洲福利影院| 一区二区三区高清视频在线| avwww免费| 成人免费观看视频高清| 日本免费一区二区三区高清不卡 | 国产精品免费视频内射| 天天躁夜夜躁狠狠躁躁| 久久久久亚洲av毛片大全| 久久精品国产清高在天天线| 亚洲精品国产精品久久久不卡| 久久精品国产亚洲av高清一级| 亚洲精品国产精品久久久不卡| 亚洲av日韩精品久久久久久密| 黄片大片在线免费观看| 久久这里只有精品19| 亚洲第一电影网av| 精品欧美国产一区二区三| 女人精品久久久久毛片| 黄色a级毛片大全视频| 波多野结衣巨乳人妻| netflix在线观看网站| 国产99白浆流出| 亚洲色图综合在线观看| 久久 成人 亚洲| 欧美成人午夜精品| 久久人人精品亚洲av| 日本 av在线| 免费高清在线观看日韩| 成人av一区二区三区在线看| 亚洲午夜精品一区,二区,三区| 国产免费男女视频| 麻豆久久精品国产亚洲av| 亚洲国产精品sss在线观看| 一进一出好大好爽视频| 国产亚洲欧美在线一区二区| 麻豆av在线久日| 国产成人av教育| 欧美丝袜亚洲另类 | 亚洲男人的天堂狠狠| 天堂影院成人在线观看| 久久久久国内视频| 久久精品91无色码中文字幕| 欧美黄色淫秽网站| 亚洲情色 制服丝袜| 老司机在亚洲福利影院| 日本五十路高清| 午夜a级毛片| 国产精品精品国产色婷婷| 午夜精品久久久久久毛片777| 国产97色在线日韩免费| 搡老熟女国产l中国老女人| 久久久久国产精品人妻aⅴ院| 国产乱人伦免费视频| 欧美日韩精品网址| 99国产极品粉嫩在线观看| 欧美午夜高清在线| 日韩成人在线观看一区二区三区| 国产av在哪里看| 精品一品国产午夜福利视频| 成人亚洲精品一区在线观看| 中国美女看黄片| 中文字幕色久视频| 午夜精品久久久久久毛片777| 母亲3免费完整高清在线观看| 亚洲成av人片免费观看| 午夜福利在线观看吧| 午夜老司机福利片| 啦啦啦韩国在线观看视频| 国产伦一二天堂av在线观看| 成人国产综合亚洲| 麻豆久久精品国产亚洲av| 国产三级在线视频| 18禁国产床啪视频网站| 叶爱在线成人免费视频播放| 一级片免费观看大全| 国产区一区二久久| 精品久久久久久久人妻蜜臀av | 亚洲色图av天堂| 欧美日韩黄片免| 99re在线观看精品视频| 极品教师在线免费播放| 久久精品成人免费网站| 无人区码免费观看不卡| 亚洲精品av麻豆狂野| 两个人看的免费小视频| 久久久久国产精品人妻aⅴ院| 老熟妇乱子伦视频在线观看| 午夜影院日韩av| 伊人久久大香线蕉亚洲五| 天天躁夜夜躁狠狠躁躁| 国产精品香港三级国产av潘金莲| 国产高清视频在线播放一区| 国产不卡一卡二| 久久中文字幕一级| 青草久久国产| 三级毛片av免费| 伦理电影免费视频| 色播在线永久视频| 欧美一级a爱片免费观看看 | 在线观看午夜福利视频| 亚洲激情在线av| 精品久久久久久久毛片微露脸| 久久久久国内视频| bbb黄色大片| 国产精品 欧美亚洲| 午夜福利影视在线免费观看| 夜夜看夜夜爽夜夜摸| 国产av在哪里看| 在线天堂中文资源库| 电影成人av| 成人免费观看视频高清| 91av网站免费观看| 欧美一级a爱片免费观看看 | 国产精品亚洲美女久久久| 啪啪无遮挡十八禁网站| 免费在线观看影片大全网站| 黑人巨大精品欧美一区二区mp4| 成人国产综合亚洲| 婷婷丁香在线五月| 一级片免费观看大全| 天堂动漫精品| 日韩免费av在线播放| av中文乱码字幕在线| 91成人精品电影| 不卡一级毛片| 亚洲成人免费电影在线观看| 国产精品免费一区二区三区在线| 免费在线观看视频国产中文字幕亚洲| av天堂久久9| 中出人妻视频一区二区| 国产精品亚洲av一区麻豆| 欧美成人性av电影在线观看| 国产精品 国内视频| 久久久久久国产a免费观看| 老熟妇乱子伦视频在线观看| 一二三四在线观看免费中文在| 黄色毛片三级朝国网站| 亚洲最大成人中文| 久久国产精品影院| 中文字幕色久视频| 亚洲免费av在线视频| 日韩欧美在线二视频| 自拍欧美九色日韩亚洲蝌蚪91| 可以在线观看的亚洲视频| 亚洲人成电影观看| 国产熟女午夜一区二区三区| 又大又爽又粗| 女警被强在线播放| 亚洲国产精品久久男人天堂| 久久午夜亚洲精品久久| 少妇 在线观看| 九色国产91popny在线| 国产精品国产高清国产av| 国语自产精品视频在线第100页| 9热在线视频观看99| 精品一区二区三区视频在线观看免费| 亚洲av成人不卡在线观看播放网| 久久欧美精品欧美久久欧美| 在线观看www视频免费| 国产激情欧美一区二区| 久久精品成人免费网站| av电影中文网址| 最近最新中文字幕大全免费视频| 成人18禁在线播放| 国产精品亚洲一级av第二区| 黄色女人牲交| 欧美 亚洲 国产 日韩一| 妹子高潮喷水视频| 一级,二级,三级黄色视频| 