• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gut Microbiota: The Servantof Human Being and the Accessary of Tumorigenesis

    2021-09-10 07:22:44PanGuDiLiGangXuYingnanSunMinghuaWu
    Trends in Oncology 2021年6期

    Pan Gu Di Li Gang Xu Yingnan Sun Minghua Wu

    Abstract

    Gut microbiome affects multiple facets of human health and is inextricably linked to tumorigenesis. Substantial research has aimed to understand how gut microbiome functions in the homeostasis of our body. This review explores the evidence demonstrating how the gut microbiome may affect body health, thereby having an impact on metabolism, protection, nutrition and some anatomical-functional relationship. Alterations in gut microbiota composition have been associated with plenty disorders. Of interest, majority of researches demonstrate the role of microbiota in cancer. However, they haven’t been classified systematically. We divided them into tumor in situ, gut-biliary tract cancer axis, gut-breast cancer axis, gut-haematopoiesis cancer axis and gut-brain cancer axis. In addition, we introduce the latest method in diagnosis and treatment of related cancer.

    Keywords:Gut microbiome;Function;Cancer;Axis;Diagnosis; Treatment

    1. Introduction

    The human body is a nutritious culture medium, supporting the growth of a wide variety of microbial species[1]. There has been estimated that 10[14]microorganisms reside in various parts of the human body including skin surfaces and body cavities, among which the intestinal tract possess the major taxonomic units and genetic contents[2]. It is also estimated that the number of bacteria we carry reach 1011 per gram of luminal content[3]. Microbiome defined as a community of microorganisms especially indicate those living in or on the human body, while here, we mainly focused on the gut microbiota, the microbial community in digestive tract involving stomach, small intestine, and large intestine[4].

    Gut microbiota could be easily affected by environmental changes (infection, diet or lifestyle), resulting in symbiotic imbalance and disease. Evidence in mounting numbers indicates gut microbiota play a key role in carcinogenesis. As we all known, hallmarks of cancer are comprised of eight biological capabilities such as sustained proliferation, growth suppression evasion, tissue invasion and metastasis, replicative immortality, angiogenesis induction, cell death resistance, altered cellular energetics, and immune evasion[5]. Conceptual progress recently has added more emerging hallmarks of potential generality to previous list like escape of circadian regulation[6],development of genomic instability and inflammatory state of premalignant and frankly malignant lesions. Nevertheless, gut microbiota may contribute to all above the tumor hallmarks.

    2. What’s the Normal Function of Gut Microbiota?

    With the development of high throughput metagenomic gene sequencing technology, more and more researches are being increasingly recognized that gut microbiota exceeds human genome in number and has close interaction with human homeostasis, maintaining health[7,8].

    The main known functions of the gut microbiota can be broadly classified into three groups: metabolic group functioned in digestion of food, protective group functioned in protecting against pathogens, and trophic group functioned in controlling proliferation and differentiation of epithelial cells.

    3. Metabolism

    Gut microbiota has essential influence on energy harvest from the dietary carbohydrates and energy reservation. The main mechanism are hydrolysis and subsequent fermentation.The microbial metabolite indole promotes barrier function through the pregnane X receptor[9]. Colonic organisms such as Bacteroides, Roseburia, Bifidobacterium, Fecal bacterium, and Enterobacteria generate short chain fatty acids (SCFA) through fermentation of the carbohydrates, supplying plenty energy[10,11]. The SCFAs accompanied Peptide Tyrosine Tyrosine/Pancreatic Peptide YY3-36 (PYY) reversely reduce appetite and alter the energy metabolism to keep fit[12,13]. Furthermore, Oxalobacter formigenes, Lactobacillus, and Bifidobacterium prevent the synthesis of oxalate to reduce the risk of kidney stone formation[14].Amino acids (AA) decomposed from diet is significant in maintaining functional intestinal mucosal[15]. It can also directly incorporate into bacterial cells, involved in latter synthesis and bioavailability[16]. For instance, L-histidine and glutamate can be converted to histamine and G-amino butyric acid (GABA) respectively by the bacterial enzyme[17,18]. When it comes to plant-derived products, gut microbiota is also participated in metabolism of polyphenols, microbial-derived phenolic acids, which is characterized by bioactive potential like antioxidant, anticarcinogenic, anti-inflammatory and neuroprotective[19]. Researchers found that some polyphenols can cross the blood brain barrier and reach the brain in a significant concentration and block the formation of amyloid aggregates, performing the modulatory effect on Alzheimer’s disease[20]. Reversely, polyphenols can also modulate the composition of gut microbiota to reach a balance[21,22]. Gut microbiota regulate the host’s lipid metabolism mainly through (i) variation of lipoprotein cholesterol levels[23], (ii) synthesis of secondary bile acids[24], (iii) modulation of endocannabinoid system[25], (iv) LPS- mediated inflammation[26], (v) inhibition of lipoprotein lipase activity in adipocytes[27]. Similarly, lipid can also regulate gut microbiota composition. Polyunsaturated fatty acids accumulation will result in a decrease in Faecalibacterium, and increase in Bacteroidetes and butyrate-producing bacteria[28].As to other metabolism, an interesting example is drug metabolism that the microbial β-glucoronidase will cause deconjugation of the anticancer drug irinotecan and lead to diarrhea, inflammation and anorexia[29].

    4. Protection

    In order to protect host against colonization by pathogens, gut microbiota cooperates with immune systems[30].Innate immune system can sense microorganisms at once and the metabolic products functioned as signal will induce quick responses[31].The intestinal mucus layer is able to keep mutualism by keeping bacteria at bay and restricting overt immune stimulation[32]. Researchers found that gut microbiota play an important role in remodeling intestinal immune microenvironment. Firstly, the level of myelopoiesis as well as microglia correlates with the complexity of the gut microbiota[33], which might be regulated by SCFAs[34]. In addition, gut microbiota also controls the transportation of those cells in the gut and replenish monocytes in the intestinal mucosa through expressing C-C chemokine receptor type 2 (CCR2)[35]. Apart from innate immune cells, lymphoid cells can only function well with microbial colonization[36]. Lymphotoxin-α produced by lymphoid cells is crucial for the generation of IgA[37]. IL-22 secreted by lymphoid cells will induce expression of the enzyme fucosyltransferase 2 and fucosylation of surface proteins by intestinal epithelial cells, which is required for host defense against enteric pathogens[23].

    5. Nutrient

    Gut microbiota-derived SCFAs are energy source for the epithelium. What’s more, SCFAs can strengthen epithelial barrier through oxygen consumption and hypoxia-inducible factor[38]. Butyrate, which considered as the strongest effect SCFA, could modify and repair the microstructure of the small and large intestine, accelerating intestinal mucosa maturation during the development. Hence, through regulate gene expression and protein synthesis, SCFAs possess the ability to enhance proliferation, differentiation, and maturation and reduces apoptosis of normal enterocytes in the small intestine. In colon, the absence of SCFAs induces massive apoptosis in colonocytes. For example, SCFAs might not the only energy source for these cells, but the indirect effect of SCFAs including stimulation of gastrointestinal peptides and growth factors releasing may play a key role in cell proliferation [39].

    6. Other Functions

    There is a close anatomical and functional relationship between the intestinal tract and the liver which is known as gut-liver axis, which was found to be a major reason in the development and progression of nonalcoholic fatty liver disease (NAFLD) and obesity.This may attribute to molecules generated by abnormal gut microbiome (overgrowth of small intestinal bacteria, intestinal dysbiosis and increased permeability of intestinal) could be transferred to the liver. As the incidence of NAFLD is increasing, gut-liver axis is treated as a promising target for NAFLD therapy[40]. In addition to the gut-liver axis, the enteric nervous system is another investigational focus. The brain nervous system development might be affected in the absence of a gut microbiota compared with normal animals[41], indicating that the importance of long-lasting effects of appropriate microbial colonization. Gut microbiota is reported with the ability to produce neuroactive metabolites, such as SCFA and ketone bodies[42,43]; phenolic acids[44,45]; steroids[46]; AAs and their derivatives [47,48]; catecholamines[49]. Such metabolites functioned through direct interaction with intestinal tract’s receptors and diffusion effect to stimulate neurophysiology[50]. Indeed, huge array of biologically active substances could be produced by gut microbiota to influence motility and other function of intestinal tract[51]. What’s more, investigators proved gut microbiota also influence cerebral metabolites through the microbiota-gut-brain axis. People with normal gut microbiota are more likely gain brain health[52], which is helpful in discovery of newly therapeutic target for some neurological disorders like stress-induced pathological conditions[53].

    1. How Gut Microbiota Induce Cancer?

    As what we mentioned above, gut microbiota plays an important role in maintaining mental and physical health[54]. Although we candepict how some bacteria servant in physiological activities, the role of most bacterial species in health and disease remains largely unknown[55]. Colorectal cancer burden (CRC) was substantially increase since some unhealth lifestyle was adapted[56]. Factors like consumption of foods, lifestyle, genetic polymorphisms and aging affect not only microbiota composition but also cancer susceptibility[57-59]. Some studies have supported specific bacterial agents participant in tumorigenesis including Helicobacter pylori (H. pylori)[60] and human papillomavirus[61]. Herein, we discuss how it work through host-microbe, microbe-microbe, and environmental interactions in both colorectal cancer and non-intestinal cancers.

    7.1. Colorectal cancer

    As a common malignancy in the world, CRC accompanied with the adoption of western lifestyle in recent years in China, the 5-year prevalence proportion has reached 74.6 - 58.3 per 100,000[62]. Data in China was updated that more than 376, 000 new CRC patients and 191,000 deaths occur every year[63]. According to the epidemiological studies, several lifestyle factors that affect the risk for developing CRC. Ranging from enteric fungal microbiota to bacterial, can contribute to CRC with commensal system break up[64]. The way that gut microbiota induce CRC can be summarized as the following.

    1.1.1. Chronic inflammation drives carcinogenesis and sustain a pro-inflammatory microenvironment

    Chronic inflammation drives carcinogenesis was widely established in the long run. However, it has been verified recently in molecular biological level. Numerous genes were found altered through metagenomic analysis among the healthy, adenoma, and CRC patients[65]. Further analysis discovered that patients with CRC have high level of red meat consumption associated with highly expressed C-reaction protein.What’s more some bacterial metabolites were different among groups. It is identified that Fusobacterium, Parvimonas, Gemella, and Leptotrichia were enriched in early-stage colorectal cancer and the abundance ?of anti-inflammatory F. prausnitzii were lost [66], inducing inflammation in intestinal tract which also promoted the change of microbiome community and facilitate bacterial translocation into neoplastic tissue. The cumulative effect will further enhance the expression of inflammatory cytokines and lead to tumor formation[67]. Gut microbiota could also sustain a pro-inflammatory microenvironment through recruitment of immune cells to drive carcinogenesis.[68]

    1.1.2. Direct ways and indirect ways to elicit DNA damage and alter gene expression

    Some bacteria can promote carcinogenesis in a direct way to elicit DNA damage. For example, E.coli was proved to express Colibactin gene, inducing DNA damage, chromosome aberrations and increased gene mutations in vivo[69,70]. Colibactin warhead possessed the ability to directly bind to the duplex DNA with Spiro bicyclic structure. The bind will lead to depletion of the DNA mismatch repair system[71]. Another gut microbiota secreted substance with DNA damage ability to promote carcinogenesis indirectly[72]. Enterotoxigenic Bacteroides Fragilis encode B.fragilis metalloprotease toxin (BFT) which will induce diarrhea[73]. The secretion of enterotoxin BFT could also increase the polyamine metabolism and induce DNA damage[74,75].

    1.2. Gut-liver cancer axis

    With respect to liver cancer, the second leading cause of cancer mortality worldwide, NAFLD has been implicated as the third cause of hepatocellular carcinoma (HCC) worldwide[76,77]. The gut-liver axis plays a pivotal role in the pathogenesis of NAFLD induced HCC. Communicates between intestine and liver are released bile acids and some bioactive mediators. Gut microbiota metabolize endogenous and exogenous substrates will translocate to the liver through the portal vein and influence liver functions[78]. Diet could cause gut dysbiosis which subsequently leads to overproduction of volatile organic compounds, mitochondrial enzymes, and damage to the liver[79]. Another example is related to deoxycholic acid (DCA), an obesity-induced gut microbial metabolite. It is reported that hepatic translocation of DCA will induce the senescence of hepatic stellate cells (HSCs)[80]. When it comes to alcoholic liver disease, which may also lead to hepatocellular carcinoma. Excessive intake of alcohol greatly hurt the gut barrier, influence its permeability and alter microbiota composition[81]. It is reported that chronic ethanol will affect several microbiotas and increase bacterial translocation, leading to the dysfunction of immune system[82].

    1.3. Gut-Biliary tract cancer axis

    In some countries of eastern Asia, cholangiocarcinoma (CCA) was related to the infection of liver flukes Opisthorchis, as well as Clonorchis. Nevertheless, expect from these endemic regions, the main cause of CCA attributes to the chronic inflammation of bile ducts epithelium. This characteristic in common indicate that the presence of gut microbiota metabolites and its influence on immune system may participate in the inflamtory process. Previous researches in animal models have shown that infection with Opisthorchis changes the gut microbiota both in the bile and in intestinal tract, resulting in several bacteria colonization, such as Lachnospiraceae, Ruminococcaceae and Lactobacillaceae families. Also, the community was changed with the loss of Porphyromonadaceae, Erysipelotrichaceae and Eubacteriaceae[83]. What’s more, H. pylori, a common pathogen in gastrointestinal morbidity, was also reported to induce hepatobiliary diseases[84].

    1.4. Gut-lung cancer axis

    Recently, the function of gut microbiota in lung cancer attracted focus. The gut-lung axis mainly indicates the inflammation of blood vessels caused by translocation of bacteria and bacterial products across the gastrointestinal tract barrier[85]. Chronic lung diseases such as COPD, asthma and cancer usually occur along with gastrointestinal disorders. The most mutual hypothesis is that gut microbiota influence lung immunity. The intestinal microbiota is broadly protective against respiratory infection[86]. A study also found that segmented filamentous bacteria (SFB) play an important role in immunocompetent adaptive protection against S. pneumoniae infection. However, SFB could expand dual T cell receptor (TCR)-expressing Th17 cells and bring out autoimmunity[87]. The induced autoimmunity may elevate IL-6 and IL-8 during inflammatory stress. IL-6 and IL-8 may impact on lung epithelial cells resulting in involved in tumorigenesis through stimulation of NF-B-1 pathway[88]. Furthermore, IL-6 and IL-8 may also act in proliferation, migration, and invasion pf lung cancer since they were found over expressed in premalignant or senescent lung cancer cells.

    1.5. Gut-breast cancer axis

    Gut microbiota may influence estrogen levels to enhance the risk of breast cancer since they play an important role of in modulation of systemic estrogens[89]. Other than metabolism of oestrogens[90], microbiota affects the enterohepatic circulation of estrogens. The possibility of breast cancer increased with heavy estrogen burden through enhanced reabsorption of free estrogen owing to estrobolome enrichment[91,92]. Apart from the influence on enterohepatic circulation of estrogens mentioned above, thegut-breastaxis also can make a difference in breast cancer through the production of secondary bile acids as well[93]. Gut microbiota is responsible for converting primary bile acids to secondary bile acids, forming certain concentrations in human serum and breast tissue[94]. Lithocholic acid (LCA), a bacterial metabolite, is reported with the function of reducing proliferation and aggressiveness of breast cancer cells through inducing oxidative phosphorylation (OXPHOS), the trichloroacetic acid (TCA) cycle and antitumor immunity. The biosynthesis of LCA is regulated by gut microbiota such as Clostridium sordelli, Escherichia coli, Staphylococcus haemolyticus and so on[95].

    1.6. Gut-haematopoiesis cancer axis

    In 2018, Nature reported that somatic mutations in tet methylcytosine dioxygenase 2 (TET2), which encodes an epigenetic modifier enzyme, drive the development of haematopoietic malignancies[96]. TET2 expression can be regulated by bacterial translocation and the subsequent interleukin-6 production in leukemia. Pre-leukaemic myeloproliferation occurs in only a fraction of Tet2?/? mice and humans with TET2 mutations, suggesting that extrinsic non-cell-autonomous factors are required for disease onset. TET2 deficiency leads to increased self-renewal of haematopoietic stem cells with a net developmental bias towards the myeloid lineage. However, It is reported that pre-leukaemic myeloproliferation can be reversed by antibiotic treatment and fail to develop in microbiota-free Tet2?/? mice, which means the dysfunction of the small-intestinal barrier which caused bacterial translocation and increased interleukin-6 production may have some positive effects in the progress in PMP[97].