久久九九热精品免费| 国产成人av教育| 人人澡人人妻人| 夜夜看夜夜爽夜夜摸| 午夜福利18| 免费在线观看完整版高清| 午夜福利,免费看| 国产av又大| 精品国内亚洲2022精品成人| 身体一侧抽搐| 嫩草影院精品99| 亚洲欧美激情综合另类| 精品高清国产在线一区| 少妇熟女aⅴ在线视频| 一区二区三区高清视频在线| 亚洲第一青青草原| 婷婷六月久久综合丁香| 精品国产一区二区三区四区第35| 国产精品九九99| 国产国语露脸激情在线看| 窝窝影院91人妻| 午夜两性在线视频| 男人舔女人下体高潮全视频| 国产男靠女视频免费网站| 国产成人系列免费观看| 巨乳人妻的诱惑在线观看| 一夜夜www| 国产高清videossex| 精品国产亚洲在线| 十八禁网站免费在线| 满18在线观看网站| 国产熟女午夜一区二区三区| 真人做人爱边吃奶动态| 亚洲少妇的诱惑av| 久久久久久久精品吃奶| 久久久久精品国产欧美久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜福利成人在线免费观看| 搡老熟女国产l中国老女人| 在线观看www视频免费| 国产精品九九99| 大型av网站在线播放| 欧美另类亚洲清纯唯美| 日韩精品中文字幕看吧| 欧美在线黄色| 大型av网站在线播放| 欧美一级毛片孕妇| 757午夜福利合集在线观看| 又紧又爽又黄一区二区| 国产一区在线观看成人免费| 亚洲精品国产精品久久久不卡| 久久中文看片网| 国产精品综合久久久久久久免费 | 一二三四社区在线视频社区8| 午夜福利视频1000在线观看 | 免费搜索国产男女视频| 99香蕉大伊视频| 亚洲av日韩精品久久久久久密| 国产私拍福利视频在线观看| 日本a在线网址| 久久久久精品国产欧美久久久| 午夜两性在线视频| 日韩欧美一区二区三区在线观看| 国产精品二区激情视频| 一个人观看的视频www高清免费观看 | 国产精品野战在线观看| 亚洲最大成人中文| 9热在线视频观看99| 久久婷婷成人综合色麻豆| 美女大奶头视频| 色哟哟哟哟哟哟| 一级a爱视频在线免费观看| 免费久久久久久久精品成人欧美视频| 中文字幕色久视频| 三级毛片av免费| 亚洲欧美精品综合久久99| 一区二区三区国产精品乱码| 成人特级黄色片久久久久久久| 欧美日韩精品网址| 中文字幕精品免费在线观看视频| 国产亚洲精品第一综合不卡| 欧美亚洲日本最大视频资源| 久久久精品欧美日韩精品| 日韩av在线大香蕉| 两人在一起打扑克的视频| 国产成人精品久久二区二区免费| 国产激情欧美一区二区| 97人妻天天添夜夜摸| 一进一出好大好爽视频| 亚洲中文av在线| 亚洲成国产人片在线观看| 动漫黄色视频在线观看| 狂野欧美激情性xxxx| 久久久久国产一级毛片高清牌| 欧美成人午夜精品| 亚洲中文av在线| 色综合婷婷激情| 男人舔女人下体高潮全视频| 国产国语露脸激情在线看| 又黄又爽又免费观看的视频| 亚洲av日韩精品久久久久久密| 最新在线观看一区二区三区| 国产视频一区二区在线看| 国产精品九九99| 成年女人毛片免费观看观看9| 色婷婷久久久亚洲欧美| 国产精品免费一区二区三区在线| 欧美日韩一级在线毛片| 美国免费a级毛片| 久久精品国产亚洲av香蕉五月| 国产色视频综合| 欧美日本视频| 欧美日韩亚洲综合一区二区三区_| 正在播放国产对白刺激| 国产精品久久久久久亚洲av鲁大| 久久性视频一级片| 午夜福利影视在线免费观看| 久久婷婷人人爽人人干人人爱 | 色精品久久人妻99蜜桃| 怎么达到女性高潮| 村上凉子中文字幕在线| 精品欧美国产一区二区三| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区久久 | 亚洲精品国产区一区二| 一二三四社区在线视频社区8| 久久久国产成人精品二区| 国产一区二区三区视频了| 久久亚洲真实| 中文字幕av电影在线播放| 一区二区日韩欧美中文字幕| 日日干狠狠操夜夜爽| 成人18禁在线播放| 最近最新中文字幕大全电影3 | 国产一区二区三区综合在线观看| 18禁黄网站禁片午夜丰满| 久久国产精品人妻蜜桃| 欧美日韩黄片免| 中文字幕人妻熟女乱码| 少妇 在线观看| 免费看美女性在线毛片视频| 久久午夜综合久久蜜桃| 在线视频色国产色| 成人手机av| 97人妻天天添夜夜摸| 国产精品九九99| 久久伊人香网站| 亚洲第一av免费看| 亚洲午夜理论影院| 国产三级在线视频| 视频在线观看一区二区三区| 午夜日韩欧美国产| 国产私拍福利视频在线观看| 欧美黄色淫秽网站| 亚洲专区中文字幕在线| 18美女黄网站色大片免费观看| 国产精品电影一区二区三区| 日韩欧美一区视频在线观看| 操美女的视频在线观看| 黄色 视频免费看| 18美女黄网站色大片免费观看| 午夜福利影视在线免费观看|