    1.7. Gut-brain cancer axis

    The gut-brain axis is included in complicated communication pathway including the central nervous system (CNS), neuroendocrine system, neuroimmune systems, autonomic nervous system, and the enteric nervous system. Gut microbiota can affect brain development and behaviors and conversely, brain signals can also regulate the gut microbiota[98]. Accumulating data indicate that the gut microbiota communicates with the CNS through gut-brain axis possibly through metabolites (SCFA), neuroendocrine axis (HPA Axis), vagus nerve and immune pathways and thereby influences brain function and behavior[99,100]. However, how gut microbiota influence brain cancer haven’t been investigated. Some related study conveyed the gut microbiota can induce inflammatory in brain. For example, corticotrophin release factor 1 (CRFR1), a neuromodulator in the colon, is responsible for stress-induced permeability dysfunction and modulation of mucosal immune and inflammatory responses[101].In nature 2018, Veit rothhammer, Davis M. Borucki et al. clearly put forward that intestinal microbial metabolites inhibiting CNS inflammation and affecting the pathogenicity of microglia and astrocytes[102]. However, our current understanding of how microbial affect vagal functions and subsequently signaling to the brain and how they communicate remains inadequate. Kristoffer L. Egerod, Natalia Petersen et al. determined the expression profile of all G protein-coupled receptors (GPCRs) in the vagal afferents of the mouse, especially vagal afferents who expressed NaV1.8 is richly innervating the entire GI mucosa[103]. Exposure of microbiota-free adult mice to a pathogen-free gut microbiota will decrease the permeability of blood-brain barrier and increase the expression of tight junction proteins[104]. Intestinal permeability is associated with systemic inflammation. Intestinal permeability may also induce the inflammation in the brain[104]. Last but not least, Camille Jacqueline and his team investigate that brain cancer could be associated with alterations in the intestinal microbial community for the first time. They identified a bacterial signature that cancerous larvae had a significantly lower relative abundance of Bacillaceae than individuals who did not develop the brain cancer[105].

    1. Is It Credible to Apply to Diagnose?

    Based on perturbation of these microbial communities might be associated with different types of cancer, we can suppose that bacterium could function as a marker for the development of cancer[106]. The current study demonstrated that the gut microbiome can be used as an effective tool in early screening for colorectal cancer. Streptococcus gallolyticus is proved to have the potential in indicating occult colonic adenomas and CRC[107]. Furthermore, gut microbiome showed its ability in distinguishing adenoma from carcinoma, with combination of several known demographical factors[108]. The effectiveness of gut microbiota test was proved similar to fecal occult blood test (FOBT) in colorectal cancer detection[109]. Although the gut microbiota could not singly indicate the occurrence of CRC, such as Fusobacterium nucletum, the existence could somehow clue the high-grade dysplasia and a relatively unfavorable clinical outcome[110]. A large cohort reproved the association between Fusobacterium nucletum and CRC[111,112]. The poor prognosis may owe to the decreased T-cell infiltration in the cancer sites[113].

    2. What Can We Do as to Microbiota Targeted Therapy?

    Gut microbiota also showed great potential in cancer therapy. Bacteroidetes and bifidobacteria was reported to enhance the treatment outcome through activating T cells[114]. They can strengthen the anti-tumor effect as a checkpoint blockade to inhibit tumor growth[115]by targeting the CD8+ T cells in the microenvironment[116]. Science also reported that gut microbiome may enhance the efficiency of PD-1 based immunotherapy against epithelial tumors including advanced melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC)[117]. Although the actual mechanism of PD-1 blockade enhancement still a mystery, the study put forward the possibility of combining microbiota and immunotherapy. Apart from immunotherapy, the combination of gut microbiota and chemical therapy also showed great significance. As a common antitumor drug, cisplatin could be applied to many kinds of cancer to mediate DNA damage of over-proliferated cells. However, fecal microbial transplantation (FMT) before chemotherapy could reduce the hurt of intestinal integrity caused by drug and bring down the possibility of systemic inflammation[118]. Faecalibacterium prausnitzii was found with the ability to upregulate the proliferation of T cells and reduce the number of IFN-γ+ T cells, creating an anti-inflammatory effect[119]. Last but not least, not only probiotics but also some SCFA seem to be a safe approach with the conjunction of conventional treatment[120].

    Matrix metalloproteinases (MMPs), a family of zinc dependent endopeptidases, is reported to mediate inflammation, tissue remodeling, and tumorigenesis, among which MMP9 is the most unique one. MMP9 could only be detected up-regulated during inflammation and cancer with a protective role in tumorgenesis. On one hand, MMP9promotes the beneficial microbiota population and controls the ROS production. On the other, MMP9 restores the DNA damage via activation of the MMR pathway. This implies the use of targeted MMP9 inhibitors in CAC treatment therapies[121]. Bidisha Paul et.al found that genistein, an isoflavone found in soy, increased the os of breast tumor and reducing tumor growth through microbial alterations[122]. Alteration of microbiota abundance and/or composition could contribute to the therapy effect for breast tumor.

    3. Where Can We Polish up?

    3.1. Biases according to different DNA extraction protocols

    DNA extraction of fecal samples in different protocols might introduce bias into the composition of gut microbiota[123]. The protocols can be divided into physical ways and chemical methods. When the chemical methods were used, bacteria may show diverse resistance to different chemical agents[124]. The chemistry used may destroy the bacterial cell wall incompletely, leading to under- or over-estimation of different bacteria. Then, the composition of the gut microbiota might be improperly evaluated. Since there is no “gold standard” method for DNA extraction, some investigators prefer to combining several extraction methods to present the true community of gut microbota[125].

    3.2. Lack of cohort studies with prospective design

    Majority of studies were based on mouse models and the researches couldn’t distinguish whether the microbiota is the cause or the result of carcinogenesis[126]. Last but not least, most of the study focused on the microbiota composition by 16S rRNA sequencing. Very few is known regarding the function of gut microbiota. Meta-genomic or meta-transcriptomic studies are in need. Functional analysis of gut microbiota would not only help us understanding the underlying mechanism for the link of bacteria and cancer, they may also help explain the inconsistent findings across studies.

    3.3. Other deficiency and future questions

    There remains a great deal of problems to solve such as the distinguish between “good” and “bad” bacteria, the detailed cellular mechanisms that are orchestrated by the gut microbiota and manipulation of the gut microbiota for benefit.

    Conclusion

    The mutualistic relationship between the host and gut microbiota favors mutual growth, survival and well-being. Despite numerous time and plenty development in understanding the composition of gut microbiota, many mechanisms remain uncovered. Nevertheless, there is no denying the fact that gut microbiota impacts human health and disease through different axis, and the promising aspect worth studying and application. Notably, prohibit the abuse of antibiotics must be enforced in that emerging data reveal that antibiotics can detrimentally regulate microflora[127]. With the application and integration of different types of data, the mechanism of how act in normal physiological activities and tumor formation will be explored. More importantly, gut microbiota-based therapy will be invented with the discovery of the mechanism. To conclude, more evidence is required in explicit the mechanism of gut microbiota in cancer environment, as well as more clinical practice in cancer therapy.

    Competing Interests

    The authors declare no competing interests.

    Reference

    [1]. Jorth, P. et al. Metatranscriptomics of the human oral microbiome during health and disease. mBio5, e01012-01014, doi:10.1128/mBio.01012-14 (2014).

    [2]. Villanueva-Millán, M. J., Pérez-Matute, P. & Oteo, J. A. Gut microbiota: a key player in health and disease. A review focused on obesity. J Physiol Biochem71, 509-525, doi:10.1007/s13105-015-0390-3 (2015).

    [3]. Tandon, D. et al. A prospective randomized, double-blind, placebo-controlled, dose-response relationship study to investigate efficacy of fructo-oligosaccharides (FOS) on human gut microflora. Scientific reports9, 5473-5473, doi:10.1038/s41598-019-41837-3 (2019).

    [4]. Davenport, E. R. et al. The human microbiome in evolution. BMC Biol15, 127-127, doi:10.1186/s12915-017-0454-7 (2017).

    [5]. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646-674, doi:10.1016/j.cell.2011.02.013 (2011).

    [6]. Talib, W. H. Melatonin and Cancer Hallmarks. Molecules (Basel, Switzerland)23, doi:10.3390/molecules23030518 (2018).

    [7]. Consortium, H. M. P. Structure, function and diversity of the healthy human microbiome. Nature486, 207-214, doi:10.1038/nature11234 (2012).

    [8]. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464, 59-65, doi:10.1038/nature08821 (2010).

    [9]. Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity41, 296-310, doi:10.1016/j.immuni.2014.06.014 (2014).

    [10]. Sartor, R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology134, 577-594, doi:10.1053/j.gastro.2007.11.059 (2008).

    [11]. Zaibi, M. S. et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS letters584, 2381-2386, doi:10.1016/j.febslet.2010.04.027 (2010).

    [12]. Shen, J., Obin, M. S. & Zhao, L. The gut microbiota, obesity and insulin resistance. Molecular aspects of medicine34, 39-58, doi:10.1016/j.mam.2012.11.001 (2013).

    [13]. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America105, 16767-16772, doi:10.1073/pnas.0808567105 (2008).

    [14]. Magwira, C. A. et al. Diversity of faecal oxalate-degrading bacteria in black and white South African study groups: insights into understanding the rarity of urolithiasis in the black group. Journal of applied microbiology113, 418-428, doi:10.1111/j.1365-2672.2012.05346.x (2012).

    [15]. Silk, D. B., Grimble, G. K. & Rees, R. G. Protein digestion and amino acid and peptide absorption. The Proceedings of the Nutrition Society44, 63-72 (1985).

    [16]. Neis, E. P., Dejong, C. H. & Rensen, S. S. The role of microbial amino acid metabolism in host metabolism. Nutrients7, 2930-2946, doi:10.3390/nu7042930 (2015).

    [17]. Thomas, C. M. et al. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PloS one7, e31951, doi:10.1371/journal.pone.0031951 (2012).

    [18]. De Biase, D. & Pennacchietti, E. Glutamate decarboxylase-dependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Molecular microbiology86, 770-786, doi:10.1111/mmi.12020 (2012).

    [19]. Tatullo, M. et al. Antioxidant and Antitumor Activity of a Bioactive Polyphenolic Fraction Isolated from the Brewing Process. Scientific reports6, 36042, doi:10.1038/srep36042 (2016).

    [20]. Wang, D. et al. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease beta-amyloid oligomerization. Molecular nutrition & food research59, 1025-1040, doi:10.1002/mnfr.201400544 (2015).

    [21]. Duenas, M. et al. A survey of modulation of gut microbiota by dietary polyphenols. BioMed research international2015, 850902, doi:10.1155/2015/850902 (2015).

    [22]. Ozdal, T. et al. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients8, 78, doi:10.3390/nu8020078 (2016).

    [23]. Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science (New York, N.Y.)345, 1254009, doi:10.1126/science.1254009 (2014).

    [24]. Winston, J. A. & Theriot, C. M. Impact of microbial derived secondary bile acids on colonization resistance against Clostridium difficile in the gastrointestinal tract. Anaerobe41, 44-50, doi:10.1016/j.anaerobe.2016.05.003 (2016).

    [25]. Russo, R. et al. Gut-brain Axis: Role of Lipids in the Regulation of Inflammation, Pain and CNS Diseases. Current medicinal chemistry25, 3930-3952, doi:10.2174/0929867324666170216113756 (2018).

    [26]. Bieberich, E. It's a lipid's world: bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochemical research37, 1208-1229, doi:10.1007/s11064-011-0698-5 (2012).

    [27]. Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science (New York, N.Y.)291, 881-884, doi:10.1126/science.291.5505.881 (2001).

    [28]. Costantini, L., Molinari, R., Farinon, B. & Merendino, N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. International journal of molecular sciences18, doi:10.3390/ijms18122645 (2017).

    [29]. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science (New York, N.Y.)330, 831-835, doi:10.1126/science.1191175 (2010).

    [30]. Kamada, N., Chen, G. Y., Inohara, N. & Nunez, G. Control of pathogens and pathobionts by the gut microbiota. Nature immunology14, 685-690, doi:10.1038/ni.2608 (2013).

    [31]. Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature535, 65-74, doi:10.1038/nature18847 (2016).

    [32]. Purchiaroni, F. et al. The role of intestinal microbiota and the immune system. European review for medical and pharmacological sciences17, 323-333 (2013).

    [33]. Balmer, M. L. et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. Journal of immunology (Baltimore, Md. : 1950)193, 5273-5283, doi:10.4049/jimmunol.1400762 (2014).

    [34]. Khosravi, A. et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell host & microbe15, 374-381, doi:10.1016/j.chom.2014.02.006 (2014).

    [35]. Bain, C. C. et al. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nature immunology15, 929-937, doi:10.1038/ni.2967 (2014).

    [36]. Sawa, S. et al. RORgammat+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nature immunology12, 320-326, doi:10.1038/ni.2002 (2011).

    [37]. Kruglov, A. A. et al. Nonredundant function of soluble LTalpha3 produced by innate lymphoid cells in intestinal homeostasis. Science (New York, N.Y.)342, 1243-1246, doi:10.1126/science.1243364 (2013).

    [38]. Kelly, C. J. et al. Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. Cell host & microbe17, 662-671, doi:10.1016/j.chom.2015.03.005 (2015).

    [39]. Guilloteau, P. et al. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutrition research reviews23, 366-384, doi:10.1017/s0954422410000247 (2010).

    [40]. Paolella, G. et al. Gut-liver axis and probiotics: their role in non-alcoholic fatty liver disease. World journal of gastroenterology20, 15518-15531, doi:10.3748/wjg.v20.i42.15518 (2014).

    [41]. Woting, A. & Blaut, M. The Intestinal Microbiota in Metabolic Disease. Nutrients8, 202, doi:10.3390/nu8040202 (2016).

    [42]. Cummings, J. H. & Macfarlane, G. T. The control and consequences of bacterial fermentation in the human colon. The Journal of applied bacteriology70, 443-459 (1991).

    [43]. Kimura, I. et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proceedings of the National Academy of Sciences of the United States of America108, 8030-8035, doi:10.1073/pnas.1016088108 (2011).

    [44]. Gasperotti, M. et al. Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS chemical neuroscience6, 1341-1352, doi:10.1021/acschemneuro.5b00051 (2015).

    [45]. Szwajgier, D., Borowiec, K. & Pustelniak, K. The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action. Nutrients9, doi:10.3390/nu9050477 (2017).

    [46]. Gerard, P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens (Basel, Switzerland)3, 14-24, doi:10.3390/pathogens3010014 (2013).

    [47]. Dai, Z. L. et al. L-Glutamine regulates amino acid utilization by intestinal bacteria. Amino acids45, 501-512, doi:10.1007/s00726-012-1264-4 (2013).

    [48]. Dai, Z. L., Wu, G. & Zhu, W. Y. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Frontiers in bioscience (Landmark edition)16, 1768-1786 (2011).

    [49]. Rhee, S. H., Pothoulakis, C. & Mayer, E. A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nature reviews. Gastroenterology & hepatology6, 306-314, doi:10.1038/nrgastro.2009.35 (2009).

    [50]. Lyte, M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS pathogens9, e1003726, doi:10.1371/journal.ppat.1003726 (2013).

    [51]. Wang, B. et al. Luminal administration ex vivo of a live Lactobacillus species moderates mouse jejunal motility within minutes. FASEB journal : official publication of the Federation of American Societies for Experimental Biology24, 4078-4088, doi:10.1096/fj.09-153841 (2010).

    [52]. Matsumoto, M. et al. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study. Frontiers in systems neuroscience7, 9, doi:10.3389/fnsys.2013.00009 (2013).

    [53]. Lee, C. Y. & Abizaid, A. The gut-brain-axis as a target to treat stress-induced obesity. Frontiers in endocrinology5, 117, doi:10.3389/fendo.2014.00117 (2014).

    [54]. Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut65, 330-339, doi:10.1136/gutjnl-2015-309990 (2016).

    [55]. Sender, R., Fuchs, S. & Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS biology14, e1002533, doi:10.1371/journal.pbio.1002533 (2016).

    [56]. Arnold, M. et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut66, 683-691, doi:10.1136/gutjnl-2015-310912 (2017).

    [57]. Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America108 Suppl 1, 4586-4591, doi:10.1073/pnas.1000097107 (2011).

    [58]. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature488, 178-184, doi:10.1038/nature11319 (2012).

    [59]. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature505, 559-563, doi:10.1038/nature12820 (2014).

    [60]. Polk, D. B. & Peek, R. M., Jr. Helicobacter pylori: gastric cancer and beyond. Nature reviews. Cancer10, 403-414, doi:10.1038/nrc2857 (2010).

    [61]. Crosbie, E. J., Einstein, M. H., Franceschi, S. & Kitchener, H. C. Human papillomavirus and cervical cancer. Lancet (London, England)382, 889-899, doi:10.1016/s0140-6736(13)60022-7 (2013).

    [62]. Zheng, R., Zeng, H., Zhang, S., Chen, T. & Chen, W. National estimates of cancer prevalence in China, 2011. Cancer letters370, 33-38, doi:10.1016/j.canlet.2015.10.003 (2016).

    [63]. Chen, W. et al. Cancer statistics in China, 2015. CA: a cancer journal for clinicians66, 115-132, doi:10.3322/caac.21338 (2016).

    [64]. Coker, O. O. et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut, doi:10.1136/gutjnl-2018-317178 (2018).

    [65]. Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nature communications6, 6528, doi:10.1038/ncomms7528 (2015).

    [66]. Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nature communications6, 8727, doi:10.1038/ncomms9727 (2015).

    [67]. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature491, 254-258, doi:10.1038/nature11465 (2012).

    [68]. He, Z. et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut, doi:10.1136/gutjnl-2018-317200 (2018).

    [69]. Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America107, 11537-11542, doi:10.1073/pnas.1001261107 (2010).

    [70]. Vizcaino, M. I. & Crawford, J. M. The colibactin warhead crosslinks DNA. Nature chemistry7, 411-417, doi:10.1038/nchem.2221 (2015).

    [71]. Maddocks, O. D., Scanlon, K. M. & Donnenberg, M. S. An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. mBio4, e00152-00113, doi:10.1128/mBio.00152-13 (2013).

    [72]. Irrazabal, T., Belcheva, A., Girardin, S. E., Martin, A. & Philpott, D. J. The multifaceted role of the intestinal microbiota in colon cancer. Molecular cell54, 309-320, doi:10.1016/j.molcel.2014.03.039 (2014).

    [73]. Sears, C. L., Geis, A. L. & Housseau, F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. The Journal of clinical investigation124, 4166-4172, doi:10.1172/jci72334 (2014).

    [74]. Snezhkina, A. V. et al. The Dysregulation of Polyamine Metabolism in Colorectal Cancer Is Associated with Overexpression of c-Myc and C/EBPbeta rather than Enterotoxigenic Bacteroides fragilis Infection. Oxidative medicine and cellular longevity2016, 2353560, doi:10.1155/2016/2353560 (2016).

    [75]. Wu, S., Morin, P. J., Maouyo, D. & Sears, C. L. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology124, 392-400, doi:10.1053/gast.2003.50047 (2003).

    [76]. McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Advances in nutrition (Bethesda, Md.)7, 418-419, doi:10.3945/an.116.012211 (2016).

    [77]. Michelotti, G. A., Machado, M. V. & Diehl, A. M. NAFLD, NASH and liver cancer. Nature reviews. Gastroenterology & hepatology10, 656-665, doi:10.1038/nrgastro.2013.183 (2013).

    [78]. Starkel, P. & Schnabl, B. Bidirectional Communication between Liver and Gut during Alcoholic Liver Disease. Seminars in liver disease36, 331-339, doi:10.1055/s-0036-1593882 (2016).

    [79]. Reid, D. T. et al. Unique microbial-derived volatile organic compounds in portal venous circulation in murine non-alcoholic fatty liver disease. Biochimica et biophysica acta1862, 1337-1344, doi:10.1016/j.bbadis.2016.04.005 (2016).

    [80]. Loo, T. M. et al. Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity. Cancer discovery7, 522-538, doi:10.1158/2159-8290.Cd-16-0932 (2017).

    [81]. Szabo, G. Gut-liver axis in alcoholic liver disease. Gastroenterology148, 30-36, doi:10.1053/j.gastro.2014.10.042 (2015).

    [82]. Hendrikx, T. et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut, doi:10.1136/gutjnl-2018-317232 (2018).

    [83]. Plieskatt, J. L. et al. Infection with the carcinogenic liver fluke Opisthorchis viverrini modifies intestinal and biliary microbiome. FASEB journal : official publication of the Federation of American Societies for Experimental Biology27, 4572-4584, doi:10.1096/fj.13-232751 (2013).

    [84]. Itthitaetrakool, U. et al. Chronic Opisthorchis viverrini Infection Changes the Liver Microbiome and Promotes Helicobacter Growth. PloS one11, e0165798, doi:10.1371/journal.pone.0165798 (2016).

    [85]. Schuijt, T. J. et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia. Gut65, 575-583, doi:10.1136/gutjnl-2015-309728 (2016).

    [86]. Tamburini, S. & Clemente, J. C. Gut microbiota: Neonatal gut microbiota induces lung immunity against pneumonia. Nature reviews. Gastroenterology & hepatology14, 263-264, doi:10.1038/nrgastro.2017.34 (2017).

    [87]. Bradley, C. P. et al. Segmented Filamentous Bacteria Provoke Lung Autoimmunity by Inducing Gut-Lung Axis Th17 Cells Expressing Dual TCRs. Cell host & microbe22, 697-704.e694, doi:10.1016/j.chom.2017.10.007 (2017).

    [88]. Yuan, M., Meng, W., Liao, W. & Lian, S. Andrographolide Antagonizes TNF-alpha-Induced IL-8 via Inhibition of NADPH Oxidase/ROS/NF-kappaB and Src/MAPKs/AP-1 Axis in Human Colorectal Cancer HCT116 Cells. Journal of agricultural and food chemistry66, 5139-5148, doi:10.1021/acs.jafc.8b00810 (2018).

    [89]. McIntosh, F. M. et al. Phylogenetic distribution of genes encoding beta-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environmental microbiology14, 1876-1887, doi:10.1111/j.1462-2920.2012.02711.x (2012).

    [90]. Fuhrman, B. J. et al. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. The Journal of clinical endocrinology and metabolism99, 4632-4640, doi:10.1210/jc.2014-2222 (2014).

    [91]. Hullar, M. A., Burnett-Hartman, A. N. & Lampe, J. W. Gut microbes, diet, and cancer. Cancer treatment and research159, 377-399, doi:10.1007/978-3-642-38007-5_22 (2014).

    [92]. Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. The Journal of clinical investigation124, 4212-4218, doi:10.1172/jci72333 (2014).

    [93]. Xie, G. et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. International journal of cancer139, 1764-1775, doi:10.1002/ijc.30219 (2016).

    [94]. Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. Journal of lipid research47, 241-259, doi:10.1194/jlr.R500013-JLR200 (2006).

    [95]. Miko, E. et al. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochimica et biophysica acta. Bioenergetics1859, 958-974, doi:10.1016/j.bbabio.2018.04.002 (2018).

    [96]. Jan, M., Ebert, B. L. & Jaiswal, S. Clonal hematopoiesis. Seminars in hematology54, 43-50, doi:10.1053/j.seminhematol.2016.10.002 (2017).

    [97]. Meisel, M. et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature557, 580-584, doi:10.1038/s41586-018-0125-z (2018).

    [98]. Bailey, M. T. et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain, behavior, and immunity25, 397-407, doi:10.1016/j.bbi.2010.10.023 (2011).

    [99]. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews. Neuroscience13, 701-712, doi:10.1038/nrn3346 (2012).

    [100]. Cussotto, S., Sandhu, K. V., Dinan, T. G. & Cryan, J. F. The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Frontiers in neuroendocrinology51, 80-101, doi:10.1016/j.yfrne.2018.04.002 (2018).

    [101]. Larauche, M., Kiank, C. & Tache, Y. Corticotropin releasing factor signaling in colon and ileum: regulation by stress and pathophysiological implications. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society60 Suppl 7, 33-46 (2009).

    [102]. Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature557, 724-728, doi:10.1038/s41586-018-0119-x (2018).

    [103]. Egerod, K. L. et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Molecular metabolism12, 62-75, doi:10.1016/j.molmet.2018.03.016 (2018).

    [104]. Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Science translational medicine6, 263ra158, doi:10.1126/scitranslmed.3009759 (2014).

    [105]. Jacqueline, C. et al. Can intestinal microbiota be associated with non-intestinal cancers? Scientific reports7, 12722, doi:10.1038/s41598-017-11644-9 (2017).

    [106]. Aviles-Jimenez, F., Yu, G., Torres-Poveda, K., Madrid-Marina, V. & Torres, J. On the Search to Elucidate the Role of Microbiota in the Genesis of Cancer: The Cases of Gastrointestinal and Cervical Cancer. Archives of medical research48, 754-765, doi:10.1016/j.arcmed.2017.11.008 (2017).

    [107]. Boleij, A., van Gelder, M. M., Swinkels, D. W. & Tjalsma, H. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America53, 870-878, doi:10.1093/cid/cir609 (2011).

    [108]. Zackular, J. P., Rogers, M. A., Ruffin, M. T. t. & Schloss, P. D. The human gut microbiome as a screening tool for colorectal cancer. Cancer prevention research (Philadelphia, Pa.)7, 1112-1121, doi:10.1158/1940-6207.Capr-14-0129 (2014).

    [109]. Zeller, G. et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Molecular systems biology10, 766, doi:10.15252/msb.20145645 (2014).

    [110]. Flanagan, L. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology33, 1381-1390, doi:10.1007/s10096-014-2081-3 (2014).

    [111]. Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut65, 1973-1980, doi:10.1136/gutjnl-2015-310101 (2016).

    [112]. Viljoen, K. S., Dakshinamurthy, A., Goldberg, P. & Blackburn, J. M. Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PloS one10, e0119462, doi:10.1371/journal.pone.0119462 (2015).

    [113]. Mima, K. et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA oncology1, 653-661, doi:10.1001/jamaoncol.2015.1377 (2015).

    [114]. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science (New York, N.Y.)350, 1079-1084, doi:10.1126/science.aad1329 (2015).

    [115]. Tanabe, S. et al. Anti-inflammatory and Intestinal Barrier-protective Activities of Commensal Lactobacilli and Bifidobacteria in Thoroughbreds: Role of Probiotics in Diarrhea Prevention in Neonatal Thoroughbreds. Journal of equine science25, 37-43, doi:10.1294/jes.25.37 (2014).

    [116] Kaiser, J. Gut microbes shape response to cancer immunotherapy. Science (New York, N.Y.)358, 573, doi:10.1126/science.358.6363.573 (2017).

    [117]. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science (New York, N.Y.)359, 91-97, doi:10.1126/science.aan3706 (2018).

    [118]. Perales-Puchalt, A. et al. Frontline Science: Microbiota reconstitution restores intestinal integrity after cisplatin therapy. Journal of leukocyte biology103, 799-805, doi:10.1002/jlb.5hi1117-446rr (2018).

    [119]. Rossi, O. et al. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Scientific reports6, 18507, doi:10.1038/srep18507 (2016).

    [120]. Martin, R. et al. Functional Characterization of Novel Faecalibacterium prausnitzii Strains Isolated from Healthy Volunteers: A Step Forward in the Use of F. prausnitzii as a Next-Generation Probiotic. Frontiers in microbiology8, 1226, doi:10.3389/fmicb.2017.01226 (2017).

    [121]. Pujada, A. et al. Matrix metalloproteinase MMP9 maintains epithelial barrier function and preserves mucosal lining in colitis associated cancer. Oncotarget8, 94650-94665, doi:10.18632/oncotarget.21841 (2017).

    [122]. Paul, B. et al. Impact of genistein on the gut microbiome of humanized mice and its role in breast tumor inhibition. PloS one12, e0189756, doi:10.1371/journal.pone.0189756 (2017).

    [123]. Kashinskaya, E. N., Andree, K. B., Simonov, E. P. & Solovyev, M. M. DNA extraction protocols may influence biodiversity detected in the intestinal microbiome: a case study from wild Prussian carp, Carassius gibelio. FEMS microbiology ecology93, doi:10.1093/femsec/fiw240 (2017).

    [124]. von Wintzingerode, F., Gobel, U. B. & Stackebrandt, E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS microbiology reviews21, 213-229, doi:10.1111/j.1574-6976.1997.tb00351.x (1997).

    [125]. Wen, C., He, Y., Xue, M., Liang, H. & Dong, J. [Biases on community structure during DNA extraction of shrimp intestinal microbiota revealed by high-throughput sequencing]. Wei sheng wu xue bao = Acta microbiologica Sinica56, 130-142 (2016).

    [126]. Lertpiriyapong, K. et al. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut63, 54-63, doi:10.1136/gutjnl-2013-305178 (2014).

    [127]. Nelson, M. H., Diven, M. A., Huff, L. W. & Paulos, C. M. Harnessing the Microbiome to Enhance Cancer Immunotherapy. Journal of immunology research2015, 368736, doi:10.1155/2015/368736 (2015).

    男人的好看免费观看在线视频 | 欧美激情久久久久久爽电影 | 人妻丰满熟妇av一区二区三区| 亚洲成av人片免费观看| 久久久国产精品麻豆| 国产欧美日韩一区二区三| 亚洲中文字幕一区二区三区有码在线看 | 国产一区二区三区视频了| 成人国产综合亚洲| 国产亚洲欧美98| 人成视频在线观看免费观看| 国产精品免费一区二区三区在线| 超碰成人久久| 99国产精品一区二区蜜桃av| 亚洲美女黄片视频| 国产亚洲精品一区二区www| 性少妇av在线| 国产精品久久久久久人妻精品电影| 香蕉丝袜av| av有码第一页| 黄片小视频在线播放| 日本五十路高清| 黄色 视频免费看| 少妇 在线观看| 老司机福利观看| 高清黄色对白视频在线免费看| 1024香蕉在线观看| 此物有八面人人有两片| 日韩精品中文字幕看吧| 国产成人av激情在线播放| 久久久国产成人精品二区| 国产熟女午夜一区二区三区| 高清毛片免费观看视频网站| 18禁美女被吸乳视频| 国产午夜精品久久久久久| 他把我摸到了高潮在线观看| 搡老岳熟女国产| 99国产极品粉嫩在线观看| 一级黄色大片毛片| 国产精品一区二区精品视频观看| av电影中文网址| 精品久久久久久久久久免费视频| 可以在线观看的亚洲视频| a在线观看视频网站| 51午夜福利影视在线观看| 久久天堂一区二区三区四区| 国产xxxxx性猛交| 天堂动漫精品| 深夜精品福利| 一a级毛片在线观看| 黄片小视频在线播放| 精品乱码久久久久久99久播| 嫩草影院精品99| 久久久国产成人精品二区| 久99久视频精品免费| 亚洲成a人片在线一区二区| 午夜老司机福利片| 国产成人一区二区三区免费视频网站| 久99久视频精品免费| 老司机午夜十八禁免费视频| 桃色一区二区三区在线观看| 级片在线观看| 久久人妻av系列| 午夜日韩欧美国产| 在线国产一区二区在线| www日本在线高清视频| 国产精品国产高清国产av| 精品电影一区二区在线| 欧美一区二区精品小视频在线| 免费无遮挡裸体视频| 亚洲午夜精品一区,二区,三区| 免费观看精品视频网站| 午夜福利成人在线免费观看| 狂野欧美激情性xxxx| xxx96com| 色婷婷久久久亚洲欧美| 国产野战对白在线观看| 免费av毛片视频| 久久人妻福利社区极品人妻图片| 亚洲熟妇中文字幕五十中出| 精品国产乱码久久久久久男人| 男人的好看免费观看在线视频 | 大码成人一级视频| 久久影院123| 欧美日本视频| 久久久久久免费高清国产稀缺| 久久久国产欧美日韩av| 亚洲第一青青草原| 亚洲欧美一区二区三区黑人| 真人一进一出gif抽搐免费| 女人精品久久久久毛片| 国产精品一区二区免费欧美| 国产免费男女视频| 悠悠久久av| 国产精品久久久久久精品电影 | 国产av精品麻豆| 午夜福利在线观看吧| 国产97色在线日韩免费| 午夜免费鲁丝| 757午夜福利合集在线观看| 神马国产精品三级电影在线观看 | 欧美日韩瑟瑟在线播放| 午夜精品国产一区二区电影| av视频在线观看入口| 成人18禁在线播放| 午夜视频精品福利| 性色av乱码一区二区三区2| 大码成人一级视频| 少妇 在线观看| 亚洲第一青青草原| 黄色片一级片一级黄色片| 色综合婷婷激情| 日韩成人在线观看一区二区三区| av网站免费在线观看视频| 国产激情久久老熟女| 波多野结衣巨乳人妻| 久久人人97超碰香蕉20202| 国产精品精品国产色婷婷| 国产精品亚洲av一区麻豆| 91在线观看av| 国产欧美日韩一区二区三| 好男人在线观看高清免费视频 | 老司机靠b影院| 99国产精品免费福利视频| av超薄肉色丝袜交足视频| 午夜成年电影在线免费观看| 精品一区二区三区视频在线观看免费| 午夜福利免费观看在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人久久性| 91成年电影在线观看| 国产亚洲欧美98| 激情在线观看视频在线高清| 99精品欧美一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 午夜久久久久精精品| 亚洲精品中文字幕在线视频| 国产精品爽爽va在线观看网站 | 国产激情久久老熟女| 变态另类成人亚洲欧美熟女 | 亚洲午夜理论影院| 免费av毛片视频| 亚洲一卡2卡3卡4卡5卡精品中文| 不卡av一区二区三区| 色综合亚洲欧美另类图片| 午夜福利在线观看吧| 久久久久国产一级毛片高清牌| 久久热在线av| 精品卡一卡二卡四卡免费| 精品不卡国产一区二区三区| 亚洲视频免费观看视频| 狠狠狠狠99中文字幕| 日韩有码中文字幕| 夜夜躁狠狠躁天天躁| 国语自产精品视频在线第100页| 97人妻精品一区二区三区麻豆 | 好男人电影高清在线观看| 日韩精品青青久久久久久| 欧美老熟妇乱子伦牲交| 亚洲精品国产精品久久久不卡| 欧美黄色片欧美黄色片| 琪琪午夜伦伦电影理论片6080| 高清黄色对白视频在线免费看| 久久精品亚洲熟妇少妇任你| 高潮久久久久久久久久久不卡| 国产成人av激情在线播放| 成人18禁高潮啪啪吃奶动态图| 午夜久久久在线观看| 级片在线观看| 久久国产亚洲av麻豆专区| 国产熟女xx| 亚洲成人久久性| 国产高清激情床上av| 嫩草影院精品99| 大香蕉久久成人网| e午夜精品久久久久久久| 女人被狂操c到高潮| 一级毛片女人18水好多| 亚洲专区字幕在线| 中文亚洲av片在线观看爽| 91字幕亚洲| 精品国产一区二区三区四区第35| 宅男免费午夜| 国产高清有码在线观看视频 | 国产色视频综合| av福利片在线| 国产成人欧美在线观看| 精品一区二区三区av网在线观看| 欧美 亚洲 国产 日韩一| 一边摸一边做爽爽视频免费| 777久久人妻少妇嫩草av网站| av免费在线观看网站| 欧美亚洲日本最大视频资源| 欧美+亚洲+日韩+国产| 国产欧美日韩一区二区三区在线| 嫩草影视91久久| 波多野结衣高清无吗| 免费少妇av软件| 国产免费av片在线观看野外av| 男女下面进入的视频免费午夜 | 久久久久国产精品人妻aⅴ院| 国产精品1区2区在线观看.| 91字幕亚洲| 午夜福利18| 亚洲男人天堂网一区| 男女之事视频高清在线观看| 久99久视频精品免费| 午夜福利成人在线免费观看| 国产亚洲欧美精品永久| 多毛熟女@视频| 9色porny在线观看| xxx96com| 最近最新中文字幕大全电影3 | 国产一区二区三区在线臀色熟女| 91成年电影在线观看| 满18在线观看网站| av超薄肉色丝袜交足视频| 两性夫妻黄色片| 午夜老司机福利片| e午夜精品久久久久久久| 午夜福利成人在线免费观看| 国产精品 欧美亚洲| 欧美大码av| 99久久99久久久精品蜜桃| 岛国在线观看网站| 亚洲熟女毛片儿| 老司机靠b影院| 国产精品久久久久久亚洲av鲁大| 色在线成人网| 99re在线观看精品视频| 久久婷婷人人爽人人干人人爱 | 十分钟在线观看高清视频www| 老司机午夜福利在线观看视频| 高清在线国产一区| 欧美一级a爱片免费观看看 | 久久中文看片网| 啦啦啦 在线观看视频| 免费人成视频x8x8入口观看| 黄色片一级片一级黄色片| 国产人伦9x9x在线观看| 国产99久久九九免费精品| 又黄又粗又硬又大视频| 国产亚洲精品一区二区www| 午夜久久久在线观看| 一区二区三区国产精品乱码| 亚洲成人免费电影在线观看| 免费少妇av软件| 亚洲男人天堂网一区| 日本免费a在线| 两人在一起打扑克的视频| 窝窝影院91人妻| 亚洲欧美激情在线| 国产精品久久久av美女十八| 长腿黑丝高跟| 大陆偷拍与自拍| 在线观看免费午夜福利视频| xxx96com| 少妇 在线观看| 亚洲国产精品sss在线观看| 他把我摸到了高潮在线观看| 久久久久久久精品吃奶| 三级毛片av免费| 国内久久婷婷六月综合欲色啪| 国产精品电影一区二区三区| 国产精品免费视频内射| 制服人妻中文乱码| 免费在线观看日本一区| 欧美成人午夜精品| 在线观看免费视频网站a站| 极品教师在线免费播放| 日本 欧美在线| 别揉我奶头~嗯~啊~动态视频| 亚洲avbb在线观看| 高潮久久久久久久久久久不卡| 亚洲最大成人中文| 国产一区二区三区视频了| 亚洲第一av免费看| 成人亚洲精品一区在线观看| 给我免费播放毛片高清在线观看| 少妇的丰满在线观看| 正在播放国产对白刺激| 欧美久久黑人一区二区| 亚洲自偷自拍图片 自拍| 老司机靠b影院| 天堂√8在线中文| 国产成人影院久久av| 操美女的视频在线观看| 久久久久久久久免费视频了| ponron亚洲| 国产午夜精品久久久久久| 久久久久久久久久久久大奶| 国产亚洲欧美98| 亚洲色图综合在线观看| netflix在线观看网站| 亚洲一区二区三区色噜噜| 人人妻人人爽人人添夜夜欢视频| 丝袜人妻中文字幕| 成人18禁高潮啪啪吃奶动态图| 又紧又爽又黄一区二区| 精品国产美女av久久久久小说| 久久精品成人免费网站| 亚洲国产精品久久男人天堂| 在线观看免费视频日本深夜| 男女做爰动态图高潮gif福利片 | a级毛片在线看网站| 精品午夜福利视频在线观看一区| 久久精品亚洲熟妇少妇任你| 啦啦啦免费观看视频1| 免费在线观看完整版高清| 久久人妻熟女aⅴ| 如日韩欧美国产精品一区二区三区| 首页视频小说图片口味搜索| 亚洲 欧美一区二区三区| 色婷婷久久久亚洲欧美| 亚洲专区中文字幕在线| 国产精品二区激情视频| 久久天躁狠狠躁夜夜2o2o| 亚洲免费av在线视频| 国产1区2区3区精品| 国产成+人综合+亚洲专区| 12—13女人毛片做爰片一| 人人妻人人爽人人添夜夜欢视频| 国产精华一区二区三区| 亚洲精品国产一区二区精华液| 美女国产高潮福利片在线看| 亚洲自拍偷在线| 俄罗斯特黄特色一大片| 中文字幕人妻熟女乱码| 欧美日韩亚洲国产一区二区在线观看| 咕卡用的链子| 日本免费一区二区三区高清不卡 | 狂野欧美激情性xxxx| 又黄又粗又硬又大视频| av视频免费观看在线观看| 久久中文字幕人妻熟女| 国产97色在线日韩免费| 欧美乱码精品一区二区三区| 亚洲国产欧美日韩在线播放| 久久中文看片网| 亚洲五月婷婷丁香| 亚洲欧美日韩高清在线视频| 午夜视频精品福利| 视频区欧美日本亚洲| 亚洲成国产人片在线观看| 免费在线观看视频国产中文字幕亚洲| 此物有八面人人有两片| 国产一区二区激情短视频| 一进一出抽搐动态| 黑人操中国人逼视频| 欧美日本亚洲视频在线播放| а√天堂www在线а√下载| 日韩一卡2卡3卡4卡2021年| 脱女人内裤的视频| 黄色 视频免费看| 欧美激情极品国产一区二区三区| aaaaa片日本免费| 美女国产高潮福利片在线看| 欧美日本中文国产一区发布| 少妇的丰满在线观看| 看片在线看免费视频| av中文乱码字幕在线| 久久精品国产亚洲av高清一级| 欧美中文综合在线视频| 一级黄色大片毛片| 亚洲av成人av| bbb黄色大片| 国产精品亚洲美女久久久| 在线观看免费视频网站a站| 亚洲五月婷婷丁香| √禁漫天堂资源中文www| 亚洲欧美激情在线| 成人免费观看视频高清| 久久精品国产99精品国产亚洲性色 | 久久人妻熟女aⅴ| 久久香蕉激情| 亚洲国产欧美网| 亚洲国产精品sss在线观看| 国产成人精品久久二区二区91| 高清在线国产一区| 此物有八面人人有两片| 最近最新免费中文字幕在线| 免费在线观看日本一区| 91成人精品电影| 搡老妇女老女人老熟妇| 天堂影院成人在线观看| 亚洲 欧美 日韩 在线 免费| av有码第一页| 大码成人一级视频| 国产亚洲av高清不卡| 成在线人永久免费视频| 桃色一区二区三区在线观看| 精品一区二区三区四区五区乱码| 久久午夜综合久久蜜桃| av免费在线观看网站| 日本精品一区二区三区蜜桃| 国产精品秋霞免费鲁丝片| 无限看片的www在线观看| 男女做爰动态图高潮gif福利片 | www国产在线视频色| 激情在线观看视频在线高清| 亚洲精品美女久久久久99蜜臀| 97超级碰碰碰精品色视频在线观看| 色婷婷久久久亚洲欧美| 亚洲国产毛片av蜜桃av| 高清黄色对白视频在线免费看| 精品一区二区三区av网在线观看| 日本欧美视频一区| 亚洲av第一区精品v没综合| 大码成人一级视频| 侵犯人妻中文字幕一二三四区| 午夜免费观看网址| 热99re8久久精品国产| 欧美性长视频在线观看| 国产精品,欧美在线| 久久这里只有精品19| 999久久久精品免费观看国产| 亚洲一码二码三码区别大吗| 91老司机精品| 婷婷精品国产亚洲av在线| 夜夜爽天天搞| 精品卡一卡二卡四卡免费| 99re在线观看精品视频| 国产av又大| 国产伦一二天堂av在线观看| 丰满的人妻完整版| 精品无人区乱码1区二区| 少妇 在线观看| 搡老妇女老女人老熟妇| 久久久久久久久免费视频了| 国产精品影院久久| 一级片免费观看大全| 看免费av毛片| 国产不卡一卡二| 青草久久国产| 不卡av一区二区三区| 黄色视频不卡| 国产高清videossex| 日韩精品青青久久久久久| 日韩av在线大香蕉| 最新在线观看一区二区三区| 香蕉丝袜av| 国产人伦9x9x在线观看| 国产成人系列免费观看| 亚洲成av人片免费观看| 亚洲专区字幕在线| 美女高潮喷水抽搐中文字幕| 国产成人欧美在线观看| 亚洲精品中文字幕在线视频| 免费搜索国产男女视频| 黑人操中国人逼视频| 亚洲,欧美精品.| 校园春色视频在线观看| 亚洲成人久久性| a级毛片在线看网站| 热re99久久国产66热| 啦啦啦免费观看视频1| 如日韩欧美国产精品一区二区三区| 国产精品亚洲美女久久久| 欧美黄色片欧美黄色片| 女人精品久久久久毛片| 欧美亚洲日本最大视频资源| 亚洲欧美一区二区三区黑人| 99精品在免费线老司机午夜| 一区福利在线观看| 夜夜夜夜夜久久久久| 麻豆成人av在线观看| av在线天堂中文字幕| 9色porny在线观看| 国产又爽黄色视频| 国产精品美女特级片免费视频播放器 | 中文字幕另类日韩欧美亚洲嫩草| 美女扒开内裤让男人捅视频| 少妇粗大呻吟视频| 男女下面插进去视频免费观看| 精品国内亚洲2022精品成人| 亚洲国产看品久久| 免费在线观看黄色视频的| 国产乱人伦免费视频| 久久久国产精品麻豆| 久久久久精品国产欧美久久久| 亚洲av成人不卡在线观看播放网| a在线观看视频网站| 超碰成人久久| 亚洲性夜色夜夜综合| 午夜免费鲁丝| 黄片小视频在线播放| www.精华液| 亚洲国产毛片av蜜桃av| 精品熟女少妇八av免费久了| 国产乱人伦免费视频| 日韩视频一区二区在线观看| 欧美一级a爱片免费观看看 | 日韩欧美国产在线观看| 国产野战对白在线观看| 久久香蕉激情| 在线观看免费视频日本深夜| 一夜夜www| 91在线观看av| 国产三级黄色录像| 国产日韩一区二区三区精品不卡| 亚洲国产看品久久| 两人在一起打扑克的视频| 老司机靠b影院| 国产成人影院久久av| 亚洲一区中文字幕在线| 精品国产乱码久久久久久男人| 久久精品国产综合久久久| 国产三级黄色录像| 黑人欧美特级aaaaaa片| 国产精品久久久久久精品电影 | 精品久久蜜臀av无| 日韩免费av在线播放| 久久天躁狠狠躁夜夜2o2o| 咕卡用的链子| АⅤ资源中文在线天堂| 色尼玛亚洲综合影院| 美女大奶头视频| 亚洲成人久久性| 久久久久九九精品影院| 久久国产精品影院| 国产精品 国内视频| 免费无遮挡裸体视频| 色播亚洲综合网| 欧美绝顶高潮抽搐喷水| 亚洲av电影在线进入| 精品国内亚洲2022精品成人| 亚洲av美国av| 色尼玛亚洲综合影院| 国产精品香港三级国产av潘金莲| 夜夜夜夜夜久久久久| 自线自在国产av| 一级作爱视频免费观看| 亚洲国产欧美日韩在线播放| 久久午夜亚洲精品久久| 精品国产超薄肉色丝袜足j| 免费看十八禁软件| 亚洲国产高清在线一区二区三 | 一区二区日韩欧美中文字幕| www国产在线视频色| 国产亚洲精品第一综合不卡| 一进一出抽搐动态| 欧美亚洲日本最大视频资源| 1024视频免费在线观看| 国产精品国产高清国产av| 精品国产乱码久久久久久男人| 真人做人爱边吃奶动态| 精品乱码久久久久久99久播| 久久伊人香网站| 国产精品香港三级国产av潘金莲| 国产区一区二久久| 乱人伦中国视频| 女警被强在线播放| 丝袜在线中文字幕| 午夜精品在线福利| 色哟哟哟哟哟哟| 69精品国产乱码久久久| 每晚都被弄得嗷嗷叫到高潮| 国产熟女午夜一区二区三区| 亚洲一区二区三区色噜噜| 亚洲成av人片免费观看| 久久久久久免费高清国产稀缺| 久久精品成人免费网站| 黄色成人免费大全| av超薄肉色丝袜交足视频| 曰老女人黄片| 色播亚洲综合网| 亚洲一区中文字幕在线| av网站免费在线观看视频| 亚洲av五月六月丁香网| 满18在线观看网站| 激情在线观看视频在线高清| 国产精品久久久久久人妻精品电影| 国产精品免费视频内射| 中亚洲国语对白在线视频| 亚洲精品一卡2卡三卡4卡5卡| 一级片免费观看大全| 麻豆成人av在线观看| 禁无遮挡网站| 国产欧美日韩一区二区三区在线| 国产成人一区二区三区免费视频网站| 国产一区二区三区视频了| 国产欧美日韩综合在线一区二区| 国产精品久久久久久亚洲av鲁大| 国产成人av教育| av天堂在线播放| 精品久久蜜臀av无| 日本欧美视频一区| 亚洲精品国产一区二区精华液| 欧美黑人精品巨大| 色综合欧美亚洲国产小说| av欧美777| 国产精品 欧美亚洲| 久久婷婷人人爽人人干人人爱 | 日韩精品青青久久久久久| 国产欧美日韩综合在线一区二区| 午夜视频精品福利| 亚洲人成伊人成综合网2020| 国产精品久久久av美女十八| www.熟女人妻精品国产| 老汉色av国产亚洲站长工具| 国产亚洲精品av在线| 日韩av在线大香蕉| 国产精品免费视频内射| www.www免费av| 欧美日韩黄片免| av福利片在线| 日韩精品青青久久久久久| 最新在线观看一区二区三区| 99国产极品粉嫩在线观看| 性欧美人与动物交配| 啦啦啦免费观看视频1| 亚洲男人的天堂狠狠| 亚洲视频免费观看视频| 久久热在线av| 变态另类丝袜制服